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A color extraction interface reflecting human color perception helps pick colors
from natural images as users see. Apparent color in photos differs from pixel color
due to complex factors, including color constancy and adjacent color. However,
methodologies for estimating the apparent color in photos have yet to be
proposed. In this paper, the authors investigate suitable model structures and
features for constructing an apparent color picker, which extracts the apparent
color from natural photos. Regression models were constructed based on the
psychophysical dataset for given images to predict the apparent color from image
features. The linear regressionmodel incorporates features that reflectmulti-scale
adjacent colors. The evaluation experiments confirm that the estimated color was
closer to the apparent color than the pixel color for an average of 70%–80% of the
images. However, the accuracy decreased for several conditions, including low
and high saturation at low luminance. The authors believe that the proposed
methodology could be applied to develop user interfaces to compensate for the
discrepancy between human perception and computer predictions.
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1 Introduction

Color pickers and selectors are utilized to extract preferable colors from images, videos,
and objects. These tools are popular interfaces in the fields of design and art. The selected
colors are reused in illustrations and graphs (Ryokai et al., 2004; Shugrina et al., 2017). Other
color picker and selector applications include map coloring (Harrower and Brewer, 2003),
architectural paint selection (Bailey et al., 2003), cosmetics selection (Jain et al., 2008), and
color testing of chemicals (Solmaz et al., 2018). For extracting the preferable color of the
users, it is essential to consider users’ color perception.

Various factors influence color perception, often resulting in the difference between
pixel-wise color and the apparent color. These factors include color constancy, adjacent
colors, illumination, and context. Color constancy is related to the ability to achieve stable
color perception regardless of changes in the visual environment, such as illumination, the
presence of shadows, and the biased color of lighting (Ebner, 2012). The additional effects of
adjacent colors are known as the simultaneous contrast (Wong, 2010; Klauke and Wachtler,
2015) and assimilation effects (Anderson, 1997). Based on psychophysical experiments in
various lighting environments (Kuriki and Uchikawa, 1996; Granzier and Gegenfurtner,
2012), a color appearance model (CAM) (Moroney et al., 2002; Luo and Pointer, 2018) and
S-CIE Lab model (Johnson and Fairchild, 2003) have been proposed to correct these effects.
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However, no methodology relating to factors other than color
temperature and illumination has been proposed to correct the
discrepancy between the apparent and pixel colors. Notably,
conventional studies have not constructed a model estimating the
apparent color in photographs. For example, several studies
proposed correction methods for unbalanced lighting images
(Agarwal et al., 2007; Gijsenij et al., 2011; Akbarinia and Parraga,
2017; Wang et al., 2017). Recently, color correction algorithms have
been capable of handling multiple illumination (Hussain et al., 2019;
Akazawa et al., 2022; Vršnak et al., 2023) and image sequences (Qian
et al., 2017; Zini et al., 2022); they did not consider human
perception. It is known that humans have imperfect color
constancy, and the apparent color does not always match the
corrected color in the reference light source (Kuriki and
Uchikawa, 1996). Conventional color correction algorithms,
including CAM, also do not consider the applications for the
interface of extracting the apparent color in the same device.
Other studies solved the problem of transferring colors that
preserves color harmony; however, they did not consider human
color perception in photographs (Cohen-Or et al., 2006; Reinhard
et al., 2001; Zhang et al., 2013).

Therefore, in this paper, the authors investigate the suitable
model structure and features for constructing an apparent color
picker that extracts the apparent colors in photographs. Based on the
apparent color dataset collected on psychophysical experiments, the
authors construct regression models for predicting the apparent
color from image features. Then, several models and image features
are compared to select the suitable model and features that predict
the apparent colors in photographs. Subsequent evaluation
experiments with participants are conducted with two sets of
images: a texture-based dataset (DTD dataset) and a landscape-
based dataset (Places dataset). The prediction performance is
evaluated by the ratio of colors output closer to the apparent
than the pixel color. In summary, the main contributions of this
paper are as follows:

• The authors constructed the regression model to predict the
apparent colors in natural photographs. This model can be
applied to the apparent color picker, thereby, extracting the
color as users perceive.

