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Epilepsy withholds patients’ control of their body or consciousness and puts them
at risk in the course of their daily life. This article pursues the development of a
smart neurocomputational technology to alert epileptic patients wearing EEG
sensors of an impending seizure. An innovative approach for epileptic seizure
prediction has been proposed to improve prediction accuracy and reduce the
false alarm rate in comparison with state-of-the-art benchmarks. Maximal overlap
discrete wavelet transform was used to decompose EEG signals into different
frequency resolutions, and a multiresolution convolutional neural network is
designed to extract discriminative features from each frequency band. The
algorithm automatically generates patient-specific features to best classify
preictal and interictal segments of the subject. The method can be applied to
any patient case from any dataset without the need for a handcrafted feature
extraction procedure. The proposed approach was tested with two popular
epilepsy patient datasets. It achieved a sensitivity of 82% and a false prediction
rate of 0.058 with the Children’s Hospital Boston-MIT scalp EEG dataset and a
sensitivity of 85% and a false prediction rate of 0.19 with the American Epilepsy
Society Seizure Prediction Challenge dataset. This technology provides a
personalized solution for the patient that has improved sensitivity and
specificity, yet because of the algorithm’s intrinsic ability for generalization, it
emancipates from the reliance on epileptologists’ expertise to tune a wearable
technological aid, which will ultimately help to deploy it broadly, including in
medically underserved locations across the globe.
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1 Introduction

Epilepsy is a severe neurological disorder that is characterized by recurrent seizures.
Seizure triggering can be attributed to either physiological or environmental causes, and their
recurrence intervals can be as long as several years or as short as several minutes (Fisher et al.,
2005; Duncan et al., 2006). Loss of consciousness and fall during a seizure episode can lead to
serious injuries, body and head trauma, or even death. Health costs linked to these incidences
are often very high (Mormann et al., 2006; Gadhoumi et al., 2016). EEG signals are typically
used by doctors to diagnose epilepsy, and wearable EEG devices have long been explored for
seizure prediction (Vossler, 2021; Brinkmann et al., 2021; Janse et al., 2019; Zambrana-
Vinaroz et al., 2022). EEG signals can be categorized into two types: scalp EEG (sEEG) and
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intracranial EEG (iEEG). sEEGs are captured by placing electrodes
on the surface of the scalp, typically under the international standard
system (da Silva, 2008). iEEG signals are captured by placing
electrodes directly inside the cranium, and they include ECoG
and deep-probe electrodes. An EEG signal carrying seizure
episodes (ictus) can be divided into four states, namely, interictal,
preictal, ictal, and postictal. The portions of the signal just before and
after a seizure episode are called preictal and postictal, respectively.
Ictal denotes a seizure period, and interictal denotes the period
between two seizure episodes. It is believed that the preictal period,
which carries electrophysiological anomalies but no clinical onset of
the seizure and is considered prodromal (or causal) of an impending
seizure, can be used to predict the onset of seizures. These four states
are illustrated in Figure 1.

Prediction of seizure episodes should be accurate and within a
reasonable time interval to allow time for intervention. This is a
challenging task because of the variability of signals among patients
and across episodes within the same patient, as well as the noise and
interference added to the electrophysiological signals by other
electro-active sources in the body and environment. In general, it
is agreed that pathologically rhythmic activity is due to the
hypersynchrony of local neural populations (Margineanu, 2010;
Jiruska et al., 2013; Dominguez et al., 2005) and translate into
telltale signs over a set of EEG channels. Besides this core
definition, tremendous variability is observed in the
electrophysiological manifestations of the disease, with different
networks and frequencies involved, widely distinct spatial extents,
and idiosyncratic time courses of their propagation. Because of this
complexity, early research in seizure prediction heavily relied on the
selection of meaningful features by human analysts, which precludes
the development of affordable and autonomous algorithms to alert

