
From 2D to 3D video
conferencing: modular RGB-D
capture and reconstruction for
interactive natural user
representations in immersive
extended reality (XR)
communication

Simon N. B. Gunkel*, Sylvie Dijkstra-Soudarissanane,
Hans M. Stokking and Omar A. Niamut

The Netherlands Organisation for Applied Scientific Research (TNO), Den Haag, Netherlands

With recent advancements in Virtual Reality (VR) and Augmented Reality (AR)
hardware, many new immersive Extended Reality (XR) applications and services
arose. One challenge that remains is to solve the social isolation often felt in these
extended reality experiences and to enable a natural multi-user communication
with high Social Presence. While a multitude of solutions exist to address this issue
with computer-generated “artificial” avatars (based on pre-rendered 3D models),
this form of user representation might not be sufficient for conveying a sense of
co-presence for many use cases. In particular, for personal communication (for
example, with family, doctor, or sales representatives) or for applications requiring
photorealistic rendering. One alternative solution is to capture users (and objects)
with the help of RGBD sensors to allow real-time photorealistic representations of
users. In this paper, we present a complete andmodular RGBD capture application
and outline the different steps needed to utilize RGBD as means of photorealistic
3D user representations. We outline different capture modalities, as well as
individual functional processing blocks, with its advantages and disadvantages.
We evaluate our approach in two ways, a technical evaluation of the operation of
the different modules and two small-scale user evaluations within integrated
applications. The integrated applications present the use of the modular RGBD
capture in both augmented reality and virtual reality communication application
use cases, tested in realistic real-world settings. Our examples show that the
proposed modular capture and reconstruction pipeline allows for easy evaluation
and extension of each step of the processing pipeline. Furthermore, it allows
parallel code execution, keeping performance overhead and delay low. Finally, our
proposed methods show that an integration of 3D photorealistic user
representations into existing video communication transmission systems is
feasible and allows for new immersive extended reality applications.

KEYWORDS

immersive communication, augmented reality, virtual reality, extended reality, XR, RGBD,
human 3D representation

OPEN ACCESS

EDITED BY

Irene Viola,
Centrum Wiskunde and Informatica,
Netherlands

REVIEWED BY

Mihai Mitrea,
Télécom SudParis, France
Jesús Gutiérrez,
Universidad Politécnica de Madrid, Spain

*CORRESPONDENCE

Simon N. B. Gunkel,
simon.gunkel@tno.nl

RECEIVED 07 January 2023
ACCEPTED 17 April 2023
PUBLISHED 22 May 2023

CITATION

Gunkel SNB, Dijkstra-Soudarissanane S,
Stokking HM and Niamut OA (2023),
From 2D to 3D video conferencing:
modular RGB-D capture and
reconstruction for interactive natural user
representations in immersive extended
reality (XR) communication.
Front. Sig. Proc. 3:1139897.
doi: 10.3389/frsip.2023.1139897

COPYRIGHT

© 2023 Gunkel, Dijkstra-Soudarissanane,
Stokking and Niamut. This is an open-
access article distributed under the terms
of the Creative Commons Attribution
License (CC BY). The use, distribution or
reproduction in other forums is
permitted, provided the original author(s)
and the copyright owner(s) are credited
and that the original publication in this
journal is cited, in accordance with
accepted academic practice. No use,
distribution or reproduction is permitted
which does not comply with these terms.

Frontiers in Signal Processing frontiersin.org01

TYPE Original Research
PUBLISHED 22 May 2023
DOI 10.3389/frsip.2023.1139897

https://www.frontiersin.org/articles/10.3389/frsip.2023.1139897/full
https://www.frontiersin.org/articles/10.3389/frsip.2023.1139897/full
https://www.frontiersin.org/articles/10.3389/frsip.2023.1139897/full
https://www.frontiersin.org/articles/10.3389/frsip.2023.1139897/full
https://www.frontiersin.org/articles/10.3389/frsip.2023.1139897/full
https://www.frontiersin.org/articles/10.3389/frsip.2023.1139897/full
https://www.frontiersin.org/articles/10.3389/frsip.2023.1139897/full
https://crossmark.crossref.org/dialog/?doi=10.3389/frsip.2023.1139897&domain=pdf&date_stamp=2023-05-22
mailto:simon.gunkel@tno.nl
mailto:simon.gunkel@tno.nl
https://doi.org/10.3389/frsip.2023.1139897
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/signal-processing
https://www.frontiersin.org
https://www.frontiersin.org/journals/signal-processing
https://www.frontiersin.org/journals/signal-processing#editorial-board
https://www.frontiersin.org/journals/signal-processing#editorial-board
https://doi.org/10.3389/frsip.2023.1139897

1 Introduction and methodology

Although 2D video conferencing has gained increased
popularity for everyday communication, it may not be ideal for
all use cases and may lead to exhaustion, as well as other problems
related to “zoom fatigue” (Nesher Shoshan and Wehrt, 2022). One
possible solution to improve remote communication systems is to
introduce 3D spatial cues in immersive extended reality (XR)
applications. Immersive communication applications built on XR
technology have the promise of high immersion, presence, and more
natural user interactions (Stanney et al., 2021). Eventually, the goal
of immersive communication systems is to maximize social presence
between users in remote communication. As described by Lombard
and Ditton (Lombard and Ditton, 1997), users ultimately feel the
illusion of non-mediation. This is achieved in part by transporting a
user virtually to the other user. We firmly believe that at least one
other part of it is giving users a feeling of ‘the same place,’ of local
togetherness, of physical proximity. Although current virtual reality
(VR) communication systems are maturing, they still face significant
drawbacks. One main complication is the capture and rendering of
users in photorealistic quality. Photorealistic representations can be
a contributing factor in allowing the high level of immersion and
social presence and might be required in any photorealistic XR
environment, simply to blend users into the virtual or augmented
world. However, photorealistic capture is complex due to stringent
real-time requirements and significant computational demands.
Furthermore, the advantages and disadvantages of different
processing and analysis strategies are not always clear. This raises
the need for a better understanding of the technical steps and their
impact on any resource usage in the system and the user’s device.

To address this gap, this work outlines themain technical building
blocks in a modular capture application to enable immersive
communication via RGBD (color and depth) user capture and
rendering. Our approach is based on existing real-time streaming
components and infrastructure and was integrated into two XR
communication systems. Thus, we propose a modular capture
application, paired with multiple 3D rendering strategies, and
integrated into a commercial communication toolkit. We evaluated
our approach with users in their daily work environment. This
evaluation assesses the practical usability of the system, our
technical approach, and the quality of communication/interaction
(i.e., Social Presence). The research in this paper was based on the
following research questions and hypotheses:

RQ1. What are the advantages and disadvantages of different
RGBD capture modalities, individual processing steps, and their
resource needs?
H1.1 RGBD capture and processing is possible within a latency
that is acceptable for real-time communication (< 500 ms glass-
to-glass).
H1.2 RGBD capture and processing is possible with a
performance overhead that is acceptable for any modern PC/
Laptop.
RQ2. How can RGBD data be utilized for 3D photorealistic user
representations, and what is its rendering resource overhead?
H2.1 RGBD data allow 3D rendering of user representations on
different devices and with a performance overhead acceptable for
low powered stand alone hardware.

H2.2 Different GPU shader optimizations allow for higher
rendering quality without significant processing overhead.
RQ3. Do RGBD-based user representations result in a high social
presence for remote communication?

While previous work outlined the system and transmission
aspects of RGBD-based 3D conferencing (Gunkel et al., 2021)
this paper’s focus is on the capture and rendering technologies
and the evaluation thereof. In order to address our research
questions, we followed an experimental design under controlled
conditions for RQ1 and RQ2, which offers technical guidance of
different RGBD capture and processing approaches and evaluate
them in detail with technical measures. Additionally, we conducted
two small-scale case studies (based on RQ3) within two realistic
deployments of the capture application into complete immersive
communication experiences. The paper offers the following
contributions:

C1. Design considerations and implementation aspects for real-
time modular capture of RGBD-based photorealistic 3D user
representation into real-world systems and hardware.
C2. Technical evaluation of individual modules and strategies for
RGBD-based capture and rendering.
C3. Small-scale user evaluation of both an AR and a VR
communication application that integrates our modular
capture approach.

2 Related work

Volumetric video is recognized as a crucial technique for
creating immersive AR and VR experiences. An ongoing area of
research is the capture, encoding and transmission of volumetric
video formats such as point clouds and models (Collet et al., 2015;
Alexiadis et al., 2017; Mekuria et al., 2017; Park et al., 2019; Schreer
et al., 2019). Volumetric videos, in particular, improve the quality of
experience and social presence (Cho et al., 2020; Subramanyam
et al., 2020) for remote telepresence and immersive communication
(Orts-Escolano et al., 2016; Zioulis et al., 2016). However, most
current volumetric video formats, such as video-based point cloud
coding (V-PCC) (Schwarz et al., 2019) and geometry-based point
cloud coding (G-PCC) (Mekuria et al., 2017)) require a lot of
computing power, making them currently difficult to implement
in realistic real-time pipelines. One alternative is to convert the
depth information into a 2D image format that can be encoded and
transmitted via existing image/video compression techniques. Pece
et al. (2011) introduced a simple video codec for depth streaming,
while (Liu et al., 2015; Ekong et al., 2016; Gunkel et al., 2021)
considered a more sophisticated conversion of depth information
into grayscale images. Furthermore, the use of RGBD images for 3D
user rendering is a well-established concept in depth-image-based
rendering (DIBR). DIBR was introduced for 3D TV (Fehn, 2004) but
can also be applied for complex texture synthesis (Ndjiki-Nya et al.,
2011). However, 3D TV was never widely deployed and, to our
knowledge, DIBR was not applied in the context of a
communication system. Furthermore, AR and VR applications
require spatial computing, which is the ability to recognize the
environment, the user, and the things surrounding the user (see

Frontiers in Signal Processing frontiersin.org02

Gunkel et al. 10.3389/frsip.2023.1139897

https://www.frontiersin.org/journals/signal-processing
https://www.frontiersin.org
https://doi.org/10.3389/frsip.2023.1139897

(Grier et al., 2012; Elvezio et al., 2017)). In terms of communication,
this means that in order to express effective remote interactions, the
user’s actions must be accurately mirrored in the user’s
representation. Spatial processing tasks are complex and
complicated to test; thus, the modular capture application
presented in this paper is designed for easy extension and
reconfiguration to simplify spatial processing prototyping and
testing, as well as to form a basic building block for immersive
communication applications.

There are some solutions to allow immersive communication
through Free Viewpoint Video (FVV) (Carballeira et al., 2021;
Rasmuson et al., 2021). These approaches run on consumer-
grade hardware and existing encoding strategies. The ease of
deployment is still hindered by complex calibration and
preprocessing steps. There are further solutions based on
photorealistic social VR communication (Gunkel et al., 2021;
Langa et al., 2021; Reimat et al., 2022). For example, (Prins et al.,
2018), introduces a web-based framework for communicative and
Social VR experiences. Further, (Gunkel et al., 2019b), outlines
multiple use cases of Social VR and the benefit to user
experience. These experiences are also considered suitable for
real-world situations, such as stand-up meetings (Gunkel et al.,
2019a). In a different study, Francesca et al. (De Simone et al., 2019)
found that face-to-face and photorealistic Social VR show no
statistical differences in terms of interaction and social
connectivity. Furthermore, immersive communication compared
to 2D video conferencing is theorized to differ in its ability to
provide social context-related cue transfer, particularly involving
body posture, gestures, movement, and eye contact. Furthermore,
the way in which presence is typically experienced in VR (Coelho
et al., 2006) can also affect communication and interpersonal
relationships.