• The authors confirmed the prediction performance of the
proposed model for both a texture-based and a landscape-
based dataset.

2 Materials and methods

2.1 Related work

2.1.1 Color perception and color appearance
models

Color constancy is a phenomenon in which the perceived color
of objects under various illuminations is relatively constant. For
example, a red apple’s color is perceived as reddish, even under
bluish illumination. The ability of color constancy improves when
adding small amounts of full-spectrum illumination (Boynton and
Purl, 1989). In addition to the characteristics of the light source itself,
various factors affect color constancy. Previous studies have shown

that color constancy is affected by whether the object is observed on
a monitor or paper (Granzier et al., 2009), and whether the object is
perceived as a surface or an illuminant color (Kuriki, 2015; Zhai and
Luo, 2018). Other studies have reported that color constancy
changes depending on whether a subject responds to the
apparent or object color (Kuriki and Uchikawa, 1996), and
whether they were asked to observe a 3D object or 2D image
(Hedrich et al., 2009). Additionally, color constancy produced the
remarkable illusion of “YThe Dress,” in which the observers of this
specific image disagreed whether the dress color was black and blue
or white and gold (Dixon and Shapiro, 2017; Lafer-Sousa and
Conway, 2017).

Color perception is also affected by adjacent colors (Wong,
2010). The apparent color varies with the luminance and hue of the
surrounding colors. Klauke et al. measured the changes in the
apparent color induced in the different hues of its surroundings
(Klauke and Wachtler, 2015). They found that the most significant
perceived deviation in the induced color occurred when the
difference between the stimulus and surrounding hues was about
45°. Additionally, Shapiro and Dixon et al. described the luminance
illusions related to adjacent colors with a high-pass filter, reducing
the effect of illuminations and shadows (Shapiro and Lu, 2011;
Dixon and Shapiro, 2017; Shapiro et al., 2018). These illusions were
also described and evaluated using machine learning models trained
on natural images (Gomez-Villa et al., 2020; Hirsch and Tal, 2020;
Kubota et al., 2021).

CAMs were proposed to grasp these perceptual characteristics.
These are device-independent color models rather than a device-
dependent color spaces, such as sRGB (Anderson et al., 1996). The
models provide similar image appearance on different devices.
CAM02 is a typical model of CAMs (Moroney et al., 2002). The
color calculation of CAM02 requires the device’s luminance, white
point’s XYZ value, and target’s XYZ value as input, and several color
appearance parameters are obtained from the model. Several models
including CAM02 for high luminance (Kim et al., 2009) and CAM16
(Luo and Pointer, 2018) were implemented as an extension of this
model.

Although these CAMs can estimate the apparent color
independent of the display devices, they cannot be directly
adopted to construct the apparent color picker. This is because
the models do not assume the tasks of extracting apparent colors in
the same device and the effects of adjacent colors.

2.1.2 Color correction algorithms
Several color correction algorithms have been created to correct

the white balance of color-biased images or to estimate illuminant
color in images (Gijsenij et al., 2011). Color correctionmodels can be
broadly divided into feature-based and learning-based methods.
Feature-based methods can formulate image transformations
independently of the data, whereas learning-based methods have
the advantage of dealing with more complex illumination
environments. Feature-based methods include classical methods,
such as gray-world and white-patch models, ridge regression
(Agarwal et al., 2007), the difference of Gaussians (DoG) model
(Akbarinia and Parraga, 2017), spatial frequency distribution
(Cheng et al., 2014), Bayesian correlation estimation (Finlayson
and Hordley, 2001), and achromatic point shift (Kuriki, 2018). The
algorithms using convolutional neural network (CNN) (Barron,
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2015; Wang et al., 2017), variational technique (Bertalmío et al.,
2007), and generative adversarial network (GAN) (Sidorov, 2019)
have been proposed as learning-based methods. Recent studies
tackled more complicated issues, including multiple illumination
estimation and correction with image sequences. Color correction
algorithms for photographs containing multiple illumination
sources were implemented using histogram features (Hussain
et al., 2019), block-wise estimation (Akazawa et al., 2022), and
deep learning models (Vršnak et al., 2023) to segment regions
illuminated by a specific illuminant source. Illumination
estimation for image sequences has also been performed using
various strategies, including a recurrent deep network (Qian
et al., 2017) and multilayer perceptron (Zini et al., 2022).

