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No-reference video quality assessment (NR-VQA) for user generated content
(UGC) is crucial for understanding and improving visual experience. Unlike video
recognition tasks, VQA tasks are sensitive to changes in input resolution. Since
large amounts of UGC videos nowadays are 720p or above, the fixed and relatively
small input used in conventional NR-VQA methods results in missing high-
frequency details for many videos. In this paper, we propose a novel
Transformer-based NR-VQA framework that preserves the high-resolution
quality information. With the multi-resolution input representation and a novel
multi-resolution patch sampling mechanism, our method enables a
comprehensive view of both the global video composition and local high-
resolution details. The proposed approach can effectively aggregate quality
information across different granularities in spatial and temporal dimensions,
making the model robust to input resolution variations. Our method achieves
state-of-the-art performance on large-scale UGC VQA datasets LSVQ and LSVQ-
1080p, and on KoNViD-1k and LIVE-VQC without fine-tuning.
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1 Introduction

Video quality assessment (VQA) has been an important research topic in the past years
for understanding and improving perceptual quality of videos. Conventional VQA methods
mainly focus on full reference (FR) scenarios where distorted videos are compared against
their corresponding pristine reference. In recent years, there has been an explosion of user
generated content (UGC) videos on social media platforms such as Facebook, Instagram,
YouTube, and TikTok. For most UGC videos, the high-quality pristine reference is
inaccessible. This results in a growing demand for no-reference (NR) VQA models,
which can be used for ranking, recommending and optimizing UGC videos.

Many NR-VQA models (Li et al., 2019; You and Korhonen, 2019; Tu et al., 2021; Wang
et al., 2021; Ying et al., 2021) have achieved significant success by leveraging the power of
deep-learning. Most existing deep-learning approaches use convolutional neural networks
(CNNs) to extract frozen frame-level features and then aggregate them in the temporal
domain to predict the video quality. Since frozen frame-level features are not optimized for
capturing spatial-temporal distortions, this could be insufficient to catch diverse spatial or
temporal impairments in UGC videos. Moreover, predicting UGC video quality often
involves long-range spatial-temporal dependencies, such as fast-moving objects or rapid
zoom-in views. Since convolutional kernels in CNNs are specifically designed for capturing
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short-range spatial-temporal information, they cannot capture
dependencies that extend beyond the receptive field (Bertasius
et al., 2021). This limits CNN models’ ability to model complex
spatial-temporal dependencies in UGC VQA tasks, and therefore it
may not be the best choice to effectively aggregate complex quality
information in diverse UGC videos.

Recently, architectures based on Transformer (Vaswani et al.,
2017) have been proven to be successful for various vision tasks
(Carion et al., 2020; Arnab et al., 2021; Chen et al., 2021; Dosovitskiy
et al., 2021), including image quality assessment (Ke et al., 2021).
Unlike CNN models that are constrained by limited receptive fields,
Transformers utilize the multi-head self-attention operation which
attends over all elements in the input sequence. As a result,
Transformers can capture both local and global long-range
dependencies by directly comparing video quality features at all
space-time locations. This inspires us to apply Transformer on VQA
in order to effectively model the complex space-time distortions in
UGC videos.

Despite the benefits of Transformers, directly applying
Transformers on VQA is challenging because VQA tasks are
resolution-sensitive. Video recognition models like ViViT (Arnab
et al., 2021) use fixed and relatively small input size, e.g., 224 × 224.
This is problematic for VQA since UGC videos with resolution
smaller than 224 are very rare nowadays [less than 1% in LSVQ
(Ying et al., 2021)]. Such downsampling leads to missing high-
frequency details for many videos. As shown in Figure 1, some
visible artifacts in the high resolution video are not obvious when the
video is downsampled. Human perceived video quality is affected by
both the global video composition, e.g., content, video structure and
smoothness and local details, e.g., texture and distortion artifacts.
But it is hard to capture both global and local quality information
when using fixed resolution inputs. Similarly for image quality
assessment, Ke et al. (2021) showed the benefit of applying the
Transformer architecture on the image at the original resolution.
Although processing the original high-resolution input is affordable
for a single image, it is computationally infeasible for videos, due to
Transformer’s quadratic memory and time complexity.