Engaging in remote collaboration benefits organizations, as well
as their employees, by offering an advantage over less flexible
competitors and supporting employee wellbeing (Pinsonneault
and Boisvert, 2001). However, virtual teams have also been
shown to be prone to various problems. Thompson and Coovert
(Thompson et al., 2006) propose a categorization of the main issues
faced by virtual teams, consisting of: 1) decreased communication
quality; 2) ineffective interpersonal relationships; and 3) lack of
awareness of the work of each other. An important determinant of
the decrease in communication quality and the ineffective
development of interpersonal relationships appears to be the
generally restricted flow of social information between virtual
team members. Social information in this context is commonly
understood as social context cues and refers to non-verbal cues (e.g.,
gestures), paraverbal cues (e.g., tone of voice), status and
interpersonal cues (e.g., age), and characteristics of physical
surroundings (e.g., office size) (Straus, 1997). In fact, research
shows that social context cues help regulate interpersonal
interaction and information exchange (Straus, 1997), and the
development of trust in teams (Cascio, 2000). In turn, this
supports communication and cooperation (Aubert and Kelsey,
2003; Priest et al., 2006), as well as the development of
interpersonal relationships (Wilson et al., 2006). In addition,
social context cues show positive correlations with levels of
efficiency (Boyle et al., 1994), perceived communication quality,
and satisfaction (Sellen, 1995). As such, it can be argued that the

more a medium affords the transfer of social context cues, the more
it supports the quality of communication and the development of
effective interpersonal relationships.

3 Materials and method–RGBD-based
3D representations

In this section, we outline the technical pipeline and the generic
modular capture application (see Figure 1). Most immersive
communication systems can be simplified into three components:
capture, client, and central system components (such as data
transmission). It is important to note here that there is a causal
relationship between any applied capture method and the
reconstruction or rendering of a user. With a focus on RGBD as
a format, this section explains the main aspects and modules of the
full pipeline to allow capture and reconstruction of users in 3D.
Further examples of actual application implementations are
presented in Section 4.2.

3.1 Design considerations

One of our main requirements is to have a capture and render
pipeline that is completely modular to make different individual
process blocks easy to measure and to extend. This includes an easy
extension to use different capture devices and an open API to access
the final capture in any application. All with the main purpose to
allow photorealistic 3D user representations in real-time
communication use cases. Therefore, we consider the following
design criteria (based on our four hypotheses):

3.1.1 Capture latency (H1.1)
One of the most important factors for any real-time

communication system is delay. The acceptable end-to-end
(capture-to-display) for video conferencing is still debated;
however, an acceptable value was identified as less than 500 ms
for group discussions (Schmitt et al., 2014). Thus a latency of up to
500 ms should be acceptable for most people. Furthermore, latency
values between 300 and 500 ms are in line with many existing video
conferencing systems (Yu et al., 2014) and immersive
communication systems (Roberts et al., 2009; Gunkel et al.,
2021). To the best of our knowledge, no research has been
conducted on the user and communication perception of latency
in photorealistic 3D immersive communication. Therefore, in this
article, we will focus on technical values and expect more research on
user-side aspects in the future.

3.1.2 Capture performance (H1.2)
Essentially, the capture system has to be accessible and easy to

deploy. Therefore, it should operate under performance constraints
(CPU, GPU, and memory utilization) that are acceptable for any
modern laptop/PC.

3.1.3 Render interoperability (H2.1)
The RGBD-based approach presented in the paper presents

challenges not only in the capture of such data but also in the
reconstruction and rendering. Any rendering approach presented

Frontiers in Signal Processing frontiersin.org03

Gunkel et al. 10.3389/frsip.2023.1139897

https://www.frontiersin.org/journals/signal-processing
https://www.frontiersin.org
https://doi.org/10.3389/frsip.2023.1139897

has to be adoptable for different render engines (e.g., WebGL and
Unity) and under performance constraints that allow low-powered
devices (i.e., AR glasses) to reconstruct and render the 3D user
representations.

3.1.4 Render optimizations (H2.2)
When it comes to the quality of the user representation, the

capture quality is a very important factor. However, due to expected
lossy compression (otherwise, the data rates would not be suitable
for any internet-based system), many more artifacts and distortions
may be injected into the representation. Thus creating a need to
optimize and clean the image not only at the capturing stage but also
during receiving or rendering. Furthermore, any performance
overhead resulting from such optimizations should have minimal
impact on the rendering device.

3.2 Modular capture and processing

In this paper, we introduce a modular capture and processing
application that was fully developed in Python. Python was chosen
because it offers easy code development and offers a rich set of
modules for image processing and machine learning. Furthermore,
most RGBD sensors SDKs offer simple wrappers in Python (like the
Kinect Azure and ZED used as exampled in this paper), which offer
similar performance as the native C solutions. Also, utilizing
OpenCV1 and Numba2, many image processing tasks are
implemented with hardware acceleration and underlying C
bindings, thus keeping the performance overhead low. Although
in a production environment it would be more desirable to have a
complete native solution, our approach offers an excellent entry
point for prototyping, experimentation, and research. This module
can be easily replaced for new research needs or extended with new
processing functions such as complex spatial user and environment

analysis. Finally, all modules are fully interchangeable with the ZED
2i, K4A, and any future sensor capture input, but may lead to
undesirable or suboptimal image quality.

The capture application is divided into five generic modules (see
Figure 1). For optimal performance and parallel processing, each
module runs in its own thread loop. Information betweenmodules is
exchanged via simple queues that ensure thread safety and image
ordering. All modules are glued together via a central governing
thread that also is the main tread to interface with OpenCV image
rendering (displaying any required final or debug output in a
window). In addition to the five modules, a Metadata Server may
offer additional metadata information from the capture module to
applications on the same computer system. The five generic capture
modules, as shown in Figure 1, are explained in more detail
(including example implementations of these modules) below.

3.2.1 Camera frame grabber
The first module in the capture chain is a frame grabber to allow

simple access to different capture sensors. The main function of this
module is to extrapolate any dedicated capture API and to supply a
steady real-time flow of synchronized RGB color and depth image
frames. Currently, we implemented two examples of this module to
support the Kinect Azure sensor (based on3) and ZED 2i (based on4).
In addition to images, this module also offers generic metadata of the
camera intrinsic (i.e., resolution and focal length), which are
important for the correct rendering of the image into the 3D
plane. The implementation of the two sensor modules currently
offers a high- and low-capture mode with an output resolution of
1024 × 1024 pixels (high) and 512 × 512 pixels (low). The image
capture is internally cropped, and all metadata is adjusted
accordingly. This is, however, not a limitation of our approach
but a deliberate decision on order to optimize different parts of the
end-to-end chain, as an image with a resolution power of 2 can be
handled more performantly in most image/video compression and

FIGURE 1
Modular capture architecture.

1 https://opencv.org/.

2 https://numba.pydata.org/.

3 https://github.com/etiennedub/pyk4a.

4 https://www.stereolabs.com/docs/app-development/python/install/.

Frontiers in Signal Processing frontiersin.org04

Gunkel et al. 10.3389/frsip.2023.1139897

https://opencv.org/
https://numba.pydata.org/
https://github.com/etiennedub/pyk4a
https://www.stereolabs.com/docs/app-development/python/install/
https://www.frontiersin.org/journals/signal-processing
https://www.frontiersin.org
https://doi.org/10.3389/frsip.2023.1139897

rendering engines. This is specifically the case for the image
mapping in WebGL rendering (as internally any image will be
scaled to a power of two for texture-to-shader mapping).
Furthermore, the capture rate can be fully adjusted (based on
sensor capabilities). For the remainder of the paper, we refer to
the capture rate of 15fps. In the following, we explain the main
differences between the two sensors.

3.2.1.1 Kinect azure (K4A)5

The K4A sensor is a Time-of-Flight (ToF) sensor. In addition to a
hi-resolution color sensor, it utilizes two near-infrared (NIR) laser
diodes enabling near and wide field-of-view (FoV) depth by
measuring the time the (modulated) infrared laser beam takes
from sending to sensor reading. This gives accurate depth
approximations with a limited resolution (640 × 576 px in the
near field of view, NFOV, mode). This resolution is still suitable
for human capture (in a range of 3 m). It is important to note that the
depth image is also significant scaled with a complex mapping to the
color pixels, depending on the color capture resolution. More details
on the accuracy of the Kinect Azure are presented in (Kurillo et al.,
2022). Although the depth capture quality is generally high, the raw
capture may still include different types of distortion. An example of a
raw human capture can be seen in Figure 2 (image on top left). For
example, misalignment between the infrared (IR) sensor (to measure
depth) and the color image can create a halo effect, resulting in wrong
or no depth values in certain sections of the image. This problem is
particularly undesirable around the hand of the user (i.e., in the raw
image part of the body, even though color information is present,
would be ignored in the 3D rendering). One potential disadvantage of
the K4A is that it may cause IR interference with any other devices
that may rely on IR device tracking (like the HoloLens 2 AR glasses or
the SteamVR Lighthouse tracking system).

3.2.1.2 ZED 2i6

The ZED 2i sensor is a stereo camera with two high resolution
color cameras in a predefined fixed setup. With the disparity of the

2 synchronized video streams and (CUDA, hardware accelerated)
stereo matching, the sensor provides both color and depth
information. As the full image is used for the depth estimation
step, the depth image completely resembles the resolutions of the
color image. This can also be accounted for in case of high resulting
capture (e.g., 2 k or 4 k) even though some depth estimation steps
might be internally scaled by the SDK (to allow real-time capture
with low performance overhead). More details on the accuracy of the
ZED 2i sensor (and similar stereo matching depth sensor devices)
are presented in (Tadic et al., 2022). Furthermore, the ZED SDK
offers two other important parameters related to depth capture:
depth_mode and sensing_mode. In our current implementation, we
use depth_mode = DEPTH_MODE.QUALITY. This was
determined to be the best option. The alternative mode DEPTH_
MODE.ULTRA seems quite pixelated and has a less consistent
depth granularity. As sensing_mode we use SENSING_
MODE.STANDARD. Compared to the alternative SENSING_
MODE.FILL, standard sensing produces a more consistent depth
image. The SENSING_MODE.FILL option’s main drawback is that
it generates a lot of overlap and causes objects and body parts to
blend into the backdrop, leading to inconsistent depth sensing
findings. Both depth_mode and sensing_mode are fully
configurable as parameters in the ZED capture module. An
example of a raw human capture can be seen in Figure 2
(bottom left image). Compared to the K4A the ZED offers a
more uniform depth image but may result into multiple
distortions based on the limitations of the stereo matching
approach. First of all, the ZED depth image quality often appears
more noisy (compared to K4A). Furthermore, uniformly colored
surfaces cannot be correctly matched and cannot be represented as
depth (see the black blob on the top right of the raw ZED capture,
Figure 2). This is not necessarily an issue for humans (as body parts
or cloth is rather uniformly colored, particularly in common lighting
conditions). Finally, we can observe similar image misalignment
distortions (see users hand, Figure 2) in the ZED capture as in the
K4A capture. In addition, these misalignment distortions often lead
to distortions in the outline of the person as well. However, one clear
benefit of the ZED sensor is that it does not produce any IR
interference with any other devices that may rely on IR device
tracking (such as the HoloLens 2 AR glasses or the SteamVR
Lighthouse tracking system). Furthermore, please note that

FIGURE 2
Capture example–Capture and FGBG and final images (TOP row = Kinect; Bottom row ZED).

5 https://azure.microsoft.com/en-us/products/kinect-dk/.

6 https://www.stereolabs.com/zed-2i/.

Frontiers in Signal Processing frontiersin.org05

Gunkel et al. 10.3389/frsip.2023.1139897

https://azure.microsoft.com/en-us/products/kinect-dk/
https://www.stereolabs.com/zed-2i/
https://www.frontiersin.org/journals/signal-processing
https://www.frontiersin.org
https://doi.org/10.3389/frsip.2023.1139897

currently due to CUDA processing requirements the ZED 2i sensor
is only supported on a PC with an NVIDIA graphics card.

3.2.2 Foreground-background extraction (FGBG)
This module’s main goal is to enhance the quality of the image

while doing real-time foreground-background extraction (FGBG).
This is a crucial step, since, when capturing users, we are only
concerned with the user’s representation and not their background.
Additionally, doing so enables us to visually render the users’
representation into the XR environment (i.e., virtual environment
for VR or augmented into the real environment for AR).

For the K4A image capture we implemented a simple threshold
based FGBGmethod, removing any pixels out of the threshold. This
is done by simply overwriting any values out of the threshold with
0 both for the depth and color. This is we currently allow pixels with
a depth value in the range of 500–2,000 mm away from the camera.
This is based on the following assumptions:

• user will be at least 50 cm away from the camera
• main body is around 1.5 m away from the sensor
• we only encode a depth range of (approx.) 1.5 m

As we do not consider the depth images captured by the ZED 2i
sensor as reliable as from the K4A, a simple FGBG threshold might not
be good enough to provide a high quality reconstruction. Therefore we
implemented an enhanced FGBG module using a machine learning
approach for human body segmentation (based on Mediapipe7). This
offers a fine grain body segmentation map (with reasonable
performance overhead due to Mediapipe’s hardware acceleration,
running on the GPU). Example images of the FGBG modules can
be seen in Figure 2, simple FGBG based on K4A capture (top middle)
and enhanced Mediapipe FGBG based on ZED 2i capture (bottom
middle).