However, unlike human perception, these methods assume
perfect color constancy. Humans have imperfect surface color
constancy (Kuriki and Uchikawa, 1996) and may perceive
different colors from the perfect white-balanced colors. Higher-
order biases in human color perception would also affect the
apparent color of users.

2.1.3 Color picker as an interactive interface
Colors are usually represented by points in a three-dimensional

space, such as RGB, HSV, or L*a*b* color space. Thus, allowing the
users to select these three-dimensional points is essential while
reducing the operation loads on the color selection. There are
two possible implementations for solving the problem: one is to
support the user’s color selection by returning appropriate feedback,
and the other is to automate parts of the selection process. Regarding
the former, Douglas and Kirkpatrick reported that visual feedback
affects the color extraction’s accuracy (Douglas and Kirkpatrick,
1999). Various methodologies have been developed to replace
traditional color extraction interfaces, including the 3D color
picker (Wu and Takatsuka, 2005), the Munsell color palette
(MacEachren et al., 2001), and the touch panel-based color
picker (Ebbinason and Kanna, 2014). In addition to the rule-
based color extractors (Meier et al., 2004; Wijffelaars et al., 2008),
a data-driven method using a variational autoencoder (VAE) (Yuan
et al., 2021) has been proposed as a valid candidate for automated
color selection models. Furthermore, examples of tools to automate
color selection for data visualization include color selection based on
spatial frequency and data types (Bergman et al., 1995), and
constraints in the previously selected colors (Sandnes and Zhao,
2015).

Various interactive tools have also been implemented to select
the preferable color from images and create a customized color
palette. Shugrina et al. developed an interactive tool for artists to
select customized color themes and mixed colors (Shugrina et al.,
2017; Shugrina et al., 2019). Okabe et al. proposed an interface to
design preferable illumination in the images (Okabe et al., 2007).
The I/O Brush that extracts colors from physical objects is utilized to
pick up from actual objects and draw with it (Ryokai et al., 2004).

However, these studies do not consider human color perception
that are biased in both the pixel-wise color and the perfect white-
balanced colors. This research aims to construct the regression
model that predicts the users’ apparent colors in natural
photographs based on a psychophysical dataset named an
apparent color dataset (Kubota et al., 2022). Note that the main
focus of this paper is prediction model construction and evaluation,

which differs from the purpose of the previous paper, which focused
on dataset construction and its analysis. The authors’ previous paper
only collected and evaluated the apparent color datasets for
photographs. Namely, the previous paper handled neither the
construction of the regression model and features nor the
experimental evaluation of the system performance.

2.2 Model selection from apparent color
dataset

This section describes model construction and selection for
creating the apparent color picker. First, the candidate features
and model structures are described. Then, the color prediction
performance is evaluated through trained models, which have
various features and model structures. Based on the evaluation
from these experiments, the authors select the suitable model and
features for constructing the apparent color picker. Figure 1 shows
the model structure adopted in this paper.

2.2.1 Candidate features and models
Several factors, including surrounding colors and biased

illumination of images, influence the apparent color. It is
necessary to select appropriate features and models to predict the
apparent color from a given image. The following candidate features
(the bottom red box in Figure 1) incorporate the surrounding color’s
influence and biased illumination.

1. Multi-scale L*a*b* pixels (px27 features): the image was scaled
down on a 1/2H scale, and the L*a*b* values for each scale at the
position corresponding to the original pixel were collected as
features. The features reflected the average surrounding colors of
the extracted position. This paper adopted 27-dimensional
features by adding the average color of the whole image to the
features calculated with H = 8.

2. Multi-scale histogram of L*a*b* values (hist features): histograms
of Ni px around the original pixel were collected with bin size b =
8. The histograms of the surrounding colors discretized by b steps
for L*a*b* were recruited as features. In this paper,Ni = [8, 16, 32,
64, 128, 256, 0] is adopted. Note that Ni = 0 indicates that the
features are constructed from the whole image’s histogram.