To enable high-resolution views in video Transformers for a
more effective VQA model, we propose to leverage the
complementary nature of low and high resolution frames. We
use the low-resolution frames for a complete global composition
view, and sample spatially aligned patches from the high-resolution
frames to complement the high-frequency local details. The
proposed Multi-REsolution Transformer (MRET) can therefore
efficiently extract and encode the multi-scale quality information
from the input video. This enables more effective aggregation of
both global composition and local details of the video to better
predict the perceptual video quality.

As illustrated in Figure 2, we first group the neighboring frames
to build a multi-resolution representation composed of lower-
resolution frames and higher-resolution frames. We then
introduce a novel and effective multi-resolution patch sampling
mechanism to sample spatially aligned patches from the multi-
resolution frame input. These multi-resolution patches capture both
the global view and local details at the same location, and they serve
as the multi-resolution input for the video Transformer. In addition
to preserving high-resolution details, our proposed MRET model
also aligns the input videos at different resolutions, making the
model more robust to resolution variations. After the multi-
resolution tokens are extracted, a factorized spatial and temporal
encoder is employed to efficiently process the large number of
spatial-temporal tokens.

Themajor contributions of this paper are summarized into three
folds.

• We propose a multi-resolution Transformer for video quality
assessment (MRET), which makes it possible to preserve high-
resolution quality information for UGC VQA.

FIGURE 1
Video quality is affected by both global video composition and
local details. Although downsampled video frames provide the global
view and are easier to process for deep-learning models, some
distortions visible on the original high resolution videos may
disappear when resized to a lower resolution.

FIGURE 2
The proposed multi-resolution Transformer (MRET) for VQA. To
capture both global composition and local details of video quality, we
build a multi-scale video representation with patches sampled from
proportionally resized frames with different resolutions.
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• We propose a novel multi-resolution patch sampling
mechanism, enabling the Transformer to efficiently process
both global composition information and local high-
resolution details.

• We apply MRET on large-scale UGC VQA datasets. It
outperforms the previous state-of-the-art methods on
LSVQ (Ying et al., 2021) and LSVQ-1080p (Ying et al.,
2021). It also achieves state-of-the-art performance on
KoNViD-1k (Hosu et al., 2017) and LIVE-VQC (Sinno and
Bovik, 2018) without fine-tuning, demonstrating its
robustness and generalization capability.

2 Related work

Video Quality Assessment: Video quality assessment aims to
quantify video quality. FR-VQA methods measure quality changes
from pristine videos, and NR-VQA methods measure video quality
without a pristine reference. For UGC videos that lack high-quality
pristine reference, NR-VQA metrics are more applicable.
Conventional NR metrics (Saad et al., 2014; Mittal et al., 2015; Li
et al., 2016; Korhonen, 2019; Sinno and Bovik, 2019; Dendi and
Channappayya, 2020; Tu et al., 2021) utilize distortion-specific
features and low-level features like natural scene statistics (NSS).
These feature-based NR-VQAmethods mainly rely on hand-crafted
statistical features summarized from limited data and are harder to
generalize to diversified UGC videos. In the past few years, CNN-
based NR metrics (Li et al., 2019; You and Korhonen, 2019; Wang
et al., 2021; Ying et al., 2021) achieve great success in VQA using
features extracted with CNNs. The features are then aggregated
temporally with pooling layers or recurrent units like LSTM. The
PVQ (Ying et al., 2021) method learns to model the relationship
between local video patches and the global original UGC video. It
shows that exploiting both global and local information can be
beneficial for VQA. Recent CNN-Transformer hybrid methods
(Jiang et al., 2021; Li et al., 2021; Tan et al., 2021; You, 2021)
show the benefit of using Transformer for temporal aggregation on
CNN-based frame-level features. Since all these methods use CNN
for spatial feature extraction, they suffer from CNN’s limitation, i.e.,
a relatively small spatial receptive field. Moreover, these frame-level
features are usually extracted from either fixed size inputs or a frozen
backbone without VQA optimization. Our method is a pure
Transformer-based VQA model and can be optimized end-to-
end. Unlike models that use fixed small input, our proposed
MRET model enables high-resolution inputs. The proposed
multi-resolution input representation allows the model to have a
full spatial receptive field across multiple scales.

