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With video streamingmaking up 80% of the global internet bandwidth, the need to
deliver high-quality video at low bitrate, combined with the high complexity of
modern codecs, has led to the idea of a per-clip optimisation approach in
transcoding. In this paper, we revisit the Lagrangian multiplier parameter,
which is at the core of rate-distortion optimisation. Currently, video encoders
use prediction models to set this parameter but these models are agnostic to the
video at hand. We explore the gains that could be achieved using a per-clip direct-
search optimisation of the Lagrangian multiplier parameter. We evaluate this
optimisation framework on a much larger corpus of videos than that has been
attempted by previous research. Our results show that per-clip optimisation of the
Lagrangian multiplier leads to BD-Rate average improvements of 1.87% for
x265 across a 10 k clip corpus of modern videos, and up to 25% in a single
clip. Average improvements of 0.69% are reported for libaom-av1 on a subset of
100 clips. However, we show that a per-clip, per-frame-type optimisation of λ for
libaom-av1 can increase these average gains to 2.5% and up to 14.9% on a single
clip. Our optimisation scheme requires about 50–250 additional encodes per-clip
but we show that significant speed-up can be made using proxy videos in the
optimisation. These computational gains (of up to ×200) incur a slight loss to BD-
Rate improvement because the optimisation is conducted at lower resolutions.
Overall, this paper highlights the value of re-examining the estimation of the
Lagrangian multiplier in modern codecs as there are significant gains still available
without changing the tools used in the standards.
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1 Introduction

User-generated video content has increased significantly in recent years (Wang et al.,
2019) to the point that it now represents the majority 80% of all internet traffic (Cass, 2014))
and still continues to grow. Because of the additional pressures on internet distribution and
globally available bandwidth, there has always been an effort to re-engineer existing video
codecs to hit better rate/quality trade-offs. Ideally, a compressed video would have zero
distortion at as low a bitrate as possible, but we know that is not always practical. So decisions
to achieve the optimal trade-off between bitrate and distortion need to be made. This is
known as Rate Distortion Optimisation (RDO).

At the heart of this rate-distortion trade-off is the Lagrangian multiplier approach which
was advocated in 1998 by Sullivan and Wiegand (1998) and Ortega and Ramchandran
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(1998), and which continues to be the core mechanism inside
modern video codecs. In this approach, the contained
constrained optimisation problem of minimising the distortion
while staying below a certain target bitrate is recast into an
unconstrained minimisation of a combined cost J = D + λR,
where D is a measure of distortion, R is the bitrate and λ is the
Lagrangian multiplier. The Lagrangian multiplier λ is selected to
allow for different operating points in the rate-distortion curve.

Finding the value of λ that yields a target bitrate is the problem
faced by the encoder. Prediction models for λ have been established
as functions of the quantiser parameterQP by Sullivan andWiegand
(1998) and Ortega and Ramchandran (1998) and deployed in
H.264/AVC and HEVC reference encoders. Similar models have
been established for VP9 and AV1.

These models have been calibrated over video test sets but we
note that these models are not tailored to a particular clip. This
means that there are potentially significant gains to bemade by using
a per-clip optimal value of λ during encoding. Some previous works
(Im and Chan, 2015; Papadopoulos et al., 2016; Yang et al., 2017;
Zhang and Bull, 2019) have presented improvedmodels to make this
adaptive prediction possible. While these earlier works have shown
that some gains were possible, they do not indicate what could be
gained by using the optimal values of λ.

The main contribution of this paper is to propose a direct-
search algorithm to optimise λ on a per-clip basis. Contrary to
previous works in the academic literature that have so far only
reported empirical studies on relatively small, low-resolution
corpora of videos, we propose to explore the results of our
method on a large video corpus which better represents
today’s video.

Using this direct-search for λ on a corpus of 10 K clips, we show
that an average Bjøntegaard-Delta Rate (BD-Rate) improvement of
1.87% is achievable for x265 (using PSNR-Y quality metric), with
about half of the corpus showing BD-Rate improvements of greater
than 1% as initially detailed in Ringis et al. (2020a; b). On a subset of
100 of these videos, we show that average BD-Rate (MS-SSIM)
improvements for libaom-av1 are a more modest 0.69% for libaom-
av1, but performing the optimisation to a per-clip and per-frame-
type basis, allows us to bring these gains to 2.47% for libaom-av1.
Direct-search optimisation requires multiple measurements of the
BD-Rate and, as a result, ten to fifty encodes might be required to
estimate optimal values of λ using our framework. We show that the
use of video proxies in the optimisation yields significant speed-up
gains (x265:×21, libaom-av1:×230), whilst achieving comparable
average gains (x265:0.82%, libaom-av1: 2.53%). This expands on
work performed in Ringis et al. (2021) where the objective quality
metric used was limited to PSNR-Y, and expands the work from
(Vibhoothi et al., 2022a; Vibhoothi et al., 2022b) by using a larger
amount of videos.

The rest of this paper is organised as follows. Section 2 provides a
detailed review of the Lagrangian multipliers application in video
encoders as well as a review of the relevant literature in per-clip
Lagrangian multiplier optimisation. Section 3 details our
methodology for per-clip Lagrangian multiplier optimisation,
including details about our implementation. Section 4 describes
each experiment undertaken and the results which are then
described in Section 5. This leads to our conclusions and future
work described in Section 6.

2 Background

Within a video codec, there are a number of processes and
modules which have the same common goal: minimise bitrate and
maximise quality. For example, in HEVC, the video coding system
needs to make a decision for many parameters for each frame and
each macroblock. These include Intra/Inter prediction modes, CTU/
MB segmentation, and quantization step sizes. All of these decisions
contribute to the shared goal of minimising distortion
(i.e., maximising quality) while also attaining a low bitrate. The
task of rate-distortion optimisation is to choose the parameters that
achieve this goal.