The L*a*b* color model domain constitutes a uniform color
space based on human color perception, in contrast to the non-
uniform color spaces of RGB and HSV, which are not tailored to
human perception (Robertson, 1977). Consequently, it is suitable to
employ the L*a*b* color model and DE2000 color difference metric
for dealing with human perceptual responses. The authors posited
that utilizing the L*a*b* color space for the regression model would
facilitate the development of the color extraction system more
closely aligned with the responses. Although comparable results
might be obtained through features within the HSV or RGB color
domains, the authors did not conduct a direct comparisons between
these alternatives.

The apparent color picker was constructed as a regression model
(the orange box in Figure 1) that predicted the apparent color as a
continuous L*a*b* value from the input features. As candidates for
the model structure, the authors selected six model structures: linear
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regression (LR), ridge regression (RR), lasso (Lasso), support vector
machine (SVM), random forest regression (RFR), and gradient
boosting regression (GBR). Given the relatively modest volume of
training data, the risk of overfitting in deep learning-centric models
was deemed substantial. Thus, deep learning models are not
employed in this paper.

Based on the performance evaluation results described in the
next section, a comparator was employed to improve the predicted
values. The comparator (the yellow box in Figure 1) was introduced
to suppress the deterioration of predictions when there was a slight
difference between apparent color and pixel color. The classifier
determined the probability ω of whether the apparent color and
pixel color difference from feature vectors is less than ΔE00 = 5.0.
After the classification, the weighted prediction value was calculated
as Cpred = ω · Creg + (1 − ω) · Cpx. The random forest classifier (RFC)
was employed in this paper.

2.2.2 Performance evaluation
The apparent color dataset (Kubota et al., 2022) was utilized

for training the proposed model. The dataset consists of
1,100 photographs, each annotated with the apparent color
using the adjustment method with a color palette. Each data
entry has information, including the participant number, the
image, the position to be responded, and the apparent color
response. From these properties, the model utilized the image’s
information, the position to be responded to and the apparent
color response to calculate features from the input image. The
features mentioned above were calculated from a given image and
a position to be responded to input to the regression model as
shown in Figure 1. Note that the output results in Sections
2.2.2.1–2.2.2.3 were calculated without a comparator to
compare the performance of the candidate models and
features independent of the comparator.

First, 80% (880 data) of the 1,100 data entries in the apparent
color dataset were divided into training data and 20% (220 data) into
validation data. The models were trained to predict the apparent
color from feature vectors. To eliminate the effect of splitting the
data into training and validation data, splitting the data was

randomized with 100 different random numbers. The results of
models trained on 100 different combinations of training data were
averaged. The total results of this evaluation contained 88,000 items
for the training data and 22,000 items for the validation data. The
difference between the predicted and apparent colors was measured
with the DE2000 metric (Sharma et al., 2005). Specifically, the
prediction performance was compared in view of the following
four points:

1. Model structure: to identify the appropriate regression model
structure, the authors compared the prediction color of the six
models described above. In this model selection, px27 features
were adopted as feature vectors, and no restrictions for data range
were imposed.

2. Feature types: to identify the appropriate features, the authors
compared four features (the original pixel values only (px3),
multi-scale pixel values (px27), histogram values (hist), and both
multi-scale pixel values and histograms (px_hist)). In this feature
selection, the LR and RFR models were adopted as the evaluation
models, and no restrictions for data range were imposed.

3. Maximum values: to identify the appropriate range of training
data, the authors compared the data range of color difference for
training data. Only the items in the apparent color dataset
satisfying the restriction with the DE2000 threshold ΔE00 <
cth(cth = 5.0, 10.0, 20.0, 30.0, all) were adopted as training
data. The models were trained with only the data that satisfied
the constraints. No such restrictions were imposed on the
validation data. In this evaluation, the LR and RFR models
were adopted as evaluation models and the px27 features as
evaluation features.

4. Presence of the comparator: to confirm the influence of the
comparator, the authors evaluated how the performance changed
with and without the comparator after the model and feature
selections (Points 1–3) were completed.

2.2.2.1 Which model structure is suitable? (Point 1)
The prediction performance of the apparent color with

various model structures is shown in box plots in Figure 2A.