patients. For instance, using the Freiburg Hospital dataset (provided
by University of Freiburg in 2003), the authors of Winterhalder et al.
(2006) used the dynamical similarity index for feature extraction,
which achieved a sensitivity of 42% and a false positive rate (FPR/h)
of less than 0.15. In Park et al. (2011), frequency domain features for
each channel were extracted first, and a support vector machine
(SVM) classifier was then applied to classify EEG signals into
preictal and interictal periods. This method, which was also
tested with the Freiburg Hospital dataset, achieved a sensitivity of
98.3% but with a FPR/h rising to 0.29. In Zhang and Parhi (2015),
more features were added, including spectral power ratios between
different frequency bands. This method achieved a sensitivity
exceeding 98% and a FPR/h of less than 0.05. In Aarabi and He
(2014), Bayesian inversion of power spectral density was used as a
feature, and then a rule-based decision strategy was applied for
seizure prediction. The authors, who also tested their approach with
the Freiburg Hospital dataset, obtained a sensitivity of 87.07% and a
FPR/h of 0.2. In Aarabi and He (2017), the authors reported a
method that improved FPR/h to 0.126 by using six new features,
which included correlation entropy, noise level, correlation
dimension, Lempel–Ziv complexity, largest Lyapunov exponent,
and non-linear interdependence.

In the past decade, a number researchers have worked on the
European EPILEPSIAE project (http://www.epilepsiae.eu/); for
instance, refer to Ihle et al. (2012); Fiest et al. (2017); Klatt et al.
(2012). Many studies (Li et al., 2016; Teixeira et al., 2014;
Bandarabadi et al., 2015; Stojanović et al., 2020) have considered
an approach with the steps of preprocessing, feature extraction,
classification, and performance evaluation. Some methods
determined a preictal period based on critical feature extraction.
Often, the determination of a fixed preictal period follows a grid
search of time periods with different lengths, e.g., 2, 20, 30, 60, or
even 240 min (Moghim and Corne, 2014; Park et al., 2011). In
Stojanović et al. (2020), the authors used non-negative matrix
factorization (NMF) with smooth basis functions combined with
regression on the power spectral of iEEG to extract features for
seizure prediction. They applied the support vector machine
algorithm for classification. The authors in Viana et al. (2022)
assessed whether patient-specific seizure forecasting is possible
using remote, minimally invasive ultralong-term subcutaneous
EEG. In Mahmoodian et al. (2019), the authors described the use
of a cross-bispectrum method to extract features from multichannel
intracranial EEG (i-EEG) data in order to expose epileptic seizure
activity. The study used recordings from the Freiburg dataset, which
includes data from 21 patients with focal epilepsy. A support vector
machine classifier was employed for classification, and post-
processing techniques to enhance classification accuracy were
applied to the classifier output. The results show a sensitivity
(recall) of 95.8%, specificity of 96.7%, and accuracy of 96.8% in
differentiating between ictal and interictal conditions.

In Behnoush et al. (2021), a review was conducted with the main
aim of evaluating machine learning algorithms for predicting seizure
events, identifying critical patients, and guiding appropriate clinical
interventions. The data were collected from the emergency
department, which included multiple features of acute cases.
Significant parameters were selected, and different machine
learning classifiers were tested. The performance of these
classifiers was measured using area under the curve (AUC) and

FIGURE 1
Brain states in a typical epileptic EEG recording. The Ictal activity
is manifested by high-amplitude activityJiruska et al. (2013);
Dominguez et al. (2005). It is preceded by abnormal EEG
manifestations that can trigger an alert to help the patient put
themself out of harm’s way.
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other instruments. Out of a total of 909 patients, 544 (59.8%) were
diagnosed with seizures. The significant predictors of seizures were
found to be sex (male/female), pulse rate, blood oxygen pressure,
bicarbonate level in the blood, and pH value.