3.2.3 Other image enhancements
After the FGBG processing further image enhancements are

desirable to for a high quality user representation. This is we like to
clean the image from any distortions and holes. As these holes and
image imperfections are rather different for the raw images of the
two examples sensor implementations presented in this paper (K4A
and ZED) we implemented two very distinctive enhancement
modules. Enhancements and further spatial processing blocks
could easily be introduced in the future.

3.2.3.1 ZED hole filling
This module has the main aim to improve the depth image; that

is: A. fill small holes and remove imperfections and B. fill any big
holes that might be present due do capture misalignment. This
image enhancements rely on the (Mediapipe) image segmentation of
the previous FGBG module and encompass the following steps:

• Step 0: As a basis for this image enhancement the Mediapipe
segmentation from the FGBG module already removed
unnecessary pixels from the color and depth image.

• Step 1: clean the edges with cv2.dialate followed by cv2.erode
(both with kernel 5 and 2 iterations)

• Step 2: build a mask for all holes (empty depth values that in
the segmentation are detected as person)

• Step 3: build a temporary “filler depth image” by copying the
depth image and applying cv2.erode (kernel size 8 and
4 iterations) followed by cv2.dilate (kernel size 8 and
8 iterations), this will fill all big holes but also fill across
the segmentation map

• Step 4: finally we combine the depth image with the “filler
depth image” (from the previous step) by only replacing
missing values in the depth image

The resulting depth image fills the complete segmentation and thus
offers a value for each color pixel. An example output can be seen in
Figure 2 (bottom right). Note that the Mediapipe segmentation may
result into a halo around the cutout (part of the background is detected
as person). This might result into less sharp edges than the final image
of the K4A sensor but often result into better rendering of hair that
might be cutout in the K4A image. Further, note that the edge of the
image will be further optimized in the rendering of the image.

3.2.3.2 Kinect edge smoothing
This module has the main aim to improve the misalignment of

the K4A image on the edges and of any foreground objects
(including the users hand) in particular. This step is based on the
simple FGBG and thus only relies on OpenCV1 functions. The
different enhancement steps are explained in the following:

• Step 1: first we need to resize the image in case of high resolution
(this means the optimization will always we done in 512 pixel to
ensure real-time low performance execution)

• Step 2: create image outline with cv2.Canny
• Step 3: match edges from cv2.Canny algorithmwith depth values
• Step 4: fill edges and create contours with cv2.findContours
• Step 5: find biggest contour (this is our person/including holes)
• Step 6: identify a depth background threshold averaging the
depth image - 10 cm (we asume that in K4A the foreground
object, like a hand, will result into holes in the back of the
image, so we like to will the background with background
depth values)

• Step 7: create a temporary background depth image by coping
the depth image and removing all depth values smaller than
the background threshold

• Step 8: now we loop 5 times, creating new depth values with a
cv2.dilate (kernel 5) and only replace the new values into the
temporary background depth image (Note: this works
significantly different than cv2.dilate iterations would work,
as it would also alter the depth information of pixels that we
consider as “correct”)

• Step 9: finally we replace any missing values in our original
depth image with values from the temporary background
depth image (based on the detected biggest contour)

The final image successfully closes any gaps in the depth image
edges and offers a sharp and coherent matching of the depth values
to its color counter pixel. An example output is shown in Figure 2
(top right).7 https://google.github.io/mediapipe/.

Frontiers in Signal Processing frontiersin.org06

Gunkel et al. 10.3389/frsip.2023.1139897

https://google.github.io/mediapipe/
https://www.frontiersin.org/journals/signal-processing
https://www.frontiersin.org
https://doi.org/10.3389/frsip.2023.1139897

3.2.4 Depth conversion
In order to transmit depth over existing video/image

compression formats, the 16-bit depth data is converted into an
8-bit RGB color format, with a window of 1,530 values. Currently we
offer two flavors of this conversion GrayAVG, presented in (Gunkel
et al., 2021), and Intel HSV8, both implemented in Numba2 to offer
maximum hardware acceleration with Python.

3.2.4.1 GrayAVG
We use the GrayAVG depth conversion algorithm as presented in

(Gunkel et al., 2021). GrayAVG maps depth values with a range of
0–1.5 m (i.e., 1,530 values) into gray-color values on the entire RGB color
space. By adding a minimum distance (distance the user is minimally
away from the sensor) as metadata, this offers a flexible distance. We
usually assume a minimal distance of 50cm, thus transmitting a depth
range of 500–2,030 mm. To stream it as a single RGB-D video stream,
the RGB image and the grayscale depth image are concatenated.

3.2.4.2 Intel HSV
We use our own implementation of8, in Python and Numba2.

This algorithm also converts the 16 bit depth data into 8-bit RGB
color by utilizing the Hue color. The hue-color space offers
1,529 discrete levels, or approximately 10.5 bits, and 6 gradations
in the R, G, and B up and down directions. Furthermore, the image
never gets too dark because one of the rgb colors is always 255. This
has the advantage of making sure that some lossy image/video
compression does not lose details.

3.2.5 Output
Besides rendering the output on the screen, the output can be

written into different virtual webcam drivers based on
pyvirtualwebcam9. Currently, this supports two different virtual
webcam drivers: OBS10 and Unity Capture11. The main difference
between these two drivers is that the OBS virtual driver operates in
RGB format, while the Unity Capture virtual driver operates in

RGBA format. Thus, choosing the right driver is important
depending on the application accessing the data. For example,
Unity-based applications generally expect RGBA format from
webcam device, while for a browser the alpha channel is usually
ignored. The output module will simple copy the final frame buffer
(with or without adding an alpha) to the virtual device.

3.3 Transmission

The concept of our approach is based on converting any depth
information into a 2D RGB image format (see Section 3.2.4) that can
be transmitted via existing 2D encoding and distribution
technology. This concept was previously reported in (Gunkel
et al., 2018; Gunkel et al., 2021). Compared to newer volumetric
streaming formats (such as V-PCC (Schwarz et al., 2019) and
G-PCC (Mekuria et al., 2017)) this allows the use of reliable and
established real-time streaming components (including full
hardware accelerating), allowing high quality stream decoding
even on low-powered end devices (like the Microsoft HoloLens
212 and Oculus Quest 213). The actual transmission is encoding
agnostic as long as the system supports any type of 2D RGB video
format. Examples of applications transmitting the RGBD data are
presented in Section 4.2.

3.4 RGBD 3D rendering

In this section we outline our approach on how to render the 2D
RGB stream in 3D and what optimizations we can apply in the
rendering shader to increase the visual quality. One important
aspect of our approach is that the reconstruction of the RGBD
image into 3D space does not require any additional processing steps
but is directly executed in the shader code on the GPU and thus
increases reliability and reduces resource overhead. Further, this
allows us to apply pixel optimizations within the shader and
different rendering techniques (i.e., as points or meshes) as
explained in the following (in the example of WebGL).

FIGURE 3
Render Example (RGBD Capture with ZED sensor).

8 dev.intelrealsense.com/docs/depth-image-compression-by-colorization-for-
intel-realsense-depth-cameras.

9 https://github.com/letmaik/pyvirtualcam.

10 https://obsproject.com/.

11 https://github.com/schellingb/UnityCapture.

12 https://www.microsoft.com/en-us/HoloLens/.

13 https://www.meta.com/nl/en/quest/products/quest-2/.

Frontiers in Signal Processing frontiersin.org07

Gunkel et al. 10.3389/frsip.2023.1139897

http://dev.intelrealsense.com/docs/depth-image-compression-by-colorization-for-intel-realsense-depth-cameras
http://dev.intelrealsense.com/docs/depth-image-compression-by-colorization-for-intel-realsense-depth-cameras
https://github.com/letmaik/pyvirtualcam
https://obsproject.com/
https://github.com/schellingb/UnityCapture
https://www.microsoft.com/en-us/HoloLens/
https://www.meta.com/nl/en/quest/products/quest-2/
https://www.frontiersin.org/journals/signal-processing
https://www.frontiersin.org
https://doi.org/10.3389/frsip.2023.1139897

3.4.1 Depth based rendering
Rendering the RGBD values back into 3D space is a simple

geometric function based on the depth value and the intrinsic value
of the camera (center pixel and focal length). Thus in order to render
points correctly first the depth value needs to be reconstructed from
the 2D image (HSV or grayscale) to a z-value in meter followed by
the back projection.

For example, for GrayAVG (depth grayscale), the depth-to-z
conversion can be done by combining the grayscale value and
multiplying it by 1.53 (so that it represents a range of 0 −
1.53 m) and adding the fixed minimal user distance. In a WebGL
shader this looks as follows:

float z � color.r + color.g + color.b()/3. p 1.53() +minDepth;

(1)
The back projection will look as follows in a WebGL shader.

Note that the camera_center and camera_focalLength is the
metadata coming from the capture frame grabber module of the
user to be rendered (e.g., the sending application).

vec4 position � projectionMatrix pmodelViewMatrix

p userTransformationMatrix p vec4
(2)

pixel_position.x() − camera_center.x()

p z/camera_focal_length.x,
(3)

pixel_position.y() − camera_center.y()

p z/camera_focal_length.y,
(4)

z, 1.0); (5)
The above examples are in WebGL, to render points in space

(effectively a point cloud), the shader will write the values in a
preallocated array of geometry point vertices14 (an example is shown
in Figure 3 3D Points). Changing this preallocated array into a
PlaneBufferGeometry15 also allows rendering the user with all points
connected to each other (thus effectively as a Mesh; an example is
shown in Figure 3 3D Mesh). The actual rendering is application
dependent and can easily adopted, for example, into the different
Unity render pipelines.

3.4.2 Edge smoothing
Simply rendering the RGBD image in 3D may lead to different

distortions and imperfections. This can particularity affect the
distortions in the edges of the image, based on errors in the
capture, FGBG or image compression (i.e., YUV conversion can
also inject errors in the corners of the image as encoding always
combines information of 4 adjacent pixels). An example of this
problem can be seen in Figure 3 (3D Points, bottom left), a halo
around the user is stretched into space. To counter this effect and
increase the rendering quality, we apply a simple edge smoothing.
The edge smoothing we apply is based on the assumption that
every adjunct pixels are connected to each other in space
(different parts of a users body are connected). This means
that any pixel that is adjunct but distant in space exceeding a

specific threshold can be ignored. Thus, for each pixel, we
calculate its distance to each neighboring pixel (x and y ± one)
and apply two thresholds smoothing_threshold and cutoff_
threshold. For the cutoff_threshold if any neighboring pixel is
over that distance, we will not render this pixel. For the
smoothing_threshold if any neighboring pixel is under that
distance we average z value with that pixel to create a more
smooth surface. Our best practice showed an ideal smoothing_
threshold of 3 cm and a cutoff_threshold of 10 cm. An example of
the edge smoothing as WebGL shader code is given in the
following (please note that in the actual implementation the
thresholds are not hard-coded but fully and dynamically
configurable):

float depthDiff � distance z, pixel_neighbor.z(); (6)
if depthDiff> � 0.1(){ (7)

gl_PointSize � 0.0; (8)
gl_Position � vec4 0.0, 0.0, −1.0, 0.0(); (9)
return;} (10)

if depthDiff< � 0.03(){ (11)
z � z + pixel_neighbor.z()/2.;} (12)

3.4.3 Point size
Ultimately, when rendering a user representation as a point

cloud, each point will be rendered as pixels on the display. The final
optimization step of the 3D rendering is to adjust the pixel size of
each point based on the distance in space. The reason for this is that
by default a capture sensor will capture more dense points if they are
closer to the capture device rather than points that are far away. This
results in that points further away (even though they are physically
close) may be rendered with space in between them, and thus
diminish the visual representation (note that this is only relevant
when rendering the 3D representation as points, in a Mesh
representation points are already connected by default). Thus,
ideally, we would like to render points in the same size as the
minimal distance to its direct neighbors (neighbors at the same
distance in space) according to the focal properties of the capture
device. This results in the following formula as WebGL shader code:

gl_PointSize � z / camera_focal_length.x p 1000.; (13)
Note that in WebGL we cannot create non-uniform pixel sizes

on the x and y-axes, and thus create the pixel size only based on the
x-axis. In Unity (e.g., VFX graph) more complex rendering
techniques are possible. Further, in WebGL the z value is in
meters, while the camera focal length is in mm, thus requiring a
multiplication by 1,000.