FIGURE 1
Model structure of the apparent color picker. From a given image I and selected position p, the features were extracted as multi-scale pixels or
histograms. The regression model predicted the apparent color in the photos from the features. After the prediction, the comparator model weighed the
pixel color Cpx and the predicted color Cpred with the probability ω of whether the difference between the apparent color and pixel color was less than
ΔE00 = 5.0.
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The leftmost column (the blue box) shows the original color
difference between the apparent and pixel colors in the apparent
color dataset. The other six columns show the difference
between the predicted color and the apparent color for each
model structure. The dotted line shows the quartile values for the

original data. The graphs suggest that all models except Lasso
(the red box) improve on the validation data, and the
performance of the other five models is comparable. Thus,
the authors compared the candidates for suitable features
below using two models: LR, which is the simplest model

FIGURE 2
Results of model evaluation. All graphs show the difference between the predicted and apparent colors with the DE2000 metric. The left-hand side
shows the prediction results for training data, while the right-hand side shows the prediction results for validation data. (A) Prediction performance with
various model structures and px27 features. (B) Prediction performance with various features on LR and RFR models. (C) Prediction performance with
various ranges of training data.
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structure with a low risk of over-fitting, and RFR, which had an
efficient performance on training data.

It should be noted that models and features are not
independent, and their performance may vary depending on
their combination. Consequently, the applicability of model-
selection results employing px27 features (Figure 2A) would
not be generalized for alternative features. Nevertheless, the
authors’ supplemental experiments indicated no combination
that yielded a more substantial improvement in performance
than the one presented in Figure 2A. For example, GBR (the
pink box in Figure 2A), a decision tree-oriented framework like
the RFR model, exhibits comparable performance.
Nonetheless, no discrepancies in the validation data
outcomes when employing RFR, thereby omitting the
detailed results of GBR in the subsequent discussion. Results
on combinations absent from Figure 2A are included as the
Supplementary Data.

2.2.2.2 Which features are suitable? (Point 2)
The prediction performance of the apparent color with

feature configurations is shown in Figure 2B. The graphs for
the LR model (the left-half of each graph) confirm that the
prediction performance deteriorated significantly when
histogram features were used. The deterioration in
prediction performance is thought to be due to
multicollinearity. However, the RFR model results (the right-
half of each graph) show that such deterioration only occurred
when the histogram features without pixel values were used. For
the features that did not worsen the prediction performance,
there was no significant difference in prediction performance
between the LR and RFR. Thus, the aspects without histogram
features are suitable: px27 (multi-scale, the orange box) or px3
(single-scale, the blue box). For the robustness of the prediction
and reflection of the adjacent colors, the px27 features were
adopted in this study.

2.2.2.3 What is the appropriate range of training data?
(Point 3)

Dataset with pronounced color differences in the apparent color
dataset (Kubota et al., 2022) may have been caused by participants’
failure to adjust their apparent color properly. Owing to the
potential risk of incorporating such outlier data on prediction
accuracy, the authors examined Point 3.

The prediction performance of the apparent color with the range
of training data is shown in Figure 2C. The smaller difference on the
left side of each graph for the training data is due to the smaller range
of the training data. However, the results for the validation data
indicate that the prediction performance improved from px27_5
(the blue box) to px27_20 (the green box) and is almost constant for
px27_20 and above. There is no deterioration in the prediction
performance even when all data is used as the training data. Thus,
the authors set no restriction for the data range.

From these evaluations, the authors adopted the LR model as
the model structure, px27 features as the feature vectors, and no
restrictions for the data range of color difference.

2.2.2.4 How much does the comparator improve the
prediction? (Point 4)

Here, the authors investigate the influence of the comparator on
the prediction performance. The detailed structure of the
comparator was explained in Section 2.2.1.