Recently, deep learning has become popular due to its
effectiveness in prediction and classification. Deep learning-based
detectors and classifiers do not need sophisticated preprocessing and
handcrafted feature extraction procedures. Deep learning
algorithms, such as autoencoders (AEs), convolutional neural
networks (CNNs), and recurrent neural networks (RNNs), can
act as feature extractors and classifiers. CNNs are especially
effective in identifying spatial patterns from images. RNNs are
known to be capable of extracting discriminative patterns from
time signals. In Truong et al. (2018), a CNN model, used to extract
features from spectrograms to classify EEG signals into interictal and

preictal periods, achieved a sensitivity of 81.2% with sEEG signals
and of 75% with iEEG signals, which was a surprising finding,
because iEEG had deemed to have better precision. A recurrent
CNNmodel was used in Thodoroff et al. (2016) to learn the spatially
invariant representation of seizures, which improved the results of
seizure detection. In Movahedi et al. (2017), a deep belief network
was designed to extract features from EEG signals for various
applications, including emotion recognition, sleep stage
classification, and seizure detection. Lastly, in Jiang et al. (2017),
a transfer learning strategy was applied to tackle the problem of data
shortage for training and testing data in seizure detection.

In Toraman (2020), a method was proposed for identifying
preictal and interictal events in EEG recordings taken 30 min prior
to the onset of seizures. The article also analyzed the four channels of
EEG recordings separately to obtain channel-specific insights into

FIGURE 2
The proposed seizure prediction system consists of the following components: decomposition of the input into subbands (top panel), extracting
discriminative patterns from individual subbands using CNNs, detecting preictal periods with a frame size of 10 s using a softmax classifier (yellow frame,
center-left panel), and accumulating the detection results to produce a decision in a sliding window of 5-min duration (center-right panel). A dropout
layer is used in this model to overcome the overfitting problem. To reduce the FPR during the interictal period, we add a post-processing step that
accumulates the results from 30 consecutive 10-s time frames.
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preictal and interictal activity. Daoud and Bayoumi (2019)
introduced a channel selection algorithm in their proposed
system, making it suitable for real-time usage. Robustness was
ensured through practical testing, and they achieved the highest
accuracy of 99.6% using the CHB MIT dataset. Chandu and
Fathimabi [43] demonstrated that learning provides superior
outcomes compared to AI algorithms. Specifically, LSTM (long
short-term memory) showed higher accuracy compared to other
machine learning algorithms such as SVMs and random forests.

In this article, a multiresolution convolutional neural
network (MRCNN) method is proposed for forecasting EEG
seizure events. Maximal overlapping discrete wavelet
transform (MODWT) is used to find multiresolution bands:
delta (δ, 0–4 Hz), theta (θ, 4–8 Hz), alpha (α, 8–15 Hz), beta

(β, 15–30 Hz), and gamma (γ, 30–120 Hz). The gamma subband
is extended from 60 to 120 Hz to capture some of the ripples that
are deemed important features of the disease (range maintained
only modestly high to align with commonly restricted sampling
rates used in the electrodiagnostic testing of epilepsy). A set of 1D
CNN networks, one for each signal band, is then designed to
classify the preictal EEG period as “pre-seizure” or “normal.”
This is the first time that deep 1D-CNNs have been applied to
forecast seizure events from EEG measurements. We
demonstrate through experimentation that integrating
MODWT, which is used to preprocess raw EEG signals into
subbands, with parallel 1D CNNs is an effective method for
seizure prediction. The proposed method is compared with those
reported in the literature by testing on both sEEG and iEEG
signals.

2 Methodology

2.1 System overview

A detailed description of the proposed method for seizure event
forecasting is given in this section. The system diagram shown in
Figure 2 consists of the following functional blocks: MODWT,
Subband Separation, Multiresolution 1D-CNNs (MRCNN), and
Post-Processing.

In the proposed method, the EEG or iEEG signal is first
decomposed into subbands by using MODWT. Such a
decomposition depends on the sampling frequency of the EEG
signal. To ensure the effectiveness of the approach, different
wavelet types were investigated. Daubechies wavelet of order 4
(Db4) produced superior results, which was then chosen for the
subsequent experimental study. Moreover, the level of
decomposition depends on the sampling frequency of the EEG
signal, which is estimated by the following equation: fs/2