2.1 Rate-distortion optimisation in video
compression

2.1.1 Constrained optimisation and Lagrangian
multiplier

Rate-distortion optimisation can be seen as a constrained
problem, which either represents the minimisation of the bitrate,
R, while keeping the distortion, D, below a set target, Dmax, or,
alternatively, the minimisation of the distortion,Dwhile keeping the
rate below a target bitrate, Rmax. The optimisation is based on tuning
factors including quantisation step-size, QP and macroblock
selection, M and other parameters. In the following, we will
consider the optimisation problem, that is:

minimize
QP,M,...

D QP,M, . . .( )
subject to R QP,M, . . .( )<Rmax.

(1)

This problem can be solved using Lagrangian optimisation
(Everett, 1963; Ortega and Ramchandran, 1998; Sullivan and
Wiegand, 1998). In this approach the codec transforms the
constrained optimisation into an unconstrained problem by
introducing the cost function J as follows:

J � D + λR. (2)
J combines both the distortion D (for a frame or macroblock) and
the rate R (the number of coded bits for that unit) through the action
of the Lagrangian multiplier λ. This technique was adopted as it is
effective and conceptually simple. For each value of λ, minimising J
with respect to the parameters yields an optimal solution to Eq. 1 for
a certain Rmax. Conversely for any Rmax, there exists a value of λ,
which can be used for an unconstrained optimal solution. However,
in practice, there are a number of interactions between coding
decisions which make this problem less straightforward.

2.1.2 A prediction model for the Lagrangian
multiplier

The first issue is how to find the optimal value of λ for a given
targeted rate. The seminal works of Sullivan and Wiegand (1998);
Ortega and Ramchandran (1998) laid the foundation for an
experimental approach to choosing λ. The coding fidelity is
principally controlled by the quantisation step QP, with a small
quantiser step size leading to a high bitrate and a small amount of
distortion. Considering the quantisation effect in isolation,
i.e., taking QP as the sole parameter of interest, it is possible to
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propose some reasonable models for the distortion and the rate as a
function of QP. There is indeed a well-known high bitrate
approximation (small QP approximation) in signal compression
that states (see Jayant and Noll, 1984):

R D( ) ≈ a ln
b

D
( ), (3)

where a and b are two parameters that vary depending on the
video content. Combining this with the other well-known
approximation of the mean squared error D for a uniform
quantiser at high-bitrates (D(Q) � QP2

12 ) yields a relationship
between R and QP:

R QP( ) � a ln
12b
QP2

( ). (4)

A remarkable property of the Lagrangian multiplier is that, at the
optimum,

λ � −dD
dR

. (5)

This can be geometrically interpreted as λ being the negative of the
slope of the optimal Pareto rate-distortion front. This can be
exploited to give us a predictive model for λ:

λ � −dD
dR

� −dD/dQP
dR/dQP � − QP/6

−2a/QP � QP2

12a
, (6)

where a needs to be empirically measured.

2.1.3 Implementations of the Lagrangian multiplier
prediction model in video codecs

For the H.263 Video Compression Standard, Sullivan and
Wiegand (1998) and Ortega and Ramchandran (1998)
experimentally determined a by encoding 100 frames from
4 sequences. They found the best fit for λ to be

λ � 0.85 × QP2. (7)
An example frame from these four QCIF resolution sequences

Mother and Daughter, Foreman, Mobile and Calendar and News,
available on Xiph.org (2018), can be seen in Figure 1A.

In later video codecs, H.264 and H.265, bi-directional
frames (B-Frames) were introduced and the experiments to
establish links between λ and QP were repeated (Sullivan et al.,
2012), leading to updated relationships for each of the Intra (I),
Predicted (P) and B frames. Similar efforts were led in VP9
(Mukherjee et al., 2013) and AV1 (Chen and Murhejee, 2018).
In AV1, λ was estimated by optimisation over a different/

FIGURE 1
Codec prediction model for λ fromQP on the original four sequences used in H.263 and H.264. (A)Original four sequences used to establish a link
between lambda and QP in H.263 and H.264 Licenced under CC BY 3.0. (B) Pareto optimal (solid black) obtained as a convex hull of all (QP, lambda)
curves on the Mother and Daughter sequence. (C) Pareto optimal pairs (QP, lambda) for the four sequences and x265 prediction model (solid black).
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modern test video clip set, using somewhat similar prediction
models:

λ � A × q2dc, (8)
where A is a constant depending on frame type (3.2 ≤ A ≤ 4.35) and
qdc is the DC quantiser.

As the encoding scenarios have evolved over the years, encoders
have introduced different new frame types and used target distortion
functions (e.g., VMAF over SSE), etc. Tomake things more complex,
encoders have introduced a number of new Lagrangian multipliers
for other RDO decisions that are derived from the main prediction
model.

Each of these have different cost functions based on distortion,
and are linked together in existing implementations of codecs. This
is a practical necessity, however, we can see that codec
implementations have eroded the optimality of estimation of the
Lagrangian Multiplier.

2.1.4 Disparity between predictions and optimal
values

To better sense how far these models deviate from optimality, we
compare x265 predictions of λ with the actually measured ground-
truth values of λ. For that experiment, we take the same four
sequences used by Sullivan and Wiegand (1998) (Figure 1A)
for h263.

We encoded each clip with x265 using I-Frames only at
different QP values (1:51) for different λ values (1, 2, 4, 8,
100, 250, 400, 730 and 1,000). In Figure 1B, we report the (R,
D) point cloud of all these operating points on the Mother and
Daughter sequence. The Pareto front (black solid line),
corresponds to the optimal λ − QP relationship for that
clip. In Figure 1C we report the (λ, QP) pairs found on the
Pareto curves for the four sequences. We also plot the x265 model
prediction for λ as a function of QP.