Histograms of the predicted color with and without the
comparator are shown in Figure 3. The horizontal axis
denotes the DE2000 color difference between the predicted
color and the apparent color: the red line shows the original
pixel color, the green line shows the color predicted by the model
with the comparator, and the blue line shows the color predicted
by the model without the comparator. The color differences
obtained over 100 trials (100 different data combinations) for
the validation data were ΔE00 = 7.14 ± 0.29 for the model with
comparator, ΔE00 = 7.33 ± 0.25 for the model without the

FIGURE 3
Histograms of predicted colors with and without adding a comparator. The horizontal axis denotes the color difference between the predicted or
pixel color and the apparent color based on the DE2000metric; the red line shows the pixel color, the green line shows the predicted color of the model
with the comparator, and the blue line shows the predicted color of the model without the comparator.
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comparator, and ΔE00 = 9.54 ± 0.36 for original pixel color. Thus,
it is confirmed that the predicted colors were closer to the
apparent color than the pixel color, regardless of whether the
comparator model was present.

Furthermore, comparing the improved rate of the predictions
from the original pixel color, the model with the comparator had an
improved rate of R = 0.770 ± 0.028, and the model without the
comparator had an improved rate of R = 0.688 ± 0.029. From this
consideration, the model with the comparator was found to have a
higher rate of improvement than the model without the comparator.
Based on these results, the authors adopted the model with the
comparator, and conducted the evaluation experiments described in
the following section.

2.3 Stimuli and procedures of evaluation
experiments

To verify the performance of the proposed model as an apparent
color picker, evaluation experiments were conducted. The authors
evaluated the model performance based on the dataset with texture
images and the dataset with landscape images. Additionally, the
prediction model was compared with the model that only corrected
for L* or a*b*.

2.3.1 Stimuli
Candidate stimuli were selected from images in the DTD dataset

(Cimpoi et al., 2014) and the Places dataset (Zhou et al., 2017). The
DTD dataset is used for constructing the apparent color dataset and
consists of photographs, mainly texture images. The Places dataset
mainly contains landscape photographs with three-dimensional
objects. By recruiting two datasets, the authors evaluated whether
the proposed method could be applied to a broader range of images.
Note that the images in the Places dataset were scaled down to 75%
of their original size. Rescaled images with a size of 640 px or less
were selected due to the size limit of the task screen after it was
rescaled.

The candidate stimuli were first collected as 10,000 image-
position pairs from the DTD dataset and 20,000 image-position
pairs from the Places dataset, following the previous paper
constructing the apparent color dataset (Kubota et al., 2022).
The pairs of image and response position were selected so that the
color difference ΔE00 < 5.0 in the range of 5 px surroundings of
the position to be responded to. When using a color picker
interface, the users are expected to select colors from areas
with a certain degree of color uniformity. The Places dataset
was found to have a more significant bias in luminance and color
distributions than the DTD dataset. Thus, 20,000 candidates were
collected for the Places dataset.

The stimuli presented to each participant included
66 pictures from the DTD and Places datasets as described
below. Due to the existence of bias in the L*a*b* values of the
photographs, the image-position pairs were categorized into nine
blocks: three levels of luminance L* � [0, 30), [30, 60), [60, 100]
and three levels of saturation
a*b* � �������

a*2 + b*2
√ � [0, 30), [30, 60), [60, 144]. By selecting

images from each block equally, a wide range of data from

low saturation (low luminance) to high saturation (high
luminance) could be evaluated. However, in both datasets, the
pair L* � [0, 30) and a*b* = [60, 144] (Category [0,2], Category 2)
had very few candidate images compared to the other eight
categories. Thus, only two images were extracted from this
category. As a result, a set of 66 images and response
positions, two from the Category [0,2] (Category 2), and eight
from the other eight categories, were randomly selected from
each category. By changing the images presented to each
participant, the authors collected the evaluation for various
images.

2.3.2 Procedures
Eleven participants (seven males, four females) aged from

19 to 28 years with normal or corrected vision participated in the
experiment. At the beginning of the experiment, a simplified
browser-based Ishihara test (Colblindor, 2006) confirmed that all
participants had a trichromatic vision. The participants were
instructed to observe the display from approximately 60 cm
apart, and turn off both night-shift and dark modes on the
display. The participants worked on the online experiment
created with jsPsych (de Leeuw, 2015) on their PCs. The
screen size was scaled using a credit card as a reference of
known size. Specifically, the participants adjusted the size of
the rectangle on the screen to fit the size of their credit cards. The
pre-experimental questionnaire confirmed that most participants
rarely (less than once a year) or occasionally (several times a year)
work on creative activities related to pictures and colors. In
particular, they rarely or occasionally utilized a color picker or
a color extraction system.