n−1 ≈ 4,
where fs is the sampling frequency, and n is the decomposition
level. In case of the CHB-MIT dataset, the decomposition level n
is 5, since fs in this case is 256. It produces a total of seven groups
of wavelet coefficients, each corresponding to a frequency band of
brain electrical activity: D1 (64–128 Hz), D2 (32–64 Hz), D3
(16–32 Hz), D4 (8–16 Hz), D5 (4–8 Hz), and A5 (0–4 Hz).
This correlates with the EEG spectrum that falls within the
following five frequency bands: delta (1–4 Hz), theta (4–8 Hz),
alpha (8–13 Hz), beta (15–30 Hz), and gamma-band oscillations
( > 30 Hz). For the Kaggle dataset of human subjects, the level of
the decomposition is 9, since the sampling frequency fs is about
4,000. This produces a total of eleven groups of wavelet
coefficients, each corresponding to a frequency band of brain
electrical activity: D1 (1,000–2000 Hz), D2 (500–1,000 Hz), D3
(250–500 Hz), D4 (125–250 Hz), D5 (62.5–125 Hz), D6
(31.25–62.5 Hz), D7 (15.625–31.25 Hz), D8 (7.8–15.625 Hz),
D9 (3.9–7.8 Hz), and A9 (0–3.9 Hz). The selected bands for
the MRCNN model are A9, D9, D8, D7, and D6.

After the signal is decomposed into six bands, each of which is
fed to a multiresolution 1D-CNN to learn the intrinsic patterns of
seizure. The outputs of these CNNs (i.e., classifying each band) are
then fused by a fully connected layer, and then a SoftMax layer is
used to classify a signal segment of each 10-s frame into either 0 or 1.

FIGURE 3
Characteristics of the MIT dataset, including seizure number and
duration for each case. Each case included a minimum of three
seizures.

FIGURE 4
Characteristics of the American epilepsy society seizure
prediction challenge dataset.
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Following this, outputs of 30 consecutive frames are added together,
and the sum is compared to a preset threshold value, which yields a
decision to classify each 5-min sliding window into either the
preictal period or the interictal period.

2.2 Dataset

In this study, two datasets are used to evaluate the effectiveness
of the proposed method for seizure forecasting: the CHB-MIT scalp
EEG dataset Shoeb (2009) and the American Epilepsy Society
Seizure Prediction Challenge (Kaggle) dataset Brinkmann et al.
(2016).

The CHB-MIT dataset is grouped into 24 cases and were
collected from 23 subjects. Case number designations range from
chb01 to chb24, as shown in Figure 3. Case chb01 is from the
same subject as chb21, where chb21 is a recording 1.5 years after
chb01. Since chb01 and chb21 are separated significantly from
each other chronologically, their data characteristics should not
be assumed to be similar. For this reason, chb01 and chb21 are

considered to be separate cases in this study. For each case, there
were multiple EEG recordings. The beginning and end of each
seizure were annotated in the seizure annotation files by experts
epileptologists and serve as a gold standard in this project. In
total, there are 982.9 h of EEG data in the corpus, containing
198 seizure episodes. The data have been divided for each subject
into multiple files of 1-h recordings. The sampling frequency of
this dataset is 256 samples per second. The dataset holds diverse
seizure types, including simple partial (SP), complex partial (CP),
and generalized tonic–clonic (GTC) seizures from various
locations in the brain. These locations include the frontal (F),
temporal (T), and occipital (O) lobes on either hemisphere of the
brain (Nasehi and Pourghassem, 2013).

The second dataset is part of an online competition through
Kaggle.com Brinkmann et al. (2016). This dataset has seven subjects:
two human patients and five dogs. The dataset was recorded in the
form of a 10-minutes-long iEEG, obtained by positioning electrodes
on the surface of cerebral cortex and measuring electrical signals
sampled at 400 Hz in the case of dogs and 4,000 Hz in the case of
human patients (Figure 4).

FIGURE 5
The structure of a subnet used for each of the subband signal, which is the same as the bottom portion of the system depicted in Figure 2.