As expected, we see in Figure 1C each clip exhibits a different
optimal relationship between λ and QP, and all differ from the
x265 prediction model. Although the empirical relationships used in
encoders perform well on average, this confirms our intuition that
for any particular clip, the empirical estimate is unlikely to be
optimal, and hence motivates our idea of a per-clip optimisation
of λ.

2.2 Per-clip Lagrangian multiplier prediction

The general idea of per-clip parameter estimation is not new and
is sometimes known as per-title, per-scene, per-shot or per-clip
encoding. Netflix was the first (Aaron et al., 2015) to show that an
exhaustive search of the transcoder parameter space can lead to
significant gains when building the bitrate ladder for a particular
clip. Those gains easily compensate for the large once-off
computational cost of transcoding because that clip may be
streamed millions of times across many different CDNs thus
saving bandwidth and network resources in general. That idea
has since been refined into a more efficient search process across
shots and parameter spaces (Katsavounidis and Guo, 2018). They
achieved a 13% BD-Rate improvement over the HEVC reference

codec parameters on the UltraVideo dataset (Mercat et al., 2020).
Similarly, Satti et al. (2019) proposed a per-clip approach which was
based on a model linking the bitrate, resolution and quality of a
video. Using this model allowed for a bitrate ladder to be generated
for a given clip at a lower computational cost than Katsavounidis
and Guo (2018).

In the following sections, we review the limited amount of
existing work on per-clip adaptation of λ (Zhang and Bull, 2019).
All previous papers attempt to adjust λ away from the codec default
by using a constant k such that

λ � k × λo, (9)
where λo is the default Lagrangian multiplier estimated in the video
codec, and λ is the updated Lagrangian. We group these previous
efforts into 3 themes, presented next.

2.2.1 Classification
One proposed method to determine k is by classifying the

content of the video. In particular, Ma et al. (2016) proposed to
use a Support Vector Machine to determine k from a set of image
features derived from the frames. Experiments on the 37 dynamic
texture videos of Ghanem and Ahuja (2010) result in improvements
of up to 2 dB in PSNR and 0.05 in SSIM at the same bitrate.

Hamza et al. (2019) uses scene classification (SegNet (Kendall
et al., 2015)) to classify a clip into indoor/outdoor/urban/non-urban
classes. The value for k is adjusted for each macroblock, based on the
class of that macroblock. They report on the Xiph.org (2018) dataset
up to 6% BD-Rate improvement on intra frames. This work
recognises that visual information semantics that describes the
nature of the image was not considered in the experimental
determination of λ for the MPEG-based codecs (H263, H264,
H265).

2.2.2 Regression
Another approach proposed by Yang et al. (2017) is to

determine k through a straightforward linear regression of
perceptual features extracted from the video. The regression
parameters are determined experimentally using a corpus from
Xiph.org (2018). They report a BD-Rate improvement of up to 6.
2%. Similarly to Hamza et al. (2019), they highlight that the
perceptual features of the video may be of great importance in
determining an optimal Lagrangian multiplier.

Zhang and Bull (2019) showed that a single feature, the ratio
between the MSE of P and B frames, could give a good idea of the
temporal complexity of a clip. They showed on the low-
resolution (352 × 288) video clips of the DynTex database,
that the existing Lagrangian multiplier prediction models are
not ideal and that up to 7% improvement in BD-Rate could be
gained.

Despite the limited scope of this experimental study, this work
highlights the non-optimality of current prediction models.

2.2.3 Quantiser manipulation
Since λmodels are linked toQP, another common approach is to

adjust λ implicitly through the quantiser parameter, QP. This
achieves a similar goal of attempting to improve the RDO of a
codec, but it has a wider impact as it changes the DCT coefficients in
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the compressed media as well. Taking a local, exhaustive approach,
Im and Chan (2015) proposed encoding a frame multiple times in a
video. Each frame was encoded using a Quantiser Parameter QP ∈
(QP,QP ± 1,QP ± 2,QP ± 3,QP ± 4). They chose theQP which lead
to the best bitrate improvement per frame. They report up to 14.15%
BD-Rate improvement on a single sequence. Papadopoulos et al.
(2016) also applied this idea to HEVC and propose to update QP
based on the ratio of the distortion in P and B (DP, DB) frames of the
previous Group of Pictures (GOP). They update QP = a × (DP/DB) −
b, where a, b are constants determined experimentally. They report
an average BD-Rate improvement of 1.07% on the DynTex dataset,
with up to 3% BD-Rate improvement achieved for a single sequence.

2.3 Remarks

Working practical codec implementations have deviated from
the optimality of the theory of Lagrangian multipliers. That is
because the proposed prediction models make a number of
assumptions (e.g., QP is the only decision parameter, QP is
assumed to be small, etc.), and also because some considerations
simply break the theory (e.g., the definition of rate and distortion
costs differ in the motion estimation module). This was inevitable
because optimal estimation is just too expensive to achieve per-clip.
To make matters worse, historically, experiments were performed
on small corpus sizes and on content which does not adequately
represent modern media. Hence, it is likely that a better λ exists for
an individual video clip which improves the BD-Rate compared to
the current defaults used in existing codec implementations.

Our first observation is that all previous works confirm this
hypothesis, and they also show that better adaptive determinations
of λ are possible and can yield an increase in rate-distortion
performance.

Secondly, all previous works propose new models to make this
adaptive prediction possible. These models are also themselves
necessarily sub-optimal, as only a brute-force exploration of k
from Eq. 9 would lead to the optimum.

Finally, the scope of these previous experimental studies is
limited as they have been performed on small number of mostly
low-resolution videos that bear little resemblance to modern video
content, e.g., as found on popular streaming platforms.