The combination of the “Point Size” and “Edge Smoothing”
(Section 3.4.2) are shown as example in Figure 3 3D Points
Optimized).

4 Results and evaluation

We evaluate our modular capture application in two ways, a
technical evaluation of the operation of the different modules
(Section 4.1) and an integrated application evaluation (Section
4.2) of two use cases with a small-scale user study each. The

14 https://threejs.org/docs/\#api/en/core/BufferGeometry.

15 https://threejs.org/docs/\#api/en/geometries/PlaneGeometry.

Frontiers in Signal Processing frontiersin.org08

Gunkel et al. 10.3389/frsip.2023.1139897

https://threejs.org/docs/\\#api/en/core/BufferGeometry
https://threejs.org/docs/\\#api/en/geometries/PlaneGeometry
https://www.frontiersin.org/journals/signal-processing
https://www.frontiersin.org
https://doi.org/10.3389/frsip.2023.1139897

technical evaluation measures the processing delay, CPU, GPU and
memory resource usage of each individual module of the capture
application, as well as the CPU, GPU and memory resource of the
different rendering methods proposed. The application evaluation
presents two XR communication solutions integrated with a
dedicated capture instantiations.

4.1 Technical evaluation

In this section we present different performance measures for
the capture and rendering as proposed in Section 3. For the different
(processing and rendering) performance measures, we use a
customized version of the Resources Consumption Metrics
(RCM) (Montagud et al., 2020)16. The RCM utility is a native
Windows application that enables 1-s interval system statistics
capture for the CPU, GPU, and memory utilization per process.
In all measurements, our capture application was deployed on a
XMG NEO 15 [E21] laptop PC (with AMD Ryzen 9 5900HX,
GeForce® RTX 3080 and 32 GB RAM). With a capture framerate of
15fps.

For (capture-to-display) processing delay measurements, we use
VideoLat (Jansen, 2014)17. VideoLat is a tool for dedicated one-way
delay measurements. A PC (Mac) with a webcam serves as a
measuring device, constantly depicting QR-codes and measuring
the time from display to webcam capture. VideoLat is calibrated in
an initial step by pointing its on camera to the own screen, it
measures the default (hardware) delay of the system (which will be
subtracted from subsequent measures). For each measure condition,
our capture application records the images of VideoLat and
displayed them locally (while deploying different module
configurations). In our setup VideoLat was used on a MacBook
Retina (15-inch, early 2013 model with 2.4 GHz Intel Core i7, 8 GB
RAM and MacOS 10.13.6) with a Logitech Brio18 as capture camera.

4.1.1 Capture performance
We measure the delay of each capture module by measuring the

displayed output of each module against the delay from frame
grabbing with VideoLat. Different module configurations were
deployed and tested as shown in Figure 1, with an additional
step of a video conferencing application displaying the results of
the virtual webcam. This is to show the delay in a realistic
deployment, we used Microsoft Teams (MS Teams)19 to show a
self-view of the virtual webcam output.

For all ZED sensor conditions this means the following module
deployment:

• Capture = ZED Frame Grabber
• FGBG = Mediapipe ML FGBG
• Enhance = ZED Hole Filling

• Depth = GrayAVG
• Output = OBS Virtual Webcam
• Application = Microsoft Teams (camera self view)

For all ZED sensor conditions this means the following module
deployment:

• Capture = Kinect Frame Grabber
• FGBG = Simple FGBG
• Enhance = Kinect Edge Smoothing
• Depth = Intel HSV
• Output = Unity Virtual Webcam
• Application = Microsoft Teams (camera self view)

Table 1 shows the different delays measured after each module.
Overall, to read the RGBD information in an application (i.e., MS
Teams), the delay is approximately doubled to the input (fame
grabber capture) delay. Further, the capture delay of the Kinect
Azure can be seen as comparable to a “normal” webcam (e.g., the
Logitech Brio calibration delay in VideoLat was measured with
approx. 190 ms) while the ZED capture delay is slightly higher,
which is expected as to the expense of stereo matching depth image
creation. Otherwise, all processing delays were in a somewhat
expected range. However, it is also important to recognize that
higher resolution capture significantly increases processing delay.
With the highest delay being over 500 ms (K4A sensor, high
resolution in MS Teams), this configuration might not be
suitable for every XR communication use case.

To measure the resource utilization of each individual module, we
added a “pass-through” debug option into each module. In pass-
through mode each module does not execute any processing but
simply forwards pre-defined example data (i.e., data that is
representative for the normal operation of this module). With this
feature, we tested each individual module by setting all modules,
besides the one to test, into pass trough and measure the CPU, GPU
and memory usage via RCM. The module deployment is otherwise
identical to the delay measures, with two additional conditions:

• None = No module active, only pass through
• All = All modules active, “normal” operation of the capture
application

Table 2 shows the measurements of the different individual
modules. Asmentioned in all conditions (besides “All” and “None”), only
one module is fully active in each condition. Overall, the results show a
stable and acceptable performance overhead, even for the higher
resolution RGBD streams. This might offer some possibility to utilize
further resources in order to add more spatial image recognition and
improvement tasks (likeHMDreplacement) or to further split processing
into more parallel tasks to further decrease the processing delay.

4.1.2 Rendering performance
In order to evaluate the different rendering options (see

Figure 3) we deployed a dummy capture module and used the
VRComm system (Gunkel et al., 2021) with different devices and
browsers as clients. The dummy capture module facilitates a
playback of representative pre-recorded RGBD content based on
the following modules: Azure Kinect Frame Grabber (with a

16 https://github.com/ETSE-UV/RCM-UV.

17 https://videolat.org/.

18 https://www.logitech.com/nl-nl/products/webcams/brio-4k-hdr-webcam.
html.

19 https://www.microsoft.com/en-us/microsoft-teams/group-chat-software.

Frontiers in Signal Processing frontiersin.org09

Gunkel et al. 10.3389/frsip.2023.1139897

https://github.com/ETSE-UV/RCM-UV
https://videolat.org/
https://www.logitech.com/nl-nl/products/webcams/brio-4k-hdr-webcam.html
https://www.logitech.com/nl-nl/products/webcams/brio-4k-hdr-webcam.html
https://www.microsoft.com/en-us/microsoft-teams/group-chat-software
https://www.frontiersin.org/journals/signal-processing
https://www.frontiersin.org
https://doi.org/10.3389/frsip.2023.1139897

resolution of 1,024 and 512 pixel), Simple FGBG, Kinect Edge
Smoothing, GrayAVG, and OBS Virtual Webcam. Besides the
three 3D rendering conditions (3D Points, 3D Points Optimized
and 3D Mesh), as presented in Figure 3 (see Section 3.4), we added
two baseline conditions: 1) “None” not rendering any user and 2)
“2D” rendering the user as a 2D sprite. This is the case where for
each condition (besides “None”) an upload client is uploading a
RGBD video stream into VRComm (WebRTC/peer-to-peer) and
the receiving client (marked as “Device/Browser” in the table)

renders the RGBD image texture according to the condition. The
performance of the “PC” condition wasmeasured with RCM and the
performance of the “HoloLens 2” condition was measured with the
HoloLens Windows Device Portal20. For the HoloLens 2 we

TABLE 1 Capture Module Processing Delays (VideoLan; 500+ samples each; mean values in ms; maximum confidence interval {alpha = 0.05} of 5 ms).

Sensor Res Capture FGBG Enhance Depth Output Application

K4A 512 156 (SD 32) 159 (SD 37) 194 (SD 42) 241 (SD 41) 319 (SD 40) 297 (SD 40)

K4A 1,024 189 (SD 33) 225 (SD 45) 333 (SD 46) 480 (SD 57) 572 (SD 58) 573 (SD 59)

ZED 512 209 (SD 19) 240 (SD 36) 252 (SD 34) 287 (SD 30) 285 (SD 18) 390 (SD 37)

ZED 1,024 245 (SD 38) 324 (SD 39) 380 (SD 42) 429 (SD 52) 416 (SD 45) 475 (SD 48)

TABLE 2 Capture Performance of differentmodules (RCM; 5 min samples each; average and SD values; maximum confidence interval {alpha = 0.05} is CPU = 1.98%,
GPU = 4.3%, and Memory = 48.86 MB).

Sensor Res Measure None Capture FGBG Enhance Depth Output All

K4A 512 CPU in % 1.22 1.62 0.94 3.2 1.5 1.04 4.13

SD in % 0.85 1.16 0.54 2.46 0.89 0.71 1.9

K4A 512 GPU in % 7.65 10.02 6.73 6.35 6.72 6.56 10.62

SD in % 4.39 2.18 1.6 1.85 1.68 1.68 2.27

K4A 512 Memory in MBs 253.63 219.87 254.12 268.49 294.51 262.33 277.74

SD in % 40.67 33.49 38.77 2.32 2.82 1.92 6.09

K4A 1,024 CPU in % 3.25 5.01 3.3 7.06 7.33 2.88 15.58

SD in % 3.13 2.63 4.06 5.04 2.76 2.38 6.1

K4A 1,024 GPU in % 6.49 13.52 6.63 6.68 6.71 6.74 13.36

SD in % 1.88 2.62 1.68 1.6 1.63 1.64 2.55

K4A 1,024 Memory in MBs 388.71 321.06 387.27 406.81 420.41 406.21 414.34

SD in % 60.31 3.05 60.05 4.13 66.81 3.79 68.59

ZED 512 CPU in % 0.27 2.28 0.0 0.45 0.04 0.37 6.71

SD in % 0.38 1.02 0.0 0.56 0.1 0.55 1.65

ZED 512 GPU in % 0.0 27.45 0.0 0.0 0.0 0.0 15.34

SD in % 0.0 12.88 0.0 0.0 0.0 0.0 13.09

ZED 512 Memory in MBs 406.19 393.5 231.35 421.38 406.63 417.79 480.18

SD in % 62.13 60.24 34.81 0.69 0.18 0.35 20.47

ZED 1,024 CPU in % 1.17 4.81 6.8 2.77 0.08 1.06 16.03

SD in % 1.23 2.36 4.21 1.3 0.14 0.68 4.2

ZED 1,024 GPU in % 0.0 22.78 0.0 0.0 0.0 7.38 16.08

SD in % 0.0 4.0 0.0 0.0 0.0 3.79 9.08

ZED 1,024 Memory in MBs 587.61 538.67 780.41 609.11 621.25 255.36 758.06

SD in % 93.53 85.77 71.5 4.52 1.01 31.97 144.41

20 https://learn.microsoft.com/en-us/windows/mixed-reality/develop/advanced-
concepts/using-the-windows-device-portal.

Frontiers in Signal Processing frontiersin.org10

Gunkel et al. 10.3389/frsip.2023.1139897

https://learn.microsoft.com/en-us/windows/mixed-reality/develop/advanced-concepts/using-the-windows-device-portal
https://learn.microsoft.com/en-us/windows/mixed-reality/develop/advanced-concepts/using-the-windows-device-portal
https://www.frontiersin.org/journals/signal-processing
https://www.frontiersin.org
https://doi.org/10.3389/frsip.2023.1139897

TABLE 3 Render Performance of different Browsers (RCM; 5 min samples each; average and SD values; maximum confidence interval {alpha = 0.05} is CPU = 1.35%,
GPU = 1.17%, and Memory = 8.81 MB).