FIGURE 6
The stage of post-processing for decision-making as the final stage of the system depicted in Figure 2.
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2.3 Maximal overlap discrete wavelet
transform

MODWT is similar to discrete wavelet transform (DWT) in
that low-pass and high-pass filters are applied to the input signal
at each level. However, MODWT does not decimate the
coefficients, and the number of wavelets and scaling
coefficients are same as the number of samples at every level
of the transform. In other words, MODWT does not down-
sample the output at each scale and insert zeros between
coefficients. For this reason, MODWT is also called non-
decimated DWT, stationary DWT (Percival and Walden,
2000), translation-invariant DWT, and time-invariant DWT
(Cornish et al., 2006). MODWT loses orthogonality and
efficiency in computation. However, it has some advantages
over DWT, which are summarized below:

1. It can handle any sample size n.

2. Its approximation and detail coefficients are associated with zero-
phase filters.

3. It is translation invariant, because a shift in the signal does not
change the pattern of the wavelet transform coefficients.

4. It produces a more asymptotically efficient wavelet variance
estimator than DWT.

2.4 Multiresolution 1D-CNN

The data representation in the wavelet domain is mainly
composed of signal components at different frequency
resolutions, meaning that most signal characteristics are reflected
by intra-component patterns, not inter-component behaviors.
Therefore, we propose a novel structure of CNN to extract
features from each wavelet component and effectively learn
underlying patterns from each subband of MODWT. We name
this multiresolution CNN, which consists of several 1D-CNNs in

FIGURE 7
Seizure occurrence period (SOP) and seizure prediction horizon (SPH).

FIGURE 8
Generating extra preictal segments to balance the training dataset by sliding a 10-s frame along the time axis at every step S over preictal signals. S is
chosen per subject so that there are a similar number of samples per class (preictal or interictal) in the training set.
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parallel to learn input patterns at different frequency bands, as shown
in Figure 2. The structure of each subnet (1D-CNN) is determined
mainly by the following considerations: size of MODWT filters,
number of filter banks, number of convolutional layers, number of
hidden neurons in the fully connected layer, and dropout rate in the
dropout layer. “Dropout” here is equivalent to “down sample.” The
dropout layer here is used to prevent overfitting. We first design a
specific convolutional layer with constant weights to extract a specific
resolution to train the subnet. Then, each subnet is implemented with
multiple 1D convolution layers withmax-pooling. Specifically, in each
convolutional layer, there are 16 kernels. The size of each kernel is 5 ×
1. These are followed by max-pooling of stride 2. For each subband,
this process is repeated twice with a set of reduced-size (3 × 1) kernels.
Each of the subnets is then connected to a fully connected layer of

1,024 neurons, which is followed by a dropout layer and then another
fully connected layer, as shown in Figure 5. The output layer uses
softmax activation to represent a categorical probability distribution
of 10-s signal segments. For each 10-s frame, a binary threshold
operation is conducted by comparing the output of the softmax layer
with a preset threshold value between 0 and 1.

2.5 Post-processing stage

In this study, the output of each 1D-CNN is computed from a
sliding time frame of 10 s. The results of the n frames are then used
to compute the following measure:

R t( ) � ∑
nt

i�n t−5( )+1
yi (1)

where yi is the output of the ith 10-s frame, and R(t) represents the
number of preictal samples in a 5-min interval. Thus, n is 30 in this case.

The decisions for each 5-min window were computed using the
following equation:

S � preictal, if R t( )≥Thrinterictal, otherwise (2)
where Thr is a preset threshold value. As shown in Figure 6, the
summation R(t) over each 5-min sliding window is compared with
the threshold Thr. If R(t) is greater than the threshold, the 5-min
time interval is considered to be in a preictal period.

3 System evaluation

The performance of the proposed method was assessed using the
following procedure for each subject. If a subject has N seizures, we pick
up one seizurewith the interictal region and set aside for testing.We then
use the rest (N-1) of the seizure episodes for training and validation, with

FIGURE 11
Testing accuracy vs. validation accuracy for different patients
using the proposed approach with the CHB-MIT dataset scalp EEG
dataset.

FIGURE 9
Measured sensitivity for different patients using proposed
algorithms (MIT dataset scalp EEG). See details in text.