Vision Transformers: The Transformer (Vaswani et al., 2017)
architecture was first proposed for NLP tasks and has recently been
adopted for various computer vision tasks (Carion et al., 2020;
Arnab et al., 2021; Chen et al., 2021; Dosovitskiy et al., 2021; Ke et al.,
2021). The Vision Transformer (ViT) (Dosovitskiy et al., 2021) first
proposes to classify an image by treating it as a sequence of patches.
This seminal work has inspired subsequent research to adopt
Transformer-based architectures for other vision tasks. For video
recognition, ViViT (Arnab et al., 2021) examines four designs of
spatial and temporal attention for the pretrained ViT model.
TimeSformer (Bertasius et al., 2021) studies five different

space-time attention methods and shows that a factorized space-
time attention provides better speed-accuracy tradeoff. Video Swin
Transformer (Liu et al., 2022) extends the local attention
computation of Swin Transformer (Liu et al., 2021) to temporal
dimension, and it achieves state-of-the-art accuracy on a broad
range of video recognition benchmarks such as Kinetics-400 (Kay
et al., 2017) and Kinetics-600 (Kay et al., 2017). Since video
recognition tasks are less sensitive to input resolution than VQA,
most of the video Transformers proposed for video recognition tasks
use relatively small resolution and fixed square input, e.g., 224 × 224.
The objective for the VQA task is sensitive to both global
composition and local details, and it motivates us to enable video
Transformers to process frames in a multi-resolution manner,
capturing both global and local quality information.

3 Multi-resolution transformer for
video quality assessment

3.1 Overall architecture

Understanding the quality of UGC videos is hard because they
are captured under very different conditions like unstable cameras,
imperfect camera lens, varying resolutions and frame rates, different
algorithms and parameters for processing and compression. As a
result, UGC videos usually contain a mixture of spatial and temporal
distortions. Moreover, the way viewers perceive the content and
distortions also impact the perceptual quality of the video.
Sometimes transient distortions such as sudden glitches and
defocusing can significantly impact the overall perceived quality,
which makes the problem even more complicated. As a result, both
global video composition and local details are important for
accessing the quality of UGC videos.

To capture video quality at different granularities, we propose a
multi-resolution Transformer (MRET) for VQA which embeds
video clips as multi-resolution patch tokens as shown in
Figure 3. MRET is comprised of two major parts, namely, 1) a
multi-resolution video embedding module (Section 3.2), and 2) a
space-time factorized Transformer encoding module (Section 3.3).

The multi-resolution video embedding module aims to encode
the multi-scale quality information in the video, capturing both
global video composition from lower resolution frames, and local
details from higher resolution frames. The space-time factorized
Transformer encoding module aggregates the spatial and temporal
quality from the multi-scale embedding input.

3.2 Multi-resolution video representation

Since UGC videos are highly diverse, we need to design an
effective multi-resolution video representation for capturing the
complex global and local quality information. To achieve that, we
first transform the input video into groups of multi-resolution
frames. As shown in Figure 3, the input frames are divided into
groups of N. N is the number of scales in the multi-resolution input.
We then resize the N frames into a pyramid of low-resolution and
high-resolution frames. We preserve the aspect ratios of the frames
during resizing, and we control the shorter-side length for each
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frame (Figure 4). Assuming the shorter-side length for the largest
resolution is L, the resulting pyramid of frames will have shorter-side
length L, . . . , 2LN,

L
N accordingly. As a result, we will have a pyramid of

N frames, scaling from 1× to 1
N × resolution.

After obtaining the multi-resolution frames, we need a way to
effectively and efficiently encode them as input tokens to the
Transformer. Although low-resolution frames can be processed
efficiently, processing the high-resolution frames in its entirety can
be computationally expensive. For the higher-resolution frames, we
propose to sample patches instead to save computation. Intuitively, the
lower-resolution frames provide global views of the video composition,
while the higher-resolution ones provide complementary local details.
We want a patch sampling method that can best utilize the
complementary nature of these multi-scale views. To achieve that,
we propose to sample spatially aligned grids of patches from the
grouped multi-resolution frames. In short, we use the lowest
resolution frame for a complete global view, and we sample local
patches at the same location from the higher-resolution frames to

provide the multi-scale local details. Since the patches are spatially
aligned, the Transformer has access to both the global view and local
details at the same location. This allows it to better utilize the
complementary multi-scale information for learning video quality.

Figures 4, 5 demonstrate how we sample spatially aligned grids
of patches. Firstly, we choose a frame center, as shown by the red
triangle in Figure 4. During training, the frame center is chosen
randomly along the middle line for the longer-length side. For
inference, we use the center of the video input. After aligning the
frames, we then sample center-aligned patches from the frames. P is
the patch size. For the smallest frame, we continuously sample the
grid of patches to capture the complete global view. For larger
frames, we sample linearly spaced-out patches to provide multi-scale
local details. The center for the patches remain aligned at the same
location, as shown by the yellow triangles in Figure 4. For the ith
frame (i = 1, . . ., N), the distance between patches can be calculated
as (N − i) × P. Since the patches are center-aligned, they form a
“tube” of multi-resolution patches for the same location. As a result,
those multi-resolution patches provide a gradual “zoom-out” view,
capturing both the local details and global view at the same location.