Device/Browser Res Measure None 2D 3D 3D optimized 3D Mesh

PC/Chrome 512 CPU in % 7.04 8.7 8.57 8.69 8.84

PC/Chrome 512 CPU-sd in % 1.07 1.25 1.35 1.18 1.22

PC/Chrome 512 GPU in % 34.09 39.17 49.12 48.83 49.43

PC/Chrome 512 GPU-sd in % 6.81 3.74 4.1 4.89 6.52

PC/Chrome 512 Memory in MBs 600.99 501.38 531.09 540.92 513.67

PC/Chrome 512 MEM-sd in % 50.07 31.45 18.4 31.7 48.75

PC/Chrome 1,024 CPU in % 7.71 9.09 9.81 9.66 9.76

PC/Chrome 1,024 CPU-sd in % 1.34 1.19 1.64 1.53 1.42

PC/Chrome 1,024 GPU in % 20.26 31.69 68.09 69.71 62.21

PC/Chrome 1,024 GPU-sd in % 6.52 2.63 6.62 8.38 8.31

PC/Chrome 1,024 Memory in MBs 446.15 522.26 602.88 604.21 637.08

PC/Chrome 1,024 MEM-sd in % 26.14 17.57 34.95 38.52 34.89

PC/Edge 512 CPU in % 4.85 37.24 18.06 12.79 17.75

PC/Edge 512 CPU-sd in % 0.99 2.04 2.24 2.36 2.35

PC/Edge 512 GPU in % 23.79 58.64 67.21 65.35 63.1

PC/Edge 512 GPU-sd in % 7.49 7.59 3.54 3.23 4.47

PC/Edge 512 Memory in MBs 450.66 540.18 614.07 565.66 625.57

PC/Edge 512 MEM-sd in % 21.65 78.1 81.07 84.3 72.9

PC/Edge 1,024 CPU in % 3.58 34.19 13.63 13.86 8.05

PC/Edge 1,024 CPU-sd in % 1.1 1.96 2.54 2.7 1.85

PC/Edge 1,024 GPU in % 21.74 29.55 48.53 48.82 76.47

PC/Edge 1,024 GPU-sd in % 5.0 4.55 6.68 6.38 2.33

PC/Edge 1,024 Memory in MBs 388.28 584.98 675.19 688.83 750.92

PC/Edge 1,024 MEM-sd in % 22.57 17.04 33.68 52.53 15.4

PC/Firefox 512 CPU in % 2.69 8.9 8.79 8.63 8.54

PC/Firefox 512 CPU-sd in % 0.98 1.37 1.4 1.42 1.54

PC/Firefox 512 GPU in % 19.78 49.63 55.65 55.33 56.26

PC/Firefox 512 GPU-sd in % 2.96 6.08 6.58 6.04 6.16

PC/Firefox 512 Memory in MBs 398.55 501.1 499.5 525.81 534.39

PC/Firefox 512 MEM-sd in % 10.99 52.0 52.95 14.86 53.35

PC/Firefox 1,024 CPU in % 3.35 9.76 9.97 9.95 9.96

PC/Firefox 1,024 CPU-sd in % 1.17 1.34 1.36 1.38 1.41

PC/Firefox 1,024 GPU in % 32.34 30.1 54.02 55.29 49.1

PC/Firefox 1,024 GPU-sd in % 8.77 2.62 6.1 5.58 5.26

PC/Firefox 1,024 Memory in MBs 446.71 558.87 690.56 699.74 701.23

PC/Firefox 1,024 MEM-sd in % 13.41 8.5 47.97 25.97 12.71

HoloLens 2/Edge 512 CPU in % 30.15 35.54 32.36 30.02 35.66

HoloLens 2/Edge 512 CPU-sd in % 3.79 2.6 3.41 3.84 2.12

(Continued on following page)

Frontiers in Signal Processing frontiersin.org11

Gunkel et al. 10.3389/frsip.2023.1139897

https://www.frontiersin.org/journals/signal-processing
https://www.frontiersin.org
https://doi.org/10.3389/frsip.2023.1139897

measured the complete device performance (only running the
browser client). Under all conditions, the memory usage of the
HoloLens 2 device was measured below 3 GB.

Table 3 shows the rendering performance under the different
device/browser and rendering conditions. Overall, the different
browsers all perform very similar. Generally, all three browsers
are very capable forWebXR processing and rendering. However, it is
important to note that even though Chrome&Edge indicate a
significantly higher GPU usage than Firefox, this is mainly due to
internal rendering fame rate management. While Chrome&Edge
targeted a framerate of approximately 90 fps, Firefox fluctuated
around approximately 60 fps. On the Hololens 2 however we could
observe a drop in framerate due to reaching the maximum resource
utilization. While most conditions (None and 2D) run with the
expected 60fps, including the 512 3D Mesh condition, the higher
resolution and point cloud conditions decreased in framerate (512
3D and 3D Optimised had a framerate of ~30fps, 1,024 3D and 3D
Optimised had a framerate of ~15fps, and 1,024 3D Mesh had a
framerate of ~30fps). We can observe that the different
configurations are technically suitable for photorealistic XR
communication as previously observed in [(Gunkel et al., 2018;
Dijkstra-Soudarissanane et al., 2019; Gunkel et al., 2021)]. Adding
multiple users with high resolution might still be challenging
according to the high GPU usage in our measures (this is also
because for the high resolution more than 1M pixels point needs to
be rendered and constantly updated). However, the different 3D
render options (and whether optimizations were applied) had little
influence on the resource usage, and thus can be chosen according to
the use case and users needs. This is for the Hololens 2 the 3D Mesh
rendering seems to result into a better technical performance.

4.2 XR application and use cases evaluation

4.2.1 Virtual reality for business meetings
Face-to-face (f2f) meetings are widely acknowledged to be the

most productive and interesting way to conduct business meetings
(Denstadli et al., 2012). One of the causes is that meetings using
existing 2D videoconferencing solutions often lack engagement and
effectiveness. Participants in meetings often struggle with
background noise, lack of social presence, and not recognizing
who is speaking. Most of the time, these problems arise in large
group meetings (op den Akker et al., 2009). Thus, we assume that
business meetings are a good testing use case for immersive

communication in VR. To test our modular capture system in a
business meeting use case, we developed an immersive VR
communication tool that integrates 3D photorealistic capture and
rendering (RGB + depth) into the Connec221 commercial VR
application. Our approach enables movement in a 3D
environment with auditory and visual spatial awareness, in the
ideal view frustum. This is due to deploying only a single RGBD
camera solution, individuals are advised to stay in a small area in
order to prevent 3D point cloud distortions (i.e., simply because
sections that are not captured cannot be displayed). However,
staying in a small, confined space can be considered normal for
most business meetings.

4.2.1.1 VR user study setup
To evaluate the technical feasibility of our modular capture

application, we created a unique communication tool that integrates
the presented capture application (for 3D photorealistic user
representations) into the commercial VR application and
communication platform Connec2. The capture application
consisted of the following modules: ZED Frame Grabber (with a
resolution of 512 × 512 pixel), Mediapipe ML FGBG, ZED Hole
Filling, GrayAVG, and OBS Virtual Webcam. Deployed with a
single RGBD (ZED) sensor and an Oculus Quest for business
(same hardware as Oculus Quest 2). Figure 4 shows an example
of the rendering of a remote user within the Connec2 VR
communication application.

The complete application pipeline can be seen in Figure 5, and
includes the following components:

• Modular capture as presented in Section 3
• Ingest client receiving RGBD images from the OBS virtual
webcam driver and uploading them into the Connec2 system

• Connec2 utilizes a motion JPG compression sent via
structured networked message queues

• The render client runs on an Oculus Quest device sending/
receiving audio and rendering the audio as well as the 3D point
cloud (via VFX-graph)

Part of this study was previously presented in (Singh et al., 2022).
In total, 12 participants (6 meeting pairs) used the Social VR system

TABLE 3 (Continued) Render Performance of different Browsers (RCM; 5 min samples each; average and SD values; maximum confidence interval {alpha = 0.05} is
CPU = 1.35%, GPU = 1.17%, and Memory = 8.81 MB).

Device/Browser Res Measure None 2D 3D 3D optimized 3D Mesh

HoloLens 2/Edge 512 GPU in % 33.0 40.44 80.88 78.64 85.26

HoloLens 2/Edge 512 GPU-sd in % 1.96 3.93 11.28 13.44 2.83

HoloLens 2/Edge 1,024 CPU in % 30.37 33.41 29.06 27.5 28.63

HoloLens 2/Edge 1,024 CPU-sd in % 7.8 12.03 3.89 4.52 4.23

HoloLens 2/Edge 1,024 GPU in % 32.75 38.62 88.53 91.7 80.77

HoloLens 2/Edge 1,024 GPU-sd in % 3.67 10.42 4.58 4.9 4.76

21 https://connec2.nl/.

Frontiers in Signal Processing frontiersin.org12

Gunkel et al. 10.3389/frsip.2023.1139897

https://connec2.nl/
https://www.frontiersin.org/journals/signal-processing
https://www.frontiersin.org
https://doi.org/10.3389/frsip.2023.1139897

to have 1 or 2 meetings with each other from various offices in
Netherlands. There are 11 male subjects and 1 female subject, and
the participants’ ages range from 20 to 60+. All pairs already knew
each other through their work on previous or ongoing projects.
Subsequent encounters were held with each other using the VR
system over a 12 week period. All participants were required to
complete a questionnaire after each meeting that contained
questions based on several established surveys on social presence,
immersion, usability, embodiment, quality of experience (QoE),
quality of interaction (QoI), and quality of communication
(QoC) (Brooke et al., 1996; Witmer and Singer, 1998; Biocca
et al., 2001; Garau et al., 2001; Nowak and Biocca, 2003; Jennett
et al., 2008; Wiebe et al., 2014; Toet et al., 2021).

4.2.1.2 Evaluation
To analyze the scores of the different measured aspects of the

communication and the system, the answers to the questions
corresponding to either embodiment, Quality of Service (QoS),
usability, Quality of Interaction (QoI), immersion, social
presence, and Quality of Communication (QoC) have been
combined for their respective elements. The average rating for

each of the 22 meetings for each of the elements for which the
data was gathered is shown in Table 4. The average score for the
embodiment was the lowest, coming in at −1.44 on a scale from −3 to
3, with 0 being neutrality. Positive numbers show a satisfactory or
excellent response to the element, whilst negative values show an
inadequate or bad response from the participants. With a score of
0.9, QoC received the best rating of all elements. Thus while
technically users were able to operate and use the system with an
acceptable level of social presence and quality of communication,
there is still room to improve many of the technical aspects. Some of
the limitations in this study are the low image resolution of
512 pixels, the VFX graph used in Unity did not apply edge
smoothing, and the users face being occluded by the VR HMD.
Currently, (whiteout applying any HMD replacement strategy)
using HMDs is counterintuitive for photorealistic communication
as it obfuscates the face and prevents eye gaze.

4.2.2 Augmented reality for personal
communication

A demographic that is often neglected in daily personal
communication is the elderly. There is a severe absence of
contact between elderly residents of nursing facilities and their
families and loved ones. Elderly people’s health, cognitive decline,
and quality of life are negatively impacted by social isolation and
loneliness. Furthermore, the COVID-19 measures applied in care
institutions in the Netherlands further “increased loneliness and
restricted decision-making for” care home residents (Rutten et al.,
2022). To address this problem, an AR tool with 3D user capture and
rendering on an iPad and a large TV screen was previously presented
in (Dijkstra-Soudarissanane et al., 2021; Dijkstra-Soudarissanane
et al., 2022) and enabled high-quality mediated social
communication (effectively rendering remote users is life size).
We identified this use case to integrate and test our capture
application in AR communication (i.e., with AR glasses).

4.2.2.1 AR user study setup
To test our capture application within an AR communication

use case, we integrated our capture application into a web-based
immersive communication platform called VRComm (Gunkel et al.,
2021). VRComm is a web-enabled (WebXR) XR system that allows
both VR and AR rendering on OpenXR devices. In order to enable
our AR usecase in VRComm we made minor improvements to the
system, like a new room configuration and the placement of users in
AR. Users are placed opposite each other in AR, thus a remote user
appearing in your own environment, with the same geometric and
size properties as captured. For this integration, we deployed the

FIGURE 4
Side view of example user inside the immersive VR
communication application (Connec2) (Singh, 2022).

FIGURE 5
Application pipeline VR (Singh et al., 2022).

Frontiers in Signal Processing frontiersin.org13

Gunkel et al. 10.3389/frsip.2023.1139897

https://www.frontiersin.org/journals/signal-processing
https://www.frontiersin.org
https://doi.org/10.3389/frsip.2023.1139897

following capture modules: ZED Frame Grabber (with a resolution
of 1024 × 1024 pixel), Mediapipe ML FGBG, ZED Hole Filling,
GrayAVG, and OBS Virtual Webcam. The final user setup consists
of a single RGBD (ZED) sensor, a capture ingest PC and a HoloLens
2 running a Social XR web client. An example of a user in an
immersive communication, while wearing a Hololens 2 AR device, is
shown in Figure 6. Note that the Kinect Azure could not be used, as
it resulted in interference with the HoloLens 2.