FIGURE 10
Measured false prediction rate (false alarm) for different patients
using proposed algorithms (CHB-MIT dataset scalp EEG).
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60% of the training data for training and 40% for validation. After the
training phase is complete, the one-seizure test data is used to evaluate
the performance of the resultingmodel.We repeat this for all the seizure
episodes for the assessment of the approach’s overall performance.

The following parameters are used to evaluate our proposed
approach:

Seizure Occurrence Period (SOP): the time period within which
a seizure is expected after a prediction alarm; in our case, we choose
30 min Shokouh Alaei et al. (2019); Yan et al. (2022).

Seizure Prediction Horizon (SPH): a time interval between any
prediction alarm and the beginning of SOP. During SPH, no seizure is
expected to occur, as depicted in Figure 7, and in our case, we choose an
SPH equal to 5 min Shokouh Alaei et al. (2019); Yan et al. (2022).

Sensitivity: The percentage of correctly predicted seizures over
the total number of predicted seizures, which can be calculated as
follows:

Sensitivity � Np

NT
× 100 (3)

whereNp is the number of seizures with at least one alarm within the
SPH, and NT is the total number of seizures.

False Prediction Ratio (FPR/h): The ratio of the number of false
positives divided by the duration of the interictal data (preictal
periods are excluded). A false positive is defined as a prediction flag
not followed by a seizure within the seizure occurrence period
(Truong et al., 2018).

Portion of Time under false predictions (POT) in minutes:
The duration of the interictal data containing false predictions. In
this work, this metric is reported as the time period of seizure-
free interictal data included in the testing set. The metrics are
used to test the proposed prediction model in addition to
sensitivity and FPR/h.

In the experimental study, we will also compare the performance
of the proposed model with those obtained using the random and
periodical prediction method as described by Winterhalder et al.
(2003). The sensitivity of the random prediction method based on a
Poisson process was obtained from a binomial distribution, with the
probability defined as:

P � 1 − e −FPRmaxSOP( ) (4)
where FPRmax is the maximum false prediction rate. Thus, the
probability of predicting at least m of M independent seizures is
given by:

p � ∑
i≥m

M

m
( ) · Pi 1 − P( )M−i (5)

We calculate p for each patient by using the FPR of that patient and
the number of seizures (m) predicted by our method. If p is less than
0.05, we can conclude that our prediction method is significantly
better than a random predictor at a significance level of 0.05 (Truong
et al., 2018).

4 Results and discussions

In most classification tasks, one of the challenges is to tackle the
issue of dataset imbalance. In the CHB-MIT dataset, the ratio of
interical samples to preictal samples is 20:1. To solve this issue, we

TABLE 1 Seizure prediction results obtained with the American Epilepsy Society Seizure Prediction Challenge dataset. The seizure occurrence period (SOP) was
30min, and the seizure prediction horizon (SPH) was 5 min.

Patient No. of seizure Interictal hours Sensitivity (%) FPR p

Pat 1 3 10 100 ± 0.0 0.31 ± 0.09 0.004

Pat 2 3 9 76 ± 2 0.6 ± 0.03 0.071

Dog 1 4 90 81 ± 2 0.08 ± 0.02 0.0021

Dog 2 7 85 100 ± 0.0 0.04 ± 0.03 < 0.001

Dog 3 12 250 74 ± 4 0.09 ± 0.03 < 0.001

Dog 4 14 135 81 ± 3 0.21 ± 0.06 < 0.001

Dog 5 5 75 83 ± 0.0 0.07 ± 0.01 < 0.001

FIGURE 12
Alarm generation for patient 2 of CHB-MIT dataset. The top plot
shows the result of classifications with 10-s intervals, and the bottom
plot shows that an alarm is generated at 11:05, which is about 30 min
ahead of the seizure episode, represented by the light red
rectangle.

Frontiers in Signal Processing frontiersin.org08

Ibrahim et al. 10.3389/frsip.2023.1175305

https://www.frontiersin.org/journals/signal-processing
https://www.frontiersin.org
https://doi.org/10.3389/frsip.2023.1175305


created more preictal samples by extracting overlapping time frames
in the training phase. We generated more preictal samples for
training by sliding a 10-s frame along the time axis at every step
over the preictal EEG signals, the overlapping window is chosen to
be 90%, as shown in Figure 8.