3 A framework for a per-clip direct-
search optimisation of the Lagrangian
multiplier

To explore just how much more BD-Rate gains are to be gained
using an adaptive approach, we propose in this paper to find the best
possible λ per-clip, using a direct-search optimisation of λ. Similarly
to the rest of the literature, we adjust λ away from the codec default
estimation λo through the use of a constant multiplying factor, k,
across the clip/sequence, as λ = k × λo. Our objective is to apply a
direct-search optimisation of k. Our experiments target x265
(HEVC) and libaom-av1 (AV1), and contrary to previous studies,
our experiments are performed on a modern corpus of videos, built
on the large YouTube UGC dataset (Wang et al., 2019). Lastly,
motivated by the fact that the prediction model for λ is already

dependent on the frame type in the existing libaom-av1
implementation, we study the effect of isolating the optimisation
of λ for different frame types in libaom-av1.

3.1 BD-rate objective function

The objective function for our direct-search optimisation is
directly chosen to be the BD-Rate (Bjøntegaard, 2001; Tourapis
et al., 2017).

In the standards, the BD-Rate is computed in the log domain.
Defining r as log(R), it can be implemented as:

ΔBDR � exp E r2 − r1[ ]( ) − 1, (10)
where E[r2 − r1] is defined as

E r2 − r1[ ] � 1
Q2 − Q1

∫Q2

Q1

rk Q( ) − r1 Q( )( )dQ, (11)

and the integral is evaluated over the quality range [Q1, Q2]. r1(Q),
rk(Q) are the RQ-Curves corresponding to λo and λ = kλo
respectively. Optimisation for multiple frame types can be simply
achieved by employing multiple values of k associated with each
frame type (e.g., λI = kIλo and λP = kPλo if we jointly optimise for I
and P frames respectively). Each RD operating point is generated
using the same rate control mode (e.g., CRF, CQP) within a range
that matches typical streaming media use cases. Then a curve fit, as
recommended in (Bjøntegaard, 2001; Tourapis et al., 2017), is used
for evaluating the integral over the entire [Q1, Q2] range.

Note that for every evaluation of the BD-Rate, a number of encodes
are required. This is because each evaluation of the BD-Rate requires the
generation of a full rate-distortion curve. In our experiments, we chose
5 RD points as a reasonable trade-off between computational complexity
and precision of the estimated RQ-Curve.

3.2 Optimisation methods

Anumber of off-the-shelf optimisation techniques are available to us
to minimise the BD-Rate objective function. For the one-dimensional
search of a single k value, traditional direct-search methods such as
Brent’s method are well-established for finding the local minimum of
such a unimodal function. Other minimization solvers could be used in
place of Brents’sMethod.However, this was selected for its quick off-the-
shelf use (Press et al., 1992) for one-dimensional search.

To jointly optimise for two or more values of k (see section 4.3),
we propose to use Powell search technique (Press et al., 1992). This is
a conjugate direction method performing a sequential one-
dimensional search along each direction in a mulitiple multiple
direction set. We experimented with other optimisation methods
such as downhill Simplex, or Conjugate Gradient, but the cost
function surface is too flat, and Powell was consistently better.

3.3 Implementation

Encoding Settings. For each codec, the codebase was modified to
take k as an argument. Hence this alters the rate-distortion
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constraint from Eq. 9 used in RD control throughout the codec. The
value of k is used at a top level to alter the default Lagrangian
multiplier (λ = k × λ0). The main encoder decisions impacted by this
change include frame partitioning, motion vector selection, and
mode decision. Each of these decisions tries to minimise the Rate-
Distortion cost function (J = D + λR), and a change of λ will change
that RD balance. To investigate a frame-level optimisation in AV1,
we have modified the codebase to allow for k to be changed at a
frame-type level.

For H.265, we used the x2651 implementation. For AV1, we used
the libaom-av12 implementation which is the research reference
codebase. The open-source nature of these implementations was the
main reason for selecting them. As there was no previous study with
AV1, we chose to use the reference implementation for
reproducibility. As our experiments used a corpus of nearly ten
thousand videos, we selected the open source codec x265 based on its
encoding speed compared to its reference model counterpart
HEVC-HM.

RD-Curve Generation. We use 5 RD points for both H.265 and
AV1 based on Common-testing configurations of both codecs
(Bossen and Jan 2013; Zhao et al., 2021). For H.265, we use QP
∈ {22, 27, 32, 37, 42} and for AV1, QP ∈ {27, 39, 49, 59, 63}. For the
encoding configuration in x265, we deployed constant rate factor
(CRF) mode and in libaom-av1, we deployed Random-Access
configuration. It is important to note that this work does not aim
to compare HEVC and AV1 but to improve both codecs relative to
their default behaviour.

Quality/Distortion Metrics. In this work, we deployed two
objective quality/distortion metrics D for evaluation. For the
larger UGC-10 k dataset (Section 3.4.1 below), we report
PSNR-Y as it is the most common objective quality metric in
academic literature and has the lowest compute cycles for
measuring quality points for around 10,000 videos with
multiple RD-points per optimisation study. Despite being the
most commonly reported metric, PSNR-Y has been shown to not
correlate strongly with perceived quality Wang et al. (2003). For
the smaller dataset of 100 videos (UGC-100, see below), we
deployed MS-SSIM as the objective quality metric. MS-SSIM
captures structural similarity based on human perception which
is also not computationally expensive compared to other
perceptual metrics.

3.4 Dataset

Previous works (Ma et al., 2016; Zhang and Bull, 2019) only used a
small corpus size of approximately 40 clips, with up to 300 frames per-
clip. The type of content used in these previous corpora is also not
necessarily a good representation of modern material. We propose
therefore to build on the YouTube UGC dataset (Wang et al., 2019).
This User Generated Content (UGC) dataset is a sample of videos
uploaded to YouTube, and contains about 1,500 videos across
12 categories (Figure 2A), and video resolutions ranging from 360p

to 4 k. From this UGC dataset, we formed an expanded version (UGC-
10 k), which we will use for large-scale analysis with HEVC, and another
smaller subset of 100 clips (UGC-100), to allow analysis with AV1.