As shown in Figure 5, we then linearly project each tube of multi-
resolution patch xi to a 1D token zi ∈ Rd using learned matrix E where
d is the dimension of the Transformer input tokens. This can be
implemented using a 3D convolution with kernel size N × P × P. Each
embedded token containsmulti-resolution patches at the same location,
allowing the model to utilize both global and local spatial quality
information. Moreover, the multi-scale patches also fuse local spatio-
temporal information together during tokenization. Therefore, it
provides a comprehensive representation for the input video.

3.3 Factorized spatial temporal transformer

As shown in Figure 3, after extracting the multi-resolution frame
embedding, we apply a factorization of spatial and temporal
Transformer encoders in series to efficiently encode the

FIGURE 3
Model overview for MRET. Neighboring video frames are grouped and rescaled into a pyramid of low-resolution and high-resolution frames.
Patches are sampled from the multi-resolution frames and encoded as the Transformer input tokens. The spatial Transformer encoder takes the multi-
resolution tokens to produce a representation per frame group at its time step. The temporal Transformer encoder then aggregates across time steps. To
predict the video quality score, we follow a common strategy in Transformers to prepend a “classification token” (zcls and hcls) to the sequence to
represent the whole sequence input and to use its output as the final representation.

FIGURE 4
Multi-resolution patch sampling. We first rescale the N frames to
L, . . . , 2LN ,

L
N for the shorter side and uniformly sample grid of patches

from the multi-resolution frames. P is the patch size. Patches are
spatially aligned. The patches at the same location in the grid
provide a multi-scale view for the same location.
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space-time quality information. Firstly, the spatial Transformer
encoder takes the tokens from each frame group to produce a
latent representation per frame group. It serves as the
representation at this time step. Secondly, the temporal
Transformer encoder models temporal interaction by aggregating
the information across time steps.

3.3.1 Spatial transformer encoder
The spatial Transformer encoder aggregates the multi-

resolution patches extracted from the entire frame group to a
representation ht ∈ Rd at its time step where t = 1, . . ., T is the
temporal index for the frame group. T is the number of frame
groups. As mentioned in the previous section, for multi-resolution
patches xi from each frame group, we project it to a sequence of
multi-resolution tokens as zi ∈ Rd, i = 1, . . ., M using learnable
matrix E where M is the total number of patches. We follow the
standard approach of prepending an extra learnable “classification
token” (zcls ∈ Rd) (Devlin et al., 2019; Dosovitskiy et al., 2021) and
use its representation at the final encoder layer as the final spatial
representation for the frame group. Additionally, a learnable spatial
positional embedding p ∈ RM×d is added element-wisely to the
input tokens zi to encode spatial position. The tokens are passed
through a Transformer encoder with K layers. Each layer k consists
of multi-head self-attention (MSA), layer normalization (LN), and
multilayer perceptron (MLP) blocks. The spatial Transformer
encoder is formulated as:

z0 � zcls,Ex1,Ex2, . . . ,ExM[ ] + p (1)
zk′ � MSA LN zk−1( )( ) + zk−1, k � 1/K (2)

zk � MLP LN zk′( )( ) + zk′, k � 1/K (3)
ht � LN z0K( ) (4)

3.3.2 Temporal transformer encoder
The temporal Transformer encoder models the interactions

between tokens from different time steps. We use the zcls token
position output from the spatial Transformer encoder as the frame
group level representation. As shown in Figure 3, each group of
frames will be encoded as a single token ht, t = 1, . . ., T. We then

prepend a hcls ∈ Rd token and add a separate learnable temporal
positional embedding pt ∈ RT×d to the temporal tokens. These
tokens are then fed to the temporal Transformer encoder, which
models the temporal interactions across time. The output at the hcls
token is used as the final representation for the whole video.
Similarly, the temporal Transformer encoder can be formulated as:

h0 � hcls, h1, h2, . . . , hT[ ] + pt (5)
hq′ � MSA LN hq−1( )( ) + hq−1, q � 1/Q (6)

hq � MLP LN hq′( )( ) + hq′, q � 1/Q (7)
v � LN h0

Q( ) (8)

Q is the number of layers for the temporal Transformer encoder. v is
output from the hcls token position from the temporal encoder,
which is used as the final video representation.