It is important that for seizure prediction, one needs to be
patient-specific, i.e., one prediction model for each patient. This
is because preictal data varies from one patient to another and in
the evolution of the disease over the years for specific patients.
Using a patient-specific method tends to produce better
prediction results. In this study, interictal and preictal
measurements for a particular patient were divided into
subsets of training, validation, and testing. There was no
cross-testing performed across patients, which means that
training, validation, and testing signals for a particular model
were taken from the same patient.

As has been mentioned, the proposed method was tested using
two different datasets: the CHB-MIT sEEG dataset and the
American Epilepsy Society Seizure Prediction Challenge iEEG
dataset. For both datasets, we used SOP of 30 min and SPH of
5 min to calculate sensitivity (S) and FPR/h.

The prediction results for each patient obtained by using the
proposed method with the CHB-MIT dataset are reported in Figures
9–11. The average prediction sensitivity is 82%, and the average FPR
is 0.058. For the American Epilepsy Society Seizure Prediction
Challenge dataset, the overall sensitivity is 85%, and FPR is 0.19.

The average validation accuracy for the CHB-MIT dataset is 93.1 ±
2.3, and the average testing accuracy is 85.114 ± 3.6.

For the CHB-MIT dataset, the p value was calculated for the
worst case for each patient with minimum sensitivity. The proposed
seizure prediction approach achieved significantly better
performance than an unspecific random predictor for all patients
except Pat11, who had a p value of 0.059, in which case it was only
marginally better than the random predictor’s. For the Kaggle
dataset, the proposed seizure prediction approach achieved
significantly better performance than an unspecific random
predictor for all subjects except Patient 2, whose results were
only marginally better than the random predictor’s, as shown in
Table 1.

It should be noted that a proper setting of the threshold for
raising alarms influences the prediction results. If it is too high, the
sensitivity of the model will be low, and if it is too low, the model
suffers high false prediction rates. A trade-off is necessary in setting
the threshold values. In our case, we set two threshold values: the
first one is for deciding if a 10-s frame is in an interictal period (0) or
in a preictal period (1). The second one, Thr, leads to a final decision
to determine if a 5-min window is preictal or not. Our experiments
showed that the first threshold is 0.6, and the second threshold is 2,
against which R(t) is compared. Those threshold values were
selected based on examining the CHB-MIT and Kaggle datasets.
Moreover, these values were adjusted on the validation data not the
testing data.

TABLE 2 Benchmark of recent seizure prediction approaches and this work.

Auth Dataset Method Sensitivity(%) FPR SOP SPH

Maiwald et al. (2004) FB, 21 patients 42 0.15 30 2

Winterhalder et al. (2006) FB, 21 patients Phase coherence, lag synchronization + Threshold crossing 60 0.15 30 10

Park et al. (2011) FB, 21 patients Univariate spectral power + SVM 98.3 0.29 30 0

Li et al. (2013) FB, 21 patients Spike rate + Threshold crossing 72.7 0.11 50 10s

Zheng et al. (2014) FB, 21 patients Mean phase coherence + Threshold crossing > 70 0.15 30 10

Eftekhar et al. (2014) FB, 18 patients Multiresolution N-gram + Threshold crossing 90–95 0.06 20 10

Aarabi and He (2017) FB, 18 patients Bayesian inversion of power spectral density + Rule-based decision 87.07 0.2 30 10s

Zhang and Parhi (2015) FB, 18 patients Power spectral density ratio + SVM 100 0.03 50 0

Sharif and Jafari (2017) FB, 19 patients Fuzzy rules on Poincaré plane SVM 91–96 0.08 15 2–42

Khan et al. (2017) MIT, MSSM Wavelet + CNN 87.8 0.14 10 0

Truong et al. (2018) MIT, 13 patients Short-time Fourier transform CNN 81.2 0.16 30 5