Figure 4 shows an example of the task screen. The task screen
consisted of a stimulus image on the left half and two color
squares on the right half. Participants first searched for the area
surrounded by a black-and-white border (20 px square, 0.4 cm
square) in the stimulus image displayed on the left side. Next,
they determined which of the two colored squares in the right half
was closer to the apparent color in the area surrounded by the
border using the buttons at the bottom of the screen. They were
instructed to determine the color near the center of the box where
several colors were observed. Although completion of the task
had no time limit, median (IQR) of the response time was 4.5 s
(3.2 − 6.9 s). Participants were instructed to take 1-min breaks
every 20 min. The entire experiment took about 60 min. Before
the start of the experiment, four practice stimuli identical to all
participants were presented. The practice images were presented
in the same order to all participants and were used to check
whether the participants performed the experimental task
correctly.

In Experiment 1, the prediction performance for the DTD
dataset was evaluated; a total of 66 stimuli were selected from the
10,000 candidates of the image in the DTD dataset. In
Experiment 2, the prediction performance for the Places
dataset was evaluated. In Experiment 3, the authors
investigated the role of luminance and saturation in the
proposed model; a total of 33 stimuli (one from Category
2 and four each from the other eight categories) were selected
from the 10,000 candidates in the DTD dataset. Two types of the
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predicted color were evaluated: one is characterized by L* as the
predicted value and a*b* as the pixel value (L* condition), and the
other is characterized by a*b* as the predicted value and L* as the
pixel value (a*b* condition). For each candidate stimulus, the
pixel color and the predicted color of the model were randomly

presented in either the upper or lower square. To eliminate the
influences of whether the predicted color is displaced at the upper
or lower square, two trials were performed for each stimulus,
switching the display position of the square corresponding to the
predicted color in these three experiments.

FIGURE 4
Example of the task screen. The left half of the screen displays a stimulus image with a frame indicating the response position. The right half shows
two color squares. The participants selected a color from the upper or lower squares closer to the color inside the box. At the top of the task screen, the
following question is displayed: “Which color in the square frame in the image is closer to the color of the upper or lower square?”.

FIGURE 5
Improved rate for each stratified categorywhere categories [0,1,2] denote low luminance, [3,4,5] denotemedium luminance, and [6,7,8] denote high
luminance. Categories [0,3,6] denote low saturation, [1,4,7] denote medium saturation, and [2,5,8] denote high saturation. Error bars indicate standard
errors calculated from a binominal distribution.
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3 Results

First, the authors compared the model’s predictions for each of
the stratified categories. Figure 5 shows the results of the improved
rate summarized for each category. The improved rate indicates the
percentage of trials in each category in which the predicted color is
closer to the apparent than the pixel color. A higher improved rate
means that the predicted color of the model is better at predicting
the apparent color in photos for each category than the original pixel
color. The summary statics for each category are described in
Table 1. Significance levels were corrected using the Bonferroni
correction. Specifically, the nine categories were tested as multiple
comparisons with N = 18 because these categories were compared to
the chance rate for the different datasets.

The results confirmed an average improvement in the predicted
color over the pixel color inmost categories. Especially, in Categories
3 and 4 (medium-luminance and low to medium saturation), the

improved rate reached 75%–85% for both DTD and Places dataset,
suggesting that the proposed model works as an effective prediction
tool in this color domain. However, no significant differences were
observed for Categories 0 and 2 (low luminance and low or high
saturation). Similarly, the performance of Category 8 (high
luminance and high saturation) also decreased in the DTD
dataset. These results suggest that the model effectively improved
the prediction accuracy in the mid-luminance region by more than
70%. In contrast, the prediction accuracy decreased in low-
luminance and high-luminance/high-saturation regions.