3.4 Video quality prediction

To predict the final quality score, we add anMLP layer on top of the
final video representation v. The output of theMLP layer is regressed to
the videomean opinion score (MOS) label associatedwith each video in
VQA datasets. The model is trained end-to-end with L2 loss.

3.5 Initialization from pretrained models

Vision Transformers have been shown to be only effective when
trained on large-scale datasets (Arnab et al., 2021; Dosovitskiy et al.,
2021) as they lack the inductive biases of 2D image structures, which
needs to be imposed during pretraining. However, existing video
quality datasets are several magnitudes smaller than large-scale
image classification datasets, such as ILSVRC-2012 ImageNet
(Russakovsky et al., 2015) (we refer to it as ImageNet in what
follows) and ImageNet-21k (Deng et al., 2009). As a result, training
Transformer models from scratch using VQA datasets is extremely
challenging and impractical. We therefore also choose to initialize
the Transformer backbone from pretrained image models.

FIGURE 5
Multi-resolution video frames embedding. We extract center-alignedmulti-resolution patches, and then linearly project the spatially aligned “tubes”
of patches to 1D tokens.
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Unlike the 3D video input, the image Transformer models only
need 2D projection for the input data. To initialize the 3D
convolutional filter E from 2D filters Eimage in pretrained image
models, we adopt the “central frame initialization strategy” used in
ViViT (Arnab et al., 2021). In short, E is initialized with zeros along
all temporal positions, except at the center �N/2�. The initialization
of E from pretrained image model can therefore be formulated as:

E � 0, . . . ,Eimage, . . . , 0[ ] (9)

4 Experimental results

4.1 Datasets

We run experiments on four UGC VQA datasets, including
LSVQ (Ying et al., 2021), LSVQ-1080p (Ying et al., 2021), KoNViD-
1k (Hosu et al., 2017), and LIVE-VQC (Sinno and Bovik, 2018).
LSVQ (excluding LSVQ-1080p) consists of 38,811 UGC videos and
116,433 space-time localized video patches. The original and patch
videos are all annotated with MOS scores in [0.0, 100.0], and it
contains videos of diverse resolutions. LSVQ-1080p contains
3,573 videos with 1080p resolution or higher. Since our model
does not make a distinction between original videos and
video patches, we use all the 28.1k videos and 84.3k video
patches from the LSVQ training split to train the model and
evaluate the model on full-size videos from the testing splits of
LSVQ and LSVQ-1080p. KoNViD-1k contains 1,200 videos with
MOS scores in [0.0, 5.0] and 960p fixed resolution. LIVE-VQC
contains 585 videos with MOS scores in [0.0, 100.0] and video
resolution from 240p to 1080p.We use KoNViD-1k and LIVE-VQC
for evaluating the generalization ability of our model without fine-
tuning. Since no training is involved, we use the entire dataset for
evaluation.

4.2 Implementation details

We set the number of multi-resolution frames in each group to
N = 4. The shorter-side length L is set to 896 for the largest frame in
the frame group. Correspondingly, the group of frames are rescaled
with shorter-side length 896, 672, 448, and 224. We use patch size
p = 16 when generating the multi-resolution frame patches. For each
frame, we sample a 14 × 14 grid of patches. Unless otherwise
specified, the input to our network is a video clip of 128 frames
uniformly sampled from the video.

The hidden dimension for Transformer input tokens is set to d =
768. For the spatial Transformer, we use the ViT-Base (Dosovitskiy
et al., 2021) model (12 Transformer layers with 12 heads and
3072 MLP size), and we initialize it from the checkpoint trained
on ImageNet-21K (Deng et al., 2009). For the temporal
Transformer, we use 8 layers with 12 heads, and 3072 MLP size.
The final model has 144M parameters and 577 GFLOPs.

We train the models with the synchronous SGD momentum
optimizer, a cosine decay learning rate schedule from 0.3 and a batch
size of 256 for 10 epochs in total. All the models are trained on
TPUv3 hardware. Spearman rank ordered correlation (SRCC) and

Pearson linear correlation (PLCC) are reported as performance
metrics.