3.4.1 UGC-10k
Our UGC-10k dataset consists of 9,746 × 150-frame clips with

varying framerates representing DASH segments. In addition to the
UGC videos, we use clips from other publicly available datasets, these
include the Netflix dataset (Chimera and El Fuente) (Netflix, 2015),
DynTex dataset (Ghanem and Ahuja, 2010), MCL (Lin et al., 2015) and
Derfs dataset (Xiph.org, 2018). Spatial resolutions from 144p to 1080p
are considered. This represents more than a 100-fold increase in the
amount of data used for experiments as compared to previous works.

The large corpus allows for a better representation of the
application of encoding for internet video use cases. In particular,
datasets like the YouTube-UGC (Wang et al., 2019) and the Netflix
(Netflix, 2015) dataset directly represent the content of two of the
most popular video streaming services today. User Generated
Content video was not used in prior research in the area of rate-
distortion optimisation. With the release of this dataset, our work
highlights the limitations of the existing codec implementations on
the most commonly uploaded and viewed style of video.

3.4.2 UGC-100
From the clips of the YouTube-UGC dataset, we curated a subset

of 100 clips across different UGC categories with different
resolutions ranging from 360p to 2160p. The videos are sampled
from the 12 UGC categories. We also included 3 additional
categories: HDR (2), VerticalVideo (7) and VR (4) from Wang
et al. (2019). The sequences used are 130 frames instead of
150 frames.

Figure 2B shows the Spatial and Temporal Energy computed
using the Video Complexity Analyzer software (Menon et al., 2022).
VCA is a low-complexity spatial and temporal information extractor
which is suitable for large-scale dataset analysis compared to
conventional Spatial Information (SI) and Temporal information
(TI) from ITU-P.910 (ITU-T RECOMMENDATION, 2022). The SI
feature is derived from the energy of the DCT coefficents while the
TI is derived from the frame differences.

4 Results

4.1 Per-clip direct-search optimisation

4.1.1 UGC-10k (x265)
Our first experiment examined BD-Rate (PSNR-Y) optimisation

using Brent’s method for x265 across the UGC-10 k dataset. The
scatter plot of all the resulting BD-Rate improvements for each clip is
reported in Figure 3. The videos are grouped into their respective
categories. The dashed red line represents the average BD-Rate
improvement for that category. In these plots, the higher the
improvement, the better the performance. We see that there are a
few outliers which have excellent improvement. The corpus shows on
average 1%–2% improvement.

In order to compare to previous literature, we select nine clips
which had reported results in Zhang and Bull (2015). These clips can
be classified as live action video Akiyo, News, Silent, Bus, Tempete,

1 Version: 3.0 + 28-gbc05b8a91.

2 Version: 3.2.0–287164d.
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FIGURE 2
Composition of our UGC-10 k (10 k videos) and UGC-100 (100 videos) datasets. (A) Example frames from each of the twelve categories used in the
YouTube UGC dataset. Animation_720P-6372 is an audio-removed excerpt from “Alyssa Mitchell Demo Reel 2016” by “Alyssa Mitchell” licensed under
CC BY 4.0, CoverSong_720P-449f is an audio-removed excerpt from “Radioactive Cover by The Gr33nPiLL (Imagine Dragons Original)” by “The
Gr33nPiLL” licensed under CC BY 4.0, Gaming_720P-6403 is an audio-removed excerpt from “NFS MW—Speedlist Gameplay 4—PC Online” by
“Dennis González” licensed under CC BY 4.0, HowTo_720P-6791 is an audio-removed excerpt from “Google Chrome Source Code Progression” by “Ben
L.” licensed under CC BY 4.0, Lecture_360P-6656 is an audio-removed excerpt from “Lecture 8: Website Development—CSCI E-1 2011—Harvard
Extension School” by “Computer Science E-1” licensed under CC BY 4.0, LiveMusic_720P-2620 is an audio-removed excerpt from “Triumph Dresdner
Kreuzchor in St. Petersburg (Russia)—The final part of the concert” by “PITERINFO © ANDREY KIRILLOV” licensed under CC BY 4.0, LyricVideo_720P-
4253 is an audio-removed excerpt from “Sílvia Tomàs Trio—Ellas y ellos” by “Sílvia Tomàs Trio” licensed under CC BY 4.0, MusicVideo_720P-7501 is an
audio-removed excerpt from ‘RONNIE WILDHEART “HONESTLY” (OFFICIAL MUSIC VIDEO)’ by “RONNIEWILDHEART” licensed under CC BY 4.0,
NewsClip_720P-35d9 is an audio-removed excerpt from “ 22.01.16” by “ ” licensed under CC BY 4.0, Sports_
720P-6bb7 is an audio-removed excerpt from “12 2017/18. 2:1 ” by “ CEBEP” licensed under CC BY 4.0.
(B) Spatial and Temporal Energy distribution for UGC-10k (blue), UGC-100 (red).

FIGURE 3
BD-Rate improvement for each clip in the YouTube-UGC corpus (higher is better). The dashed red line represents the average BD-Rate
improvement for that category of video.
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Soccer available from Xiph.org (2018) and DynTex sequences
Shadow, Shower, Wheat from Ghanem and Ahuja (2010). We
see in Table 1 that our system resulted in better BD-Rate
improvement in the live action sequences up to 4.9% better than
previous work. However, it is important to note that their work was
on the HEVC-HM codec whereas ours is on x265. However, the
improvement seen in the highly textured Dyntex clips was worse (0.
4% compared to 4.8%) than the results reported in Zhang and Bull
(2019). This is probably because our system performs better onmore
natural scenes.

While it is useful to see the improvement of each individual clip
in the corpus, it is better to quantify the impact of these
experiments with a summary of the gains. For each category,
we can see the best and average BD-Rate (%) improvements in
Table 2. Also shown are the percentage of clips which have at least
1% and 5% improvement. In order to best represent the
improvements made across our entire corpus, Figure 4A shows

the fraction of the clips encoded with our system that yield a BD-
Rate improvement of at least X%. Interestingly the Animation,
Lecture and Vlog categories provided the best improvements. The
majority of frames in these content types exhibit low temporal
complexity. That may explain why these categories gain the most
from optimisation.