The complete application pipeline can be seen in Figure 7, and
includes the following components:

• Modular capture as presented in Section 3
• Ingest web client receiving RGBD images from the OBS virtual
webcam driver and uploading them into the VRComm system

• VRComm utilizes per-to-peer WebRTC transmission for the
video (and audio)

• The render web client runs on a HoloLens2 device sending/
receiving audio and rendering the audio, as well as the 3D point
cloud

We replicated the same testing environment as described in
(Alvarez et al., 2022), to measure social presence in a personal
communication environment of AR. We applied two different
conditions than (Alvarez et al., 2022) for our small-scale user
study: 1) a condition using MS teams on a 46 inch (life-size)
display and 2) using VRComm and the HoloLens 2 as described

above. To make both conditions comparable, users had to wear
the HoloLens 2 in both conditions (i.e., the HoloLens 2 was
turned off in the MS Teams condition). We conducted our study
in a setup between subjects with 18 pairs (N = 36; 9 pairs per
condition) of people who know each other (friends, couples,
family, and close colleagues). This means in 7 male and
11 female (with an average age of 29.5) in the MS Teams
condition, and 9 male and 9 female (with an average age of
34.39) in the HoloLens 2 condition. In each condition, two
participants have a conversation in two different rooms followed
by questionnaires. We included the following questionnaires in
our study:

• Holistic Framework for Quality Assessment of Mediated
Social Communication (H-MSC-Q) (Toet et al., 2022): to
assess both the spatial and social presence.

• Networked Minds questionnaire (NMQ) (Biocca et al., 2001):
assessing co-presence, psychological involvement, and
behavioral engagement.

• Inclusion of Other in the Self (IOS) (Aron et al., 1992): to
assess interpersonal closeness via “a single-item, pictorial
measure of closeness”.

• User Experience Questionnaire (UEQ) (Schrepp, 2015):
evaluating the user experience on six scales attractiveness,
perspicuity, efficiency, dependability, stimulation, and
novelty

TABLE 4 Overview of variables of VR communication, scores are presented asmean average with standard deviation (SD) and confidence interval (CI; alpha = 0.05).

Variable Embodiment QoS Usability QoE QoI Immersion Meeting Engagement Social Presence QoC

Mean −1.44 −0.81 −0.30 −0.25 −0.10 0.61 0.68 0.75 0.90

SD 1.24 1.26 1.17 0.78 0.87 1.04 0.79 0.65 0.96

CI 0.52 0.54 0.49 0.33 0.37 0.43 0.33 0.27 0.40

FIGURE 6
Example user experiencing immersive communication in AR (with RGBD capture shown on the screen).

Frontiers in Signal Processing frontiersin.org14

Gunkel et al. 10.3389/frsip.2023.1139897

https://www.frontiersin.org/journals/signal-processing
https://www.frontiersin.org
https://doi.org/10.3389/frsip.2023.1139897

We also asked users to rate the overall perceived video quality
and performed post-experiment interviews for qualitative feedback.
We ensured good quality audio, given its importance in video
conferencing (Beerends and Neumann, 2020).

4.2.2.2 Evaluation
The results of our user study can be seen in Table 5, the

perceived quality of our 3D video pipeline was lower compared
to the conditions of the MS Teams. Interestingly, the feeling of social
presence did not decrease significantly under these conditions,
despite the lower perceived video quality. We performed a
Principal Component Analysis of the various conditions to gain
further insight into all the factors that influence the results. This
analysis basically shows two main factors. The first is the novelty
effect of the use of the HoloLens 2, for which the scores on factors
such as attractiveness, novelty, and stimulation had a great influence
on the social presence scores. However, perceived quality has a large
positive influence on social presence scores.

This explorative study strengthens our belief that Augmented
Reality can be used to increase the social presence when
communicating at a distance. By further improving 3D video quality
in the future, immersive communication will ultimately outperform
current video conferencing in delivering social presence. This is further
supported by remarks during the post-experiment interviews. Users
indicated that the HoloLens 2 brought a feeling of closeness, of
experience of the other person as being actually there with them in
the room. Multiple users specifically mentioned the lack of a screen as a
big plus. Even with these remarks, we still feel that AR headsets are not
good enough yet forAR conferencing.Multiple users also remarked that

they had to sit still, because with (head)movement, the other user would
disappear, pointing to the limited field of view of the HoloLens 2.
Additionally, with our limited single capture solution, the eyes were not
visible, which was a serious detriment. In the Teams + HoloLens
condition, the eyes were somewhat visible, but ideally more transparent
glasses are available for eye contact. Given current announcements on
new AR headsets, we feel they may be suitable in 2–4 years from now,
both offering a bigger field of view and more transparent glasses.

Although the user study confirms the technical feasibility of
integrating the capture modules into an immersive communication
application that allows people to communicate in a way comparable to
Microsoft Teams, it still raises multiple questions about the technical
readiness of multiple components (such as the AR glasses itself) as
well as multiple questions relating to the user experience.

5 Discussion

To discuss our modular capture application approach and
evaluation results, we follow the structure of our research questions:

RQ1. What are the advantages and disadvantages of different
RGBD capture modalities, individual processing steps, and their
resource needs?

In this paper, we present an extensive performance analysis of the
different capture and processing modalities. Each processing step was
included in an individualmodule and independently measured, both in
terms of processing delay and resource usage. Our results show low
performance overhead with a good balance between CPU and GPU
utilization (and a maximum of 16% for GPU and CPU for high

FIGURE 7
Application pipeline AR.

TABLE 5 Overview of presence and quality scores for AR communication (HoloLens 2), scores are presented as mean average with standard deviation (SD) and
confidence interval (CI; alpha = 0.05).

Condition IOS H-MSC-Q NMQ Overall quality Image quality

MS Teams 46” and HL2 3.78 6.1 5.27 4.11 4.16

(SD 0.82) (SD 0.86) (SD 0.77) (SD 0.66) (SD 0.5)

(CI 0.66) (CI 0.40) (CI 0.36) (CI 0.30) (CI 0.23)

HoloLens 2 3.44 5.73 5.6 3.78 2.72

(SD 1.42) (SD 0.81) (SD 0.58) (SD 0.71) (SD 0.80)

(CI 0.66) (CI 0.39) (SD 0.27) (CI 0.33) (CI 0.37)

Frontiers in Signal Processing frontiersin.org15

Gunkel et al. 10.3389/frsip.2023.1139897

https://www.frontiersin.org/journals/signal-processing
https://www.frontiersin.org
https://doi.org/10.3389/frsip.2023.1139897

resolution streams). This means that the performance requirements are
significantly higher than for traditional video conferencing capture but
still acceptable for any modern PC (H1.1). Furthermore, we have an
acceptable delay overhead for low-resolution streams. This is because
with a complete delay of ~300 ms (K4A) and ~400 ms (ZED) we can
assume a complete capture-to-glass delay for a communication
application of less than 500 ms (depending on the encoding and
network conditions), which is acceptable for most communication
scenarios (H1.2). This may not be true for the high-quality stream
setting with a complete delay of < 500 ms (ZED) and < 600 ms (K4A).
One of the main reasons for the 100 ms higher delay in the K4A
condition is that the Intel_HSV depth conversion seems to not perform
optimal for the higher-resolution streams (needing ~150 ms execution
time vs. ~50 ms execution time of GrayAVG), as well as the Unity
Virtual Webcam driver (adding a delay of ~100 ms vs. ~50 ms for the
OBS virtual webcam driver). We assume in its current state our
proposed capture application, reconstruction and rendering might
result into a delay double to a 2D webcam video approach. In an
operational deployment, however, this delay could further be
optimized, i.e., by processing within the integrated circuit (IC) of
the capture device itself.

RQ2. How can RGBD data be utilized for 3D photorealistic user
representations and what is its resource overhead?

In our rendering performance measures, all rendering conditions
performed in an acceptable range of CPU/GPU usage within the
laptop/browser combination (see Table 3). Furthermore, all browsers
performed similar, which is to be expected since we choose main
browsers that are in long-term development and well equipped for 3D
WebGL processing. One surprising aspect is that the Chromium-
based Edge browser seemed to perform slightly less than Chrome,
even though both rely on the same rendering engine. However, we can
conclude that the RGBD-based photorealistic user rendering is easily
possible on a modern PCwith any of the tested browsers (H2.1). With
the internal structure of the WebGL rendering engine in mind, we
expect that any native application (e.g., Unity or Unreal XR
application) would achieve similar or better performance results.

Concerning the different 3D rendering techniques, we were
unable to observe any significant differences between them. This
means that our introduced shader optimizations are able to increase
the render quality while not introducing any further processing
overhead (H2.2). Furthermore, we could not observe much
difference between 3D Mesh and 3D point-based rendering,
allowing us to choose the optimal rendering technique based on
the user case and user aesthetic preferences. When comparing the 3D
rendering with the 2D baseline, we do see a significant increase in
GPU andmemory usage. This is expected as, for example, in the high-
resolution case, the GPU needs to handle 1M individual pixel data
points and its geometric properties. Furthermore, the stable CPU
utilization between the 2D and 3D conditions indicates that the
rendering pipeline works optimally and reliably.

Our tests also show that rendering on the HoloLens 2, even
though possible, is still challenging, as it practically maxes out the
CPU/GPU usage of the device (H2.1). This effectively only allows to
add one high resolution user. Adding more users would only be
possible in a lower resolution, and thus accepting a low-quality
image for the user representations. However, with the next-
generation of hardware and further optimizations such as remote
rendering, this could be mitigated in the future.

RQ3. Do RGBD-based user representations result in a high
social presence for remote communication?

We integrated our modular capture application into two XR
communication applications, covering both AR and VR modalities,
including one commercial application. Our examples show that a
modular integration is feasible and can add 3D photorealistic user
representations to existing video communication transmission
systems. Even though motion JPEG compression (as in the case
of Connec2) can be considered suboptimal to transmit RGBD data
(and thus is currently restricted to 512 × 512 pixel resolution for the
color and depth stream), it further shows the usability and technical
feasibility of our approach. However, the question of an increased
level of social presence can only be partially answered due to
remaining technical limitations and the complexity of user
studies itself. Although the AR personal communication use case
study showed an indicative result of its benefits, technically the AR
glasses do not appear to be fully ready for our use case. Multiple
technical improvements are required in the pipeline to reach the
same sophisticated state of a commercial application like Microsoft
Teams. Further, more user research is needed to investigate XR
communication use cases in more detail. This includes a need for a
better understanding of technical and functional limits as well as the
benefits of immersive photorealisitc communication. We believe
that our current modular capture approach offers the ideal testbed
for dedicated user studies under different constraints.

Finally, we like to stress that the modular capture application and
rendering, presented in this paper, can be reused in any established
existing 2D video conferencing system (incl. its 2D video
transmission). However, building such immersive communication
systems in a reliable, scalable way with ever-growing higher resolution
of streams and simultaneous users remains a challenge.

6 Conclusion and future work

In this paper, we present a modular capture application as well as
two examples of integration with two XR communication
applications, one of which is a commercial product. We show the
advantages and disadvantages of the different modules with dedicated
in-depth evaluations of each module. This includes two types of
foreground background extraction and two RGBD image quality
enhancement strategies. In addition, we propose and evaluate
different techniques to render the 3D user representation. Our
small-scale user evaluation of the two XR communication
applications shows the technical suitability of our approach and
shows that an easy integration of 3D photorealistic user
representations can be achieved to allow immersive communication.

6.1 Future work

We are currently planning multiple extensions to the modular
capture application. Most importantly, will be the extension to
include HMD replacement, as a new spatial computing
functional block. The HMD replacement will allow users to gaze
into each other’s eyes while wearing a VR HMD. We see that the
occlusion of the face by the XR HMD is currently one of the main
obstacles from a user experience point of view (within VR

Frontiers in Signal Processing frontiersin.org16

Gunkel et al. 10.3389/frsip.2023.1139897

https://www.frontiersin.org/journals/signal-processing
https://www.frontiersin.org
https://doi.org/10.3389/frsip.2023.1139897

experiences). Further, as many of the processing blocks are still
resource intensive (i.e., the rendering), we plan to add a network
layer into the processing chain, and thus allow processing and
rendering tasks to move freely between central processing units
(in the edge and cloud) and the user’s device. We consider remote
rendering and remote processing particularly important for the
next-generation of AR glasses (which will have a small form
factor and thus limited battery and resource power). Finally, the
modular capture application offers a basis for more user experience
testing. Therefore, integration into more XR communication use
cases is important to gain a broad understanding of technical and
non-technical limitations and ultimately to have a reliable QoS-to-
QoE mapping of 3D user capture, transmission, and rendering.