4.3 Comparison with the state-of-the-art

4.3.1 Results on LSVQ and LSVQ-1080p
Table 1 shows the results on full-size LSVQ and LSVQ-1080p

datasets. Our proposed MRET outperforms other methods by large

TABLE 1 Results on full-size videos in LSVQ and LSVQ-1080p test sets. Blue and
black numbers in bold represent the best and second best respectively. We
take numbers from (Ying et al., 2021) for the results of the reference methods.
Our final method is marked in gray.

LSVQ LSVQ-1080p

Models SRCC PLCC SRCC PLCC

BRISQUE Mittal et al. (2012) 0.576 0.576 0.497 0.531

TLVQM Korhonen, (2019) 0.772 0.774 0.589 0.616

VIDEVAL Tu et al. (2021) 0.794 0.783 0.545 0.554

VSFA Li et al. (2019) 0.801 0.796 0.675 0.704

PVQ Ying et al. (2021) 0.827 0.828 0.711 0.739

MRET (Ours) 0.867 0.865 0.780 0.817

TABLE 2 Performance on KoNViD-1k and LIVE-VQC. Methods except LSCT-
PHIQNet (You, 2021) in “w/o Fine-tune” group are trained on LSVQ. Blue and
black numbers in bold represent the best and second best respectively. We
take numbers from (Ying et al., 2021; Jiang et al., 2021; You, 2021; Tan et al.,
2021; Liao et al., 2022) for the results of the reference methods. Our final
method is marked in gray.

LIVE-VQC KoNViD-1k

Models SRCC PLCC SRCC PLCC

w/Fine-
tune

Tan et al. (2021) 0.760 0.795 0.798 0.797

Jiang et al. (2021) 0.776 0.789 0.789 0.788

LSCT-PHIQNet
You (2021)

- - 0.85 0.86

TPQI (Liao et al.,
2022)

0.718 0.730 0.693 0.693

w/o Fine-
tune

BRISQUE Mittal et al.
(2012)

0.524 0.536 0.646 0.647

TLVQM Korhonen
(2019)

0.670 0.691 0.732 0.724

VIDEVAL Tu et al.
(2021)

0.630 0.640 0.751 0.741

VSFA Li et al. (2019) 0.734 0.772 0.784 0.794

PVQ Ying et al. (2021) 0.770 0.807 0.791 0.795

LSCT-PHIQNet
You (2021)

0.737 0.762 - -

MRET (Ours) 0.776 0.817 0.846 0.854
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margins on both datasets. Notably, on the higher resolution test dataset
LSVQ-1080p, our model is able to outperform the strongest baseline by
7.8% for PLCC (from 0.739 to 0.817). This shows that for high-
resolution videos, the proposed multi-resolution Transformer is able
to better aggregate local and global quality information for a more
accurate video quality prediction.

4.3.2 Performance on cross dataset
Since existing VQA datasets are magnitudes smaller than popular

image classification datasets, VQA models are prone to overfitting.
Therefore, it is of great interest to obtain a VQA model that can
generalize across datasets. To verify the generalization capability of
MRET, we conduct a cross-dataset evaluation where we train the
model using LSVQ training set and separately eval on LIVE-VQC and
KoNViD-1k without fine-tuning. As shown in Table 2, MRET is able to
generalize very well to both datasets, and it performs the best among
methods without fine-tuning. Moreover, its performance is even as good
as the best ones that arefine-tuned on the target dataset. This demonstrates
the strong generalization capability of MRET. Intuitively, the proposed
multi-resolution input aligns the videos at different resolutions. Not only
does it provide amore comprehensive view of the video quality, but it also
makes the model more robust to resolution variations. As a result, MRET
can learn to capture quality information for UGC videos under different
conditions.

4.4 Ablation studies

4.4.1 Spatial temporal quality attention
To understand how MRET aggregates spatio-temporal

information to predict the final video quality, we visualize the

attention weights on spatial and temporal tokens using Attention
Rollout (Abnar and Zuidema, 2020). In short, we average the
attention weights of the Transformer across all heads and then
recursively multiply the weight matrices of all layers. Figure 6
visualizes temporal attention for each input time step and spatial
attention for selected frames. As shown by temporal attention for the
video, the model is paying more attention to the second section
when the duck is moving rapidly across the grass. The spatial
attention also shows that the model is focusing on the main
subject, i.e., duck in this case. This verifies that MRET is able to
capture spatio-temporal quality information and utilize it to predict
the video quality.