The results validate the usefulness of direct optimisation. The
best BD-Rate improvement after optimisation is 23.86%. About 47%
of our corpus shows a BD-Rate improvement greater than 1%. Of
course, there are still a number of video clips where the original
Lagrangian multiplier was the best (8% for x265).

4.1.2 UGC-100 (x265, libaom-av1)
A similar experiment was then run on the UGC-100 dataset for

both libaom-av1 and x265. We optimised here for the MS-SSIM
objective quality metric. Results summarised in Figure 4B shows that
approximately 90% of the clips for either codec show some

TABLE 1 Selected Clips showing BD-Rate improvement using our direct optimisation (BD-Rate(kopt)) as well as reported results from another adaptive Lagrangian
Multiplier(BD-Rate(Zhang and Bull, 2019)) We see that our system is better applied to natural content of live action video Akiyo, News, Silent, Bus, Tempete, Soccer
available from Xiph.org (2018) with larger BD-Rate improvement in all six clips. Unfortunately it is not as successful on the DynTex sequences Shadow, Shower,
Wheat from Ghanem and Ahuja (2010) as the BD-Rate improvement reported in these three clips is larger. We believe that this is due to the nature of the DynTex
clips being visually complex sequences. It is important to note that Zhang and Bull (2015) was done on HEVC-HM and our work was done on x265 which is not a
direct comparison.

Avg. BD-Rate(kopt) % Avg. BD-Rate(kZB)) %

Sequences Ours, x265 Zhang and Bull (2015), HEVC

Akiyo, News, Silent 12.8 7.9

Bus, Tempete, Soccer 0.9 0.5

Shadow, Shower, Wheat 0.4 4.8

TABLE 2 BD-Rate gains for PSNR from each category of the YouTube-UGC corpus using direct-search optimisation in x265 and the overall gains found in our UGC-
10 k dataset.

YouTube-UGC category BD-Rate(%) PSNR Clips (%) with gains greater than

Average Best 1% 5%

Animation 1.48 22.07 41 4.7

CoverSong 1.17 20.00 41 2.0

Gaming 1.46 15.79 50 4.7

HowTo 1.17 15.01 40 1.8

Lecture 1.73 21.84 43 7.0

LiveMusic 1.23 16.96 37 2.5

LyricVideo 1.39 21.03 35 5.7

MusicVideo 1.38 23.86 49 3.1

NewsVideo 1.12 7.87 43 1.5

Sports 1.29 22.93 50 0.6

TV 1.28 8.39 47 2.6

Vlog 1.71 14.34 60 5.0

Overall 1.87 23.86 45 2.0
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improvement after an adjustment to the Lagrangian multiplier is
applied. We achieve an average BD-Rate improvement of 1.35% in
x265, with our best performers showing gains of 10.64%.We see that
the results of our subset, UGC-100, provide similar results to the
gains found on the larger dataset using x265. For libaom-av1, we
observe more modest gains, with average BD-Rate gains of 0.69%
(up to 4.96% on one clip), with 19% of the clips showing gains that
are greater than 1%.

4.2 Revisiting the default predictionmodel in
x265

We next revisit the default prediction model by estimating the
best-performing value of k across the corpus and applying that to
all videos. The rationale is twofold. First, w.r.t. Whether the
current scaling used in the x265 prediction model is also optimal
with UGC. Second, we want to check whether the observed per-
clip gains could be more simply obtained by a better scaling of the
default model.

To find the best value of k across the dataset, we evaluate k for
each video in the range k = 0:0.001:3. To reduce the computational
cost, this estimation was done on the UGC-10 k corpus
downsampled to 144p. The graph of the average BD-Rate
improvement at 144p for a given k is reported in Figure 5A.
Positive improvements are observed in the 0.6:1 range, with the
best average improvement at k = 0.782. Incidentally, k = 0.782 also
corresponds to the most frequent optimal value of k values found
with direct optimisation on the corpus videos.

BD-Rate results for k = 0.782 over the actual UGC-10 k (i.e., at
full resolution) are reported in Figure 5B. We observe that, for

about two-thirds of the clips, k = 0.782 performs better than the
default k = 1, and for about one-third of the videos, the default
settings are better. The average BD-Rate gains for k = 0.782 are
0.63% across our corpus with 20% of the corpus showing a BD-
Rate improvement of 1% or more. This indicates that the default
Lagrangian Multiplier for x265 may not be the best. Hence for
x265, we would recommend adjusting the Lagrangian Multiplier to
0.782× its current value. Theoretically a better adjustment could be
found by optimising k at full resolution instead of optimising at
144p proxy resolution. Our results in Section 4.4 however suggest
that optimising at 144p or full resolution yields, in practice,
comparable results.

We also note that per clip direct-search optimisation (i.e., k = k
(opt)) still yields much larger gains overall compared to applying a
global optimisation to the Lagrangian multiplier. Note that the
optimisation results always yield positive gains, because we
always check the BD-Rate against the default.