Data availability statement

The datasets presented in this article are not readily available
because all data was handled conform to GDPR and is only
presented as results of the analysis in this paper. Requests to
access the datasets should be directed to simon.gunkel@tno.nl.

Ethics statement

The studies involving human participants were reviewed and
approved by TNO internal ethics board. The patients/participants
provided their written informed consent to participate in this study.
Written informed consent was obtained from the individual(s) for
the publication of any potentially identifiable images or data
included in this article.

Author contributions

SG contributed to the conception and design of the technical
aspects, technical evaluation, analysis, leading the research and

paper writing. SD-S contributed to the overall execution of the
research. HS contributed to the conception and design of the user
studies, as well as the statistical analysis. ON contributed to the
shaping of the research questions. All authors contributed to
manuscript writing and revision.

Acknowledgments

In the context of this article, we would like to acknowledge the
technical contributions made by our project partner Connec2 B.V.
and the utilization of their communication platform. The authors
especially thank Tim Moelard and Stefan Leushuis for their
technical help and contributions to the system’s operation.
Furthermore, we thank Simardep Singh and Deborah van
Sinttruije for setting up the AR and VR user studies, as well as
Tessa Klunder, Marina Alvarez, and Veronne Reinders for their
participation in this research. Also, we thank Dr. Evangelos Alexiou
for his feedback and spellchecking shaping the final version of the
paper. Finally, we thank all the participants in our user study for
their time and valuable feedback.

Conflict of interest

The authors declare that the research was conducted in the
absence of any commercial or financial relationships that could be
construed as a potential conflict of interest.

Publisher’s note

All claims expressed in this article are solely those of the authors
and do not necessarily represent those of their affiliated organizations,
or those of the publisher, the editors and the reviewers. Any product
that may be evaluated in this article, or claim that may be made by its
manufacturer, is not guaranteed or endorsed by the publisher.

References

Alexiadis, D. S., Chatzitofis, A., Zioulis, N., Zoidi, O., Louizis, G., Zarpalas, D., et al.
(2017). An integrated platform for live 3d human reconstruction and motion
capturing. IEEE Trans. Circuits Syst. Video Technol. 27, 798–813. doi:10.1109/
tcsvt.2016.2576922

Alvarez, M., Toet, A., and Dijkstra-Soudarissanane, S. (2022). “Virtual visits: Ux
evaluation of a photorealistic ar-based video communication tool,” in Proceedings of
the 1st Workshop on Interactive eXtended Reality, 69–75.

Aron, A., Aron, E. N., and Smollan, D. (1992). Inclusion of other in the self scale and
the structure of interpersonal closeness. J. personality Soc. Psychol. 63, 596–612. doi:10.
1037/0022-3514.63.4.596

Aubert, B. A., and Kelsey, B. L. (2003). Further understanding of trust and
performance in virtual teams. Small group Res. 34, 575–618. doi:10.1177/
1046496403256011

Beerends, J., and Neumann, N. (2020). “Conversational quality assessment of
advanced video conferencing systems,” in Presented at the 4th International
Conference of the Acoustical Society of Nigeria.

Biocca, F., Harms, C., and Gregg, J. (2001). “The networked minds measure of social
presence: Pilot test of the factor structure and concurrent validity,” in 4th annual
international workshop on presence, Philadelphia, PA, 1–9.

Boyle, E. A., Anderson, A. H., and Newlands, A. (1994). The effects of visibility on
dialogue and performance in a cooperative problem solving task. Lang. speech 37, 1–20.
doi:10.1177/002383099403700101

Brooke, J. (1996). “Sus-a quick and dirty usability scale,” in Usability Eval. industry.
Editor P. W. Jordan, B. Thomas, B. A. Weerdmeester, and I. L. McClelland, 189–194.
CRC Press: London. doi:10.1201/9781498710411

Carballeira, P., Carmona, C., Díaz, C., Berjon, D., Corregidor, D., Cabrera, J., et al.
(2021). Fvv live: A real-time free-viewpoint video system with consumer electronics
hardware. IEEE Trans. Multimedia 24, 2378–2391. doi:10.1109/tmm.2021.3079711

Cascio, W. F. (2000). Managing a virtual workplace. Acad. Manag. Perspect. 14,
81–90. doi:10.5465/ame.2000.4468068

Cho, S., Kim, S., Lee, J., Ahn, J., and Han, J. (2020). “Effects of volumetric capture
avatars on social presence in immersive virtual environments,” in 2020 IEEE
Conference on Virtual Reality and 3D User Interfaces (New York, NY: VR), 26–34.

Coelho, C., Tichon, J., Hine, T. J., Wallis, G., and Riva, G. (2006). “Media presence and
inner presence: The sense of presence in virtual reality technologies,” in From
communication to presence: Cognition, emotions and culture towards the ultimate
communicative experience (Amsterdam: IOS Press), 25–45.

Collet, A., Chuang, M., Sweeney, P., Gillett, D., Evseev, D., Calabrese, D., et al. (2015).
High-quality streamable free-viewpoint video. ACM Trans. Graph. 34, 1–13. doi:10.
1145/2766945

De Simone, F., Li, J., Debarba, H. G., El Ali, A., Gunkel, S. N., and Cesar, P. (2019).
Watching videos together in social virtual reality: An experimental study on user’s qoe.
In 2019 IEEE Conference on Virtual Reality and 3D User Interfaces (VRIEEE),
890–891.

Frontiers in Signal Processing frontiersin.org17

Gunkel et al. 10.3389/frsip.2023.1139897

mailto:simon.gunkel@tno.nl
https://doi.org/10.1109/tcsvt.2016.2576922
https://doi.org/10.1109/tcsvt.2016.2576922
https://doi.org/10.1037/0022-3514.63.4.596
https://doi.org/10.1037/0022-3514.63.4.596
https://doi.org/10.1177/1046496403256011
https://doi.org/10.1177/1046496403256011
https://doi.org/10.1177/002383099403700101
https://doi.org/10.1201/9781498710411
https://doi.org/10.1109/tmm.2021.3079711
https://doi.org/10.5465/ame.2000.4468068
https://doi.org/10.1145/2766945
https://doi.org/10.1145/2766945
https://www.frontiersin.org/journals/signal-processing
https://www.frontiersin.org
https://doi.org/10.3389/frsip.2023.1139897

Denstadli, J. M., Julsrud, T. E., and Hjorthol, R. J. (2012). Videoconferencing as a
mode of communication: A comparative study of the use of videoconferencing and
face-to-face meetings. J. Bus. Tech. Commun. 26, 65–91. doi:10.1177/
1050651911421125

Dijkstra-Soudarissanane, S., Assal, K. E., Gunkel, S., Haar, F. t., Hindriks, R.,
Kleinrouweler, J. W., et al. (2019). “Multi-sensor capture and network processing
for virtual reality conferencing,” in Proceedings of the 10th ACM Multimedia Systems
Conference, 316–319.

Dijkstra-Soudarissanane, S., Gunkel, S. N., and Reinders, V. (2022). “Virtual visits:
Life-size immersive communication,” in Proceedings of the 13th ACM Multimedia
Systems Conference, 310–314.

Dijkstra-Soudarissanane, S., Klunder, T., Brandt, A., and Niamut, O. (2021).
“Towards xr communication for visiting elderly at nursing homes,” in ACM
International Conference on Interactive Media Experiences, 319–321.

Ekong, S., Borst, C. W., Woodworth, J., and Chambers, T. L. (2016). “Teacher-student
vr telepresence with networked depth camera mesh and heterogeneous displays,” in
Advances in Visual Computing: 12th International Symposium, ISVC 2016, Las Vegas,
NV, USA, December 12-14, 2016 (Springer), 246–258.12

Elvezio, C., Sukan, M., Oda, O., Feiner, S., and Tversky, B. (2017). “Remote
collaboration in ar and vr using virtual replicas,” in ACM SIGGRAPH 2017 VR
village (New York, NY, USA: Association for Computing Machinery). SIGGRAPH
’17. doi:10.1145/3089269.3089281

Fehn, C. (2004). Depth-image-based rendering (dibr), compression, and transmission
for a new approach on 3d-tv. Stereosc. displays virtual Real. Syst. XI (SPIE) 5291,
93–104.

Garau, M., Slater, M., Bee, S., and Sasse, M. A. (2001). “The impact of eye gaze on
communication using humanoid avatars,” in Proceedings of the SIGCHI conference on
Human factors in computing systems, 309–316.

Grier, R., Thiruvengada, H., Ellis, S., Havig, P., Hale, K., and Hollands, J. (2012).
“Augmented reality–implications toward virtual reality, human perception and
performance,” in Proceedings of the Human Factors and Ergonomics Society
Annual Meeting (Los Angeles, CA): SAGE Publications Sage CA), 1351–1355.

Gunkel, S. N., Dohmen, M. D., Stokkinq, H., and Niamut, O. (2019). 360-degree
photo-realistic vr conferencing. In 2019 IEEE Conference on Virtual Reality and 3D
User Interfaces (VRIEEE), 946–947.

Gunkel, S. N., Hindriks, R., Assal, K. M. E., Stokking, H. M., Dijkstra-Soudarissanane,
S., Haar, F. t., et al. (2021). “Vrcomm: An end-to-end web system for real-time
photorealistic social vr communication,” in Proceedings of the 12th ACM
Multimedia Systems Conference, 65–79.

Gunkel, S. N., Stokking, H., De Koninck, T., and Niamut, O. (2019). “Everyday
photo-realistic social vr: Communicate and collaborate with an enhanced co-
presence and immersion,” in Technical Papers International Broadcasting
Convention (IBC).

Gunkel, S. N., Stokking, H. M., Prins, M. J., van der Stap, N., Haar, F. B. t., and
Niamut, O. A. (2018). “Virtual reality conferencing: Multi-user immersive vr
experiences on the web,” in Proceedings of the 9th ACM Multimedia Systems
Conference, 498–501.

Jansen, J. (2014). “Videolat,” in Proceedings of the ACM International Conference on
Multimedia - MM. doi:10.1145/2647868.2654891

Jennett, C., Cox, A. L., Cairns, P., Dhoparee, S., Epps, A., Tijs, T., et al. (2008).
Measuring and defining the experience of immersion in games. Int. J. human-computer
Stud. 66, 641–661. doi:10.1016/j.ijhcs.2008.04.004

Kurillo, G., Hemingway, E., Cheng, M.-L., and Cheng, L. (2022). Evaluating the
accuracy of the azure kinect and kinect v2. Sensors 22, 2469. doi:10.3390/
s22072469

Langa, S. F., Climent, M. M., Cernigliaro, G., and Rivera, D. R. (2021). Toward hyper-
realistic and interactive social vr experiences in live tv scenarios. IEEE Trans. Broadcast.
68, 13–32. doi:10.1109/tbc.2021.3123499

Liu, Y., Beck, S., Wang, R., Li, J., Xu, H., Yao, S., et al. (2015). “Hybrid lossless-lossy
compression for real-time depth-sensor streams in 3d telepresence applications,” in
Pacific Rim Conference on Multimedia, 442–452. doi:10.1007/978-3-319-24075-
6_43

Lombard, M., and Ditton, T. (1997). At the heart of it all: The concept of presence.
J. computer-mediated Commun. 3, 1. doi:10.1111/j.1083-6101.1997.tb00072.x

Mekuria, R., Blom, K., and Cesar, P. (2017). “Design, implementation, and
evaluation of a point cloud codec for tele-immersive video,” in IEEE Transactions
on Circuits and Systems for Video Technology, 828–842. doi:10.1109/tcsvt.2016.
254303927

Montagud, M., De Rus, J. A., Fayos-Jordan, R., Garcia-Pineda, M., and Segura-Garcia,
J. (2020). “Open-source software tools for measuring resources consumption and dash
metrics,” in Proceedings of the 11th ACM Multimedia Systems Conference (MMSys
’20). New York, NY: Association for Computing Machinery, 261–266. doi:10.1145/
3339825.3394931

Ndjiki-Nya, P., Koppel, M., Doshkov, D., Lakshman, H., Merkle, P., Muller, K., et al.
(2011). Depth image-based rendering with advanced texture synthesis for 3-d video.
IEEE Trans. Multimedia 13, 453–465. doi:10.1109/tmm.2011.2128862

Nesher Shoshan, H., andWehrt, W. (2022). Understanding “zoom fatigue”: A mixed-
method approach. Appl. Psychol. 71, 827–852. doi:10.1111/apps.12360

Nowak, K. L., and Biocca, F. (2003). The effect of the agency and
anthropomorphism on users’ sense of telepresence, copresence, and social
presence in virtual environments. Presence Teleoperators Virtual Environ. 12,
481–494. doi:10.1162/105474603322761289

op den Akker, R., Hofs, D., Hondorp, H., op den Akker, H., Zwiers, J., and
Nijholt, A. (2009). “Supporting engagement and floor control in hybrid
meetings,” in Cross-modal analysis of speech, gestures, gaze and facial
expressions (Springer), 276–290.