Truong et al. (2018) Kaggle, 7 Short-time Fourier transform CNN 75 0.21 30 5

Mahmoodian et al. (2019) FB, 21 patients cross-bispectrum method + svm 95.8 0.24 9.42 0

Toraman (2020) CHB-MIT, 20 patients CNN + svm 92.32 - 30 -

Daoud and Bayoumi (2019) CHB-MIT,8 patients Deep convolutional Autoencoder + BiLSTM 99.72 0.0004 60 -

Usman et al. (2020) CHB-MIT Short-time Fourier transform + CNN 92.7 0.5 21 0

Zhang et al. (2019) CHB-MIT Common spatial pattern + CNN 92.2 0.12 30 0

The proposed method CHB-MIT, 23 Patients MODWT + Multiresolution 1D-CNNs 82 .058 30 5

The proposed method Kaggle MODWT + Multiresolution 1D-CNNs 85 0.19 60 5
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Figure 12 shows the alarm generation of the CHB-MIT dataset
for a particular patient (patient 2). Similar results were obtained for
other patients. The effect of post-processing thresholding mitigates
the false alarm rate. The proposed algorithm successfully locates the
preictal region and generates an alarm signal 30 min before the
seizure starts.

Table 2 shows a comparison between the proposed approach
and state-of-the-art approaches in seizure prediction. It needs to be
emphasized that some of the approaches reported in the literature
used handcrafted features, and most earlier results used the FB
dataset, which is no longer publicly available. Moreover, some
existing methods used zero SPH, and others used 5-min or 10-
min SPH. The method used by Truong et al. (2018) achieved a
sensitivity of 81.2% and an FPR of 0.16 for the selected 13 patients
from the CHB-MIT dataset and 75% and 0.21 for the Kaggle dataset.
On the other hand, the proposed method achieved a sensitivity of
90.2% and an FPR of 0.0713 for the same 13 patients from the CHB-
MIT dataset. The main advantage of our method is that our model is
able to extract features from individual frequency bands.

5 Conclusion

This article developed a novel approach for integrating maximum
overlapping discrete wavelet transform with multiresolution 1D CNNs
to classify the preictal and interictal periods of EEG signals. In this
approach, input signals are first divided into 10-s frames, which are
further decomposed into a number of frequency bands. Each of the
subband signals is then fed into a 1D CNN to produce discriminative
features for the particular subband. These feature vectors are then fused
with a fully connected layer and a dropout layer, as well as a softmax
layer to determine if the 10 frame is preictal or not. An accumulation of
these 10-s results over 5 min produces a final decision as to whether the
input signal in this 5-min window is preictal or interictal. Experimental
studies show that the prediction model works well with both sEEG and
iEEG signals.

The proposed approach was tested with two popular epilepsy
patient datasets: CHB-MIT and Kaggle. It is important to emphasize
that the proposed method works best with both iEEG data and sEEG
data without any artifact removal. It achieved a sensitivity of 82%
and a false prediction rate of 0.058 with the CHB-MIT dataset and a
sensitivity of 85% and a false prediction rate of 0.19 with the Kaggle
dataset. An advantage of the proposed method, similarly to other
data-driven approaches, is that it does not need a handcrafted
feature extraction procedure. A uniqueness of the method is the
use of the subband concept. Input signals are first decomposed into
five subbands, and the results from all of these subbands are then
fused with a fusion mechanism. Future work should include

exploring the effectiveness of using randomized feature extractors
and classifiers, which compete with one another, to produce a more
robust performance.

A limitation of the multichannel 1D CNN model is that it does
not provide a clear picture of which CNN features belongs to which
signal channel or signal band, which reduces its interpretability. The
CNN features take a collective effect of all the channels and all the
bands. The fact that the problem involves multiple channels and
multiple bands makes the issue more difficult to address. One idea is
to mask out a particular channel/band to monitor its effect on the
performance of the CNN model. However, this is a brute-force
approach. A future study is warranted for improving the
interpretability of the multichannel 1D CNN model. In addition,
we did not isolate and remove artifacts in this study, which can be
included in future work.
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