4.3 Frame-level optimisation in AV1

As observed earlier, modern video encoders have introduced
λ adjustments based on the frame type, thus we study a finer
optimisation of λ at a frame-type level and we explore this idea on
libaom-av1. AV1 proposes 7 reference frame types (Liu et al.,
2017). We can classify them as Intra-coded frame types and
Inter-coded frame types where the intra-frame is known as
KEYFRAMES (KF) corresponds to the usual Intra coded
reference. For inter-coding, GOLDEN_FRAME (GF) is a frame
coded with higher quality and, ARF_FRAME is an alternate
reference system which is used in prediction but does not

FIGURE 4
Summary of BD-Rate gains obtained using a direct-search optimisation of the Lagrangian Multiplier on the UGC-10 k and UGC-100 dataset. Plots
represent the fraction of the dataset that achieves better than a particular BD-Rate gain. (A) BD-Rate gains for x265 on UGC-10k, using PSNR as quality
metric. (B) BD-Rate gains for x265 and libaom-av1 on UGC-100, using MS-SSIM as quality metric.
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appear in the display, it is also known as an Invisible frame. The
other 4 frame types are less frequently used and will not be
considered in this study. Keeping this in mind, we identified
5 different tuning mechanisms of λ with a multiplier k at different
levels. They are, i) the previous method of using a single k for all
the video frames, ii) tuning of the KF frames only, iii) tuning of
both GF/ARF with a single k, iv) tuning of KF/GF/ARF with a
single k, v) tuning of KF with k1 and GF/ARF with k2. In all these
groupings, except for (i), all the other frame types are encoded
using the default settings.

We evaluated these methods on UGC-100 using Brent’s
technique of (i)-(iv) and Powell’s method for (v). Table 3 reports
the overall BD-Rate (%) improvements in terms ofMS-SSIM. The all-
frames tuning method (i) corresponds to our previous results for
libaom-av1. The best single k tuning grouping seems to be tuning for
GF/ARF together (iii), as this can boost the average gains to 1.39%,
with 40 clips achieving greater than 1% gains, and 7 clips obtained
greater than 5% improvement.

Further significant improvements are obtained in (v) with the
joint optimisation of two k multipliers. We obtain average BD-Rate
gains of 2.47%, with more than 68 and 12 clips with greater than 1%
and 5% improvements respectively. In all these cases, we also
achieved 5%–10% bitrate savings on different operating points
with negligible loss in objective metrics of 0.07 dB.

Figure 6 shows the distribution in terms of the fraction of the
dataset achieving a certain level of BD-Rate improvement. It is

evident that optimising λ for specific frame types can improve the
overall BD-Rate(%) gains in libaom-av1.

4.4 Proxy optimisation

As computational complexity is of key importance given the
amount of video data being processed, we explore the use of proxy
systems for estimating λ at lower cost in terms of CPU cycles. The
idea of optimisation on proxy videos is not new. In particular, Shen
and Kuo (2018) showed that it is possible to obtain good parameter
estimates, including for λ, from downsampled videos. Similarly (Wu
et al., 2020; Wu et al., 2021), demonstrated that it is possible to
extract features from a fast encoder proxy pass to regress the
encoding settings of the higher-complexity pass.

Motivated by these studies, we propose for x265 to estimate k at
a lower resolution. Videos that are less than 720p in resolution are
downsampled to 144p, and higher-resolution videos are
downsampled by half. For libaom-av1, similar low-resolution
proxies did not yield good performance but we found that a
good proxy is to estimate k at a faster speed preset (Speed-6)
(cpu-used = 6) instead of the default Speed-2. Generally, when
the encoder is at a faster speed-preset, a number of coding tools and
encoding decisions are skipped. Specifically, the motion estimation
precision is reduced, the number of inter and intra-predictions is
decreased, partition pruning and early-exit conditions are more

FIGURE 5
Study of whether k = 1 is the best default over UGC-10 k for x265. In (A) we show that 0.782× λ is the best default adjustment on average. In (B) we
show the summary of BD-Rate gains at k = 0.782 on the UGC-10 k dataset. Using k = 0.782 over k = 1 gives BD-Rate gains for 60%–70% of the clips and
losses for about 30%–40% of videos. There is still a further 1.2% average BD-Rate improvement when using per-clip optimisation instead of a simple
global k = 0.782 adjustement.
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aggressive, and a reduced set of in-loop filters is employed. The
values of k estimated on the data are then deployed at the original
resolution/preset.

Proxy prediction results on the UGC-100 dataset are summarised
in Table 4. The proposed estimation of k on proxy videos still leads to
BD-Rate gains on a majority of video clips. In Figure 7 we see an
average BD-Rate improvement across the corpus of 0.82% for our
x265 proxies (vs. 1.35% without proxy) and 2.50% for our libaom-av1
proxies (vs. 2.47% without proxy). The computational complexity is
greatly reduced, with a ×22 speedup for x265, and a ×230 speed-up for

libaom-av1. Note that the reported iteration times in Table 4 include
the encoding of 10 RD points (5 for default encoder settings, 5 for
encoding with a k from optimiser). Thus for our x265 proxy setup, we
achieve 60% of the possible BD-Rate gains with a ×22 speedup, and for
our libaom-av1 proxy setup, we obtain 100% of possible BD-Rate
gains at a ×230 speedup.

On average, it takes 12 iterations for x265, and 40 iterations for
the libaom-av1 frame-type grouping (v), so the overall overhead for
the λ optimisation framework amounts to about 25.29/5817.10 ×
250 ≈ 1 one additional encode for libaom-av1 and 0.15/3.25 × 50 ≈
2.3 encodes for x265. The cost of downsampling the videos is not
accounted for here as it would be prepared as part of the streaming
pipeline in most content delivery systems.

We note that the faster speed preset proxy in libaom-av1 is a
better proxy than the low-resolution proxy in x265. A possible
explanation for this disparity is that the nature of the RDO problem
does not change too much between the two speed presets (e.g., the
choice of motion estimator should not impact the rate-distortion
trade-off). Conversely, in the low-resolution proxy, the input data
statistics change significantly (e.g., maximum block and transform
sizes which can be used for coding a frame are different when we
downsample the video).

5 Discussion

The first major takeaway is that there are significant gains
available from in directly optimising λ on a per-clip basis. With
almost 25% BD-Rate improvement found on some clips and
average BD-Rate improvements around 2%, there is a lot of
potential in this kind of approach, especially considering that,
as uploaded videos are streamed in the thousands to millions of
views range, a bitrate savings of as small as 0.1% can have an
impact. Gains can vary from video to video and codec to codec,
but our experiments give us a better indication of the upper
bound of what could be gained with a better λ prediction.