Orts-Escolano, S., Rhemann, C., Fanello, S., Chang, W., Kowdle, A., Degtyarev, Y.,
et al. (2016). “Holoportation: Virtual 3d teleportation in real-time,” in Proceedings of
the 29th Annual Symposium on User Interface Software and Technology, 741–754.

Park, J., Chou, P. A., and Hwang, J. (2019). Rate-utility optimized streaming of
volumetric media for augmented reality. IEEE J. Emerg. Sel. Top. Circuits Syst. 9,
149–162. doi:10.1109/jetcas.2019.2898622

Pece, F., Kautz, J., and Weyrich, T. (2011). Adapting standard video codecs for depth
streaming. EGVE/EuroVR., 59–66.

Pinsonneault, A., and Boisvert, M. (2001). “The impacts of telecommuting on
organizations and individuals: A review of the literature,” in Telecommuting and
virtual offices: Issues and opportunities (IGI Global), 163–185.

Priest, H. A., Stagl, K. C., Klein, C., and Salas, E. (2006). “Virtual teams: Creating
context for distributed teamwork,” in Creating high-tech teams: Practical guidance on
work performance and technology. Editors C. Bowers, E. Salas, and F. Jentsch
(American Psychological Association), 185–212. doi:10.1037/11263-009

Prins, M. J., Gunkel, S. N., Stokking, H. M., and Niamut, O. A. (2018). Togethervr: A
framework for photorealistic shared media experiences in 360-degree vr. SMPTE
Motion Imaging J. 127, 39–44. doi:10.5594/jmi.2018.2840618

Rasmuson, S., Sintorn, E., and Assarsson, U. (2021). A low-cost, practical acquisition
and rendering pipeline for real-time free-viewpoint video communication. Vis. Comput.
37, 553–565. doi:10.1007/s00371-020-01823-7

Reimat, I., Mei, Y., Alexiou, E., Jansen, J., Li, J., Subramanyam, S., et al. (2022).
“Mediascape xr: A cultural heritage experience in social vr,” in Proceedings of the 30th
ACM International Conference on Multimedia, 6955–6957.

Roberts, D., Duckworth, T., Moore, C., Wolff, R., and O’Hare, J. (2009). “Comparing
the end to end latency of an immersive collaborative environment and a video
conference,” in 2009 13th IEEE/ACM International Symposium on Distributed
Simulation and Real Time Applications (IEEE), 89–94.

Rutten, J. E., Backhaus, R., Ph Hamers, J., and Verbeek, H. (2022).Working in a Dutch
nursing home during the Covid-19 pandemic: Experiences and lessons learned. Nurs.
open 9, 2710–2719. doi:10.1002/nop2.970

Schmitt, M., Gunkel, S., Cesar, P., and Bulterman, D. (2014). Asymmetric delay in
video-mediated group discussions. 2014 sixth international workshop on quality of
multimedia experience. QoMEX IEEE, 19–24.

Schreer, O., Feldmann, I., Renault, S., Zepp, M., Worchel, M., Eisert, P., et al. (2019).
“Capture and 3d video processing of volumetric video,” in 2019 IEEE International
Conference on Image Processing (ICIP), 4310–4314.

Schrepp, M. (2015). “User experience questionnaire handbook,” in All you need to
know to apply the UEQ successfully in your project.

Schwarz, S., Preda, M., Baroncini, V., Budagavi, M., Cesar, P., Chou, P. A., et al.
(2019). Emerging mpeg standards for point cloud compression. IEEE J. Emerg. Sel.
Top. Circuits Syst. 9, 133–148. doi:10.1109/JETCAS.2018.2885981

Sellen, A. J. (1995). Remote conversations: The effects of mediating talk with
technology. Human-computer Interact. 10, 401–444. doi:10.1207/s15327051hci1004_2

Singh, S., Dijkstra-Soudarissanane, S., and Gunkel, S. (2022). “Engagement and
quality of experience in remote business meetings: A social vr study,” in
Proceedings of the 1st Workshop on Interactive eXtended Reality, 77–82.

Singh, S. (2022). Towards guidelines for facilitating engaging social VR business
meetings. Master’s thesis

Stanney, K. M., Nye, H., Haddad, S., Hale, K. S., Padron, C. K., and Cohn, J. V. (2021).
Extended reality (xr) environments. Handb. Hum. factors ergonomics, 782–815. doi:10.
1002/9781119636113.ch30

Straus, S. G. (1997). Technology, group process, and group outcomes: Testing the
connections in computer-mediated and face-to-face groups. Human–Computer
Interact. 12, 227–266. doi:10.1207/s15327051hci1203_1

Subramanyam, S., Li, J., Viola, I., and Cesar, P. (2020). “Comparing the quality of
highly realistic digital humans in 3dof and 6dof: A volumetric video case study,” in
2020 IEEE Conference on Virtual Reality and 3D User Interfaces (Atlanta, GA: VR),
127–136. doi:10.1109/VR46266.2020.00031

Tadic, V., Toth, A., Vizvari, Z., Klincsik, M., Sari, Z., Sarcevic, P., et al. (2022).
Perspectives of realsense and zed depth sensors for robotic vision applications.
Machines 10, 183. doi:10.3390/machines10030183

Thompson, L. F., and Coovert, M. D. (2006). “Understanding and developing virtual
computer-supported cooperative work teams,” in Creating high-tech teams: Practical

Frontiers in Signal Processing frontiersin.org18

Gunkel et al. 10.3389/frsip.2023.1139897

https://doi.org/10.1177/1050651911421125
https://doi.org/10.1177/1050651911421125
https://doi.org/10.1145/3089269.3089281
https://doi.org/10.1145/2647868.2654891
https://doi.org/10.1016/j.ijhcs.2008.04.004
https://doi.org/10.3390/s22072469
https://doi.org/10.3390/s22072469
https://doi.org/10.1109/tbc.2021.3123499
https://doi.org/10.1007/978-3-319-24075-6_43
https://doi.org/10.1007/978-3-319-24075-6_43
https://doi.org/10.1111/j.1083-6101.1997.tb00072.x
https://doi.org/10.1109/tcsvt.2016.2543039
https://doi.org/10.1109/tcsvt.2016.2543039
https://doi.org/10.1145/3339825.3394931
https://doi.org/10.1145/3339825.3394931
https://doi.org/10.1109/tmm.2011.2128862
https://doi.org/10.1111/apps.12360
https://doi.org/10.1162/105474603322761289
https://doi.org/10.1109/jetcas.2019.2898622
https://doi.org/10.1037/11263-009
https://doi.org/10.5594/jmi.2018.2840618
https://doi.org/10.1007/s00371-020-01823-7
https://doi.org/10.1002/nop2.970
https://doi.org/10.1109/JETCAS.2018.2885981
https://doi.org/10.1207/s15327051hci1004_2
https://doi.org/10.1002/9781119636113.ch30
https://doi.org/10.1002/9781119636113.ch30
https://doi.org/10.1207/s15327051hci1203_1
https://doi.org/10.1109/VR46266.2020.00031
https://doi.org/10.3390/machines10030183
https://www.frontiersin.org/journals/signal-processing
https://www.frontiersin.org
https://doi.org/10.3389/frsip.2023.1139897

guidance on work performance and technology. Editors C. Bowers, E. Salas, and
F. Jentsch (American Psychological Association), 213–241. doi:10.1037/11263-010

Toet, A., Mioch, T., Gunkel, S. N., Niamut, O., and van Erp, J. B. (2022). Towards a
multiscale qoe assessment of mediated social communication. Qual. User Exp. 7, 4–22.
doi:10.1007/s41233-022-00051-2

Toet, A., Mioch, T., Gunkel, S. N., Niamut, O., and van Erp, J. B. (2021). “Holistic
framework for quality assessment of mediated social communication,” in Virtual Reality
and Augmented Reality. EuroVR 2020, Valencia, Spain. doi:10.1007/978-3-030-62655-
6_13

Wiebe, E. N., Lamb, A., Hardy, M., and Sharek, D. (2014). Measuring engagement in
video game-based environments: Investigation of the user engagement scale. Comput.
Hum. Behav. 32, 123–132. doi:10.1016/j.chb.2013.12.001

Wilson, J. M., Straus, S. G., and McEvily, B. (2006). All in due time: The development
of trust in computer-mediated and face-to-face teams. Organ. Behav. Hum. Decis.
Process. 99, 16–33. doi:10.1016/j.obhdp.2005.08.001

Witmer, B. G., and Singer, M. J. (1998). Measuring presence in virtual environments:
A presence questionnaire. Presence 7, 225–240. doi:10.1162/105474698565686

Yu, C., Xu, Y., Liu, B., and Liu, Y. (2014). “Can you see me now?” a measurement
study of mobile video calls,” in IEEE INFOCOM 2014-IEEE Conference on Computer
Communications (IEEE), 1456–1464.

Zioulis, N., Alexiadis, D., Doumanoglou, A., Louizis, G., Apostolakis, K., Zarpalas, D.,
et al. (2016). “3d tele-immersion platform for interactive immersive experiences
between remote users,” in 2016 IEEE International Conference on Image Processing
(ICIP), 365–369.

Frontiers in Signal Processing frontiersin.org19

Gunkel et al. 10.3389/frsip.2023.1139897

https://doi.org/10.1037/11263-010
https://doi.org/10.1007/s41233-022-00051-2
https://doi.org/10.1007/978-3-030-62655-6_13
https://doi.org/10.1007/978-3-030-62655-6_13
https://doi.org/10.1016/j.chb.2013.12.001
https://doi.org/10.1016/j.obhdp.2005.08.001
https://doi.org/10.1162/105474698565686
https://www.frontiersin.org/journals/signal-processing
https://www.frontiersin.org
https://doi.org/10.3389/frsip.2023.1139897

	From 2D to 3D video conferencing: modular RGB-D capture and reconstruction for interactive natural user representations in ...
	1 Introduction and methodology
	2 Related work
	3 Materials and method–RGBD-based 3D representations
	3.1 Design considerations
	3.1.1 Capture latency (H1.1)
	3.1.2 Capture performance (H1.2)
	3.1.3 Render interoperability (H2.1)
	3.1.4 Render optimizations (H2.2)

	3.2 Modular capture and processing
	3.2.1 Camera frame grabber
	3.2.1.1 Kinect azure (K4A)5
	3.2.1.2 ZED 2i6
	3.2.2 Foreground-background extraction (FGBG)
	3.2.3 Other image enhancements
	3.2.3.1 ZED hole filling
	3.2.3.2 Kinect edge smoothing
	3.2.4 Depth conversion
	3.2.4.1 GrayAVG
	3.2.4.2 Intel HSV
	3.2.5 Output

	3.3 Transmission
	3.4 RGBD 3D rendering
	3.4.1 Depth based rendering
	3.4.2 Edge smoothing
	3.4.3 Point size

	4 Results and evaluation
	4.1 Technical evaluation
	4.1.1 Capture performance
	4.1.2 Rendering performance

	4.2 XR application and use cases evaluation
	4.2.1 Virtual reality for business meetings
	4.2.1.1 VR user study setup
	4.2.1.2 Evaluation
	4.2.2 Augmented reality for personal communication
	4.2.2.1 AR user study setup
	4.2.2.2 Evaluation

	5 Discussion
	6 Conclusion and future work
	6.1 Future work

	Data availability statement
	Ethics statement
	Author contributions
	Acknowledgments
	Conflict of interest
	Publisher’s note
	References