4.4.2 Effectiveness of multi-resolution frame
inputs

To verify the effectiveness of the proposed multi-resolution
input representation, we run ablations by not using the multi-
resolution input. The comparison result is shown in Table 3 as
“MRET” and “w/oMulti-resolution” for with and without the multi-
resolution frames respectively. For MRET, we resize the frames to
[896, 672, 448, 224] for shorter-side lengths. For the method “w/o
Multi-resolution”, we resize all the frames in the frame group to the
same shorter-side length (224). The GFLOPs is the same for both
models because the patch size and number of patches are the same.
The multi-resolution frame input brings 1%–2% boost in SRCC on
LSVQ and 2%–3% boost in SRCC on LSVQ-1080p. The gain is
larger on LSVQ-1080p because the dataset contains more high-
resolution videos, and therefore more quality information is lost
when resized statically to a small resolution. Armed with the multi-
resolution input representation, MRET is able to utilize both global
information from lower-resolution frames and detailed information

FIGURE 6
Visualization of spatial and temporal attention from output tokens to the input. The heat-map on the top shows the spatial attention. The chart on
the bottom shows the temporal attention. Higher attention values correspond to the more important video segments and spatial regions for prediction.
The model is focusing on spatially and temporally more meaningful content when predicting the final video quality score.
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from higher-resolution frames. The results demonstrate that the
proposed multi-resolution representation is indeed effective for
capturing the complex multi-scale quality information that can
be lost when using statically resized frames. Table 3 also shows
that MRET performance improves with the increase of number of
input frames since more temporal information is preserved.

After verifying that the multi-resolution representation is indeed
more effective than fixed resolution, we also run ablations with
different multi-resolution patch sampling methods (Table 4). For
“Random”, we first resize the frames to the 4-scale multi-resolution
input, and then randomly sample the same number of patches from
each resolution. For “High-res Patch on Last Frame”, we use low-
resolution patches for the first 3 frames (224×), and only sample
high-resolution patches from the last frame (896×). MRET samples
center-aligned patches from the 4-scale input, and it performs the
best. This shows the proposed sampling method canmore effectively
utilize the complementary nature of the multi-resolution views.
With the center-aligned multi-resolution patches, MRET is able
to better aggregate both the global view, and the multi-resolution
local details.

4.4.3 Number of grouped multi-resolution
frames N

In Table 5 we run ablations on the number of grouped frames N
when building the multi-resolution video representation. The
experiment is run with 60 frames instead of 128 since smaller N
increases the number of input tokens for the temporal encoder and
introduces high computation and memory cost. For MRET, we use
multi-resolution input for the grouped frames and for “w/o Multi-
resolution”, we resize all the frames to the same 224 shorter-side

length. For all N, using multi-resolution input is better than a fixed
resolution. It further verifies the effectiveness of the proposed multi-
resolution input structure. For multi-resolution input, the
performance improves when increasing N from 2 to 5, but the
gain becomes smaller as N grows larger. There is also a trade-off
between getting higher resolution views and the loss of spatio-
temporal information with the increase of N, since the area ratio of
sampled patches becomes smaller as resolution increases Overall, we
find N = 4 to be a good balance between performance and
complexity.

4.4.4 Pretrained checkpoint selection
Compared to CNNs, Transformers impose less restrictive

inductive biases which broadens their representation ability. On
the other hand, since Transformers lack the inductive biases of the
2D image structure, it generally needs large datasets for pretraining
to learn the inductive priors. In Table 6, we try initializing the spatial
Transformer encoder in MRET model with checkpoints pretrained
on different image datasets, including two image classification
(Class.) datasets, and one image quality assessment (IQA)
dataset. ImageNet-21k is the largest and it performs the best,
showing that large-scale pretraining is indeed beneficial. This
conforms with the findings in previous vision Transformer works
(Arnab et al., 2021; Dosovitskiy et al., 2021). LIVE-FB (Ying et al.,
2020) is an IQA dataset on which PVQ (Ying et al., 2021) obtain
their 2D frozen features. Since IQA is a very relevant task to VQA,
pretraining on this relatively small IQA dataset leads to superior

TABLE 3 Ablation study results for multi-resolution input on LSVQ and LSVQ-1080p dataset. MRET uses multi-resolution input while “w/o Multi-resolution” uses
fixed-resolution frames. Bothmodels grouped the frames byN =4when encoding video frames into tokens. Blue and black numbers in bold represent the best and
second best respectively on the same dataset. Our final method is marked in gray.