The proposed framework requires a number of additional
encodes, but we show that estimating λ with proxy videos seems

TABLE 3 Results for different frame-level tuning modes. The best single k tuning grouping seems to be tuning for GF/ARF together (iii), as this can boost the
average gains to 1.39%, with 40 clips achieving greater than 1% gains, and 7 clips obtained greater than 5% improvement. Further significant improvements are
obtained in (v) with the joint optimisation of two k multipliers. We obtain average BD-Rate gains of 2.47%, with more than 68 and 12 clips with greater than 1%
and 5% improvements respectively.

Frame-type tuning
groups

k BD-Rate(%)
MS-SSIM

Clips (%)
with
gains
greater
than

Iterations QP39 bitrate
savings (%)

QP39 MS-SSIM
loss (dB)

Average Best 1% 5%

i) k: All-frames 1.34 0.69 4.96 19 0 11.71 7.60 0.36

ii) k: Key-frames (KF) 2.88 0.82 4.79 27 0 12.24 1.37 0.03

iii) k: GF, ARF 1.85 1.39 11.09 40 7 12.25 2.26 0.08

iv) k: KF, GF, ARF 1.65 1.30 7.74 40 5 11.35 1.87 0.11

v) k1: KF; k2: GF, ARF (9.78,
1.74)

2.47 14.89 68 12 47.79 3.44 0.07

FIGURE 6
BD-Rate (%) improvement plot showing fraction of dataset
achieving certain per cent of BD-Rate(%) of MS-SSIM improvement for
AV1 (libaom-av1). Curves towards the top right represent a better
performing system.
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to yield satisfying results, at 60%–100% of the potential gains, and
helps reduce the additional cost. It should be possible to reduce
computational costs even further. One way would be to combine the
different proxy methods, e.g., using 144p resolution videos with
faster codec settings. That depends on a good trade-off between the
speed and the reliability of these estimates. Another route would be
to model the RD-curves so as to reduce the number of operating
points required to get a sufficiently accurate estimate of the BD-Rate.

Another takeaway is that a systematic optimisation over a large,
representative, dataset, enables us to explore the behaviour of current
codecs and can unveil some potential issues in their current
implementations. For instance, we observe that x265’s default
implementation should probably be 0.782 × λ. Note that this is for
the open-source implementation of HEVC, this may not hold true for
the reference model HEVC-HM. Another observation is that there is a
lot of room for improvement when targeting a frame-level optimisation

in AV1. This may indicate that the current λ-prediction models in
libaom-av1 are a bit off and that some gains could be achieved by a
simple re-calibration of the current formulas. It is our recommendation
that these frame-type λ formulas in the libaom-AV1 implementation
should be revisited.

The exploration of the dataset results also allows us to find
potentially interesting positive outliers. For instance, videos
with low temporal energy, such as those found in some of the
UGC animation clips, lecture slideshows and vlogs, seem to have
the most potential gains for better λ prediction. This
information could be used to determine which clips stand to
gain the most from adjustments to λ and be prioritised in
content delivery systems using our approach.

Lastly, the idea of parameter optimisation brings the focus to
the choice of the objective quality/distortion metric. In this paper,
we are minimising the BD-Rate with respect to PSNR-Y and MS-

FIGURE 7
Summary of BD-Rate gains obtained using a direct-search optimisation of the Lagrangian Multiplier on the UGC-100 dataset using proxies. Plots
represent the fraction of the dataset that achieves better than a particular BD-Rate gain. (A) BD-Rate gains for x265 on UGC-100, using MS-SSIM as a
quality metric and downsampling as the proxy. (B)BD-Rate gains for libaom on UGC-100, using MS-SSIM as a quality metric and different presets as the
proxy.

TABLE 4 BD-Rate (%) measured in terms of MS-SSIM between default and proxy-method for our dataset. Encoding time per each optimisation cycle (mins) is
reported showcasing different methods can achieve substantial speedup for a fractional loss.

BD-Rate(%) MS-SSIM Clips (%) with gains greater
than

Avg. Encoding time per-iteration (mins)

Codec Method Average Best 1% gains 5% gains

x265 Direct 1.35 10.64 42 4 3.25

x265 Proxy 0.82 6.11 30 2 0.15

Libaom-av1 Direct 2.47 14.89 65 11 5817.10

Libaom-av1 Proxy 2.50 17.41 61 17 25.29
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SSIM. It is however likely that, in some situations, optimising for
one particular quality metric will come at some cost for other
metrics, possibly in a null-sum game scenario, where gains are only
obtained at the expense of losses for other metrics. Future work
should therefore consider complementing our analysis with a
subjective study, so as to evaluate how the measured objective
performance gains are actually perceived by viewers (Vibhoothi
et al., 2023).

6 Conclusion

In this work, we introduced the idea of a per-clip and per-frame-type
optimisation of the Lagrangian Multiplier parameter used in video
compression. Whereas previous works proposed prediction models to
better estimate λ, our direct-search optimisation approach allows us to
establish anupper bound for the gains that can be obtainedwith better per-
clip λ values. Also, instead of working on a handful of videos as has been
done in the past, our work includes experiments on a large corpus of 10 k
videos.

Our results show that BD-Rate (PSNR) average improvements of
about 1.87% for x265 across a 10 k clip corpus ofmodern videos, and up
to 25% in a single clip. For libaom-av1, we show that optimising λ on a
per-frame-type basis, improves our average BD-Rate gains (MS-SSIM)
from 0.69% to 2.5% on a subset of 100 clips. We also show that these
estimations of λ can effectively be done on proxy videos, at a
significantly reduced cost of about less than an additional encode.

Beyond the raw performance gains, this paper highlights that
there is much to be learned from studying the disparity between the
optimal settings and the practical predictionsmade by video encoders.
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