LSVQ LSVQ-1080p

MRET w/o Multi-resolution MRET w/o Multi-resolution

# Frames GFLOPs SRCC PLCC SRCC PLCC SRCC PLCC SRCC PLCC

32 144 0.844 0.841 0.828 0.828 0.749 0.788 0.726 0.759

64 289 0.857 0.854 0.845 0.845 0.768 0.807 0.737 0.784

96 433 0.862 0.860 0.851 0.851 0.776 0.813 0.754 0.771

128 577 0.867 0.865 0.852 0.851 0.780 0.817 0.749 0.782

TABLE 4 Ablation for multi-resolution patch sampling method. Our final
method is marked in gray.

LSVQ LSVQ-1080p

Patch Sampling Method SRCC PLCC SRCC PLCC

Random 0.839 0.838 0.739 0.783

High-res Patch on Last Frame 0.854 0.855 0.757 0.801

MRET 0.867 0.865 0.780 0.817

TABLE 5 Ablation study results for number of grouped frames N on the LSVQ-
1080p dataset. MRET uses multi-resolution input while “w/o Multi-resolution”
use fixed resolution frames. Models here are trained with 60 input frames
instead of 128.

MRET W/o Multi-
resolution

N GFLOPs SRCC PLCC SRCC PLCC

2 534 0.751 0.797 0.742 0.786

3 358 0.757 0.794 0.741 0.786

4 271 0.764 0.802 0.749 0.787

5 218 0.764 0.805 0.743 0.783
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results than ImageNet. This shows that relevant task pretraining is
beneficial when large-scale pretraining is not accessible.

4.4.5 Frame sampling strategy
We run ablations on the frame sampling strategy in Table 7. For

our default “Uniform Sample”, we sample 128 frames uniformly
throughout the video. For “Front Sample”, we sample the first
128 frames. For “Center Clip” we take the center clip of
128 frames from the video. On LSVQ and LSVQ-1080p dataset,
uniformly sampling the frames is the best probably because there is
temporal redundancy between continuous frames and uniformly
sampling the frames allows the model to see more diverse video
clips. Since most of the videos in the VQA dataset are relatively
short, uniformly sampling the frames is good enough to provide a
comprehensive view.

5 Conclusion and future work

We propose a multi-resolution Transformer (MRET) for
VQA, which integrates multi-resolution views to capture both
global and local quality information. By transforming the input
frames to a multi-resolution representation with both low and
high resolution frames, the model is able to capture video
quality information at different granularities. To effectively
handle the variety of resolutions in the multi-resolution input
sequence, we propose a multi-resolution patch sampling
mechanism. A factorization of spatial and temporal
Transformers is employed to efficiently model spatial and
temporal information and capture complex space-time
distortions in UGC videos. Experiments on several large-
scale UGC VQA datasets show that MRET can achieve state-
of-the-art performance and has strong generalization
capability, demonstrating the effectiveness of the proposed

method. MRET is designed for VQA, and it can be extended
to other scenarios where the task labels are affected by both
video global composition and local details. The limitation of
Transformers is that it can be computationally expensive, and
thus costly to make predictions on long videos. In this paper,
we focus on improving the performance of the VQA model and
we leave it as future work to improve its efficiency and to lower
the computation cost. One potential direction is to use more
efficient Transformer variants, such as Reformer (Kitaev et al.,
2020) and Longformer (Beltagy et al., 2020) where the attention
complexity has been greatly reduced. Those efficient
Transformers can be adopted as a drop-in replacement for
the current spatial and the temporal Transformer used
in MRET.
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TABLE 6 Results for initializing MRET model from checkpoints pretrained on different image datasests. Our final method is marked in gray.

LSVQ LSVQ-1080p

Pretrain Dataset #Images Task SRCC PLCC SRCC PLCC

ImageNet Russakovsky et al. (2015) 1M Class 0.839 0.837 0.748 0.780

ImageNet-21k Deng et al. (2009) 14M Class 0.867 0.865 0.780 0.817

LIVE-FB Ying et al. (2020) 160K IQA 0.848 0.846 0.760 0.788

TABLE 7 Ablation study results for frame samplingmethod. Our final method is
marked in gray.

LSVQ LSVQ-1080p

Frame Sampling Method SRCC PLCC SRCC PLCC

Uniform Sample 0.867 0.865 0.780 0.817

Front Sample 0.860 0.857 0.773 0.808

Center Clip 0.860 0.857 0.771 0.811
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