Next, the prediction performance according to the color difference
between the pixel color and the predicted color was evaluated. A graph
summarizing the improved rate for each color difference with the
DE2000 metric is shown in Figure 6. The color differences were
converted to integer values by the floor function to draw the graph.
Note that color differences below 1.0 and above 10.0 had small items
(2 − 36 items) in both datasets. Additionally, it should be noted that
participants did not directly answer the apparent color in the authors’
evaluation experiments. Figure 6 illustrates the difference between the
predicted color and pixel color, not between the apparent color and
pixel color. The graph indicates that the improved rate is approximately
70%–80% in the region of the color difference 3.0 < ΔE00 < 10.0. These
results suggest that, on average, themodel can predict color closer to the
apparent color than the pixel color. However, the prediction accuracy
decreased in the region of 0.0 ≤ ΔE00 ≤ 3.0. This decrease may be
because the participants had difficulty perceiving the difference between
the predicted color and the pixel color, i.e., the difficulty in
distinguishing between the colors in the upper and lower squares.

Finally, the improved rate when correcting only for luminance or
saturation is summarized. Figure 7 illustrates the prediction results
using only luminance (L*) and saturation (a*b*) information. A
Student’s t-test considering the Bonferroni correction (N = 3) shows
no significant difference between the L*a*b* and L* conditions (p =
0.209). In contrast, there are significant differences between the L*a*b*
and a*b* conditions (p < 0.001) and the L* and a*b* conditions (p <
0.001). Thus, in the configuration of this model, information on

TABLE 1 Summarized statics of improved rate for each category in the
stratified extraction. (*: p < 0.05,**: p < 0.01,***:p < 0.001).

Lab category Experiment 1 Experiment 2

Category 0 0.590 ± 0.037 0.585 ± 0.037

Category 1 0.698 ± 0.035*** 0.719 ± 0.039***

Category 2 0.500 ± 0.075 0.452 ± 0.078

Category 3 0.841 ± 0.028*** 0.848 ± 0.027***

Category 4 0.775 ± 0.031*** 0.756 ± 0.032***

Category 5 0.674 ± 0.035*** 0.744 ± 0.033***

Category 6 0.679 ± 0.034*** 0.642 ± 0.036**

Category 7 0.679 ± 0.035*** 0.747 ± 0.033***

Category 8 0.599 ± 0.037 0.693 ± 0.035***

FIGURE 6
Improved rate with the color difference between the pixel color
and the predicted color. The color difference of images is measured
by the DE2000metric and classified as an integer value using the floor
function. Error bars indicate standard errors calculated from a
binominal distribution.

FIGURE 7
Prediction results using only luminance (L*) and saturation (a*b*)
information. Error bars indicate standard errors calculated from a
binominal distribution.

Frontiers in Signal Processing frontiersin.org09

Kubota et al. 10.3389/frsip.2023.1133210

https://www.frontiersin.org/journals/signal-processing
https://www.frontiersin.org
https://doi.org/10.3389/frsip.2023.1133210


luminance (L*) could improve prediction accuracy. In contrast,
information on saturation (a*b*) had a limited contribution to the
prediction improvement.

4 Discussion

The evaluation experiments suggest that the proposed model
could predict colors closer to the apparent color than the original
pixel color. The luminance correction was particularly adequate
for the prediction, as shown in Figure 7. This result can be
explained as a result of the influence of the extraction
interface in the experiment. The extraction interface displayed
the color of a specific part of the photos in a square on a white
background. The color shift caused by the simultaneous contrast
effect resulted in the square colors on the white background being
darker than the original pixel color. To compensate for the
simultaneous contrast effects, it is necessary to display
brighter colors than the original pixel color. However, the
saturation did not contribute to the color prediction. The
employed model was a simple linear regression model, which
may have effectively corrected for systematic shifts.

However, Figure 5 illustrates that performance deteriorated within
specific categories. Notably, performance was limited in the low-
luminance region (Categories 0–2) and the high-luminance/high-
saturation region (Category 8) compared to the medium-luminance
region (Categories 3 and 4). For Category 2, the performance decline
stemmed from the minimal number of data. As the probability of
extracting this region from natural images is minimal, the authors
believe that practical issues for this area would be negligible. Although
the authors do not know a conclusive answer for the performance
deterioration in the remaining categories, there would be two potential
explanations. Firstly, color differences might vary between categories.
Analyzing the apparent color dataset (Kubota et al., 2022), the median
color differences between the apparent color and pixel color for
Categories 0 and 2 were 6.89 and 6.03. Conversely, for Categories
3 and 4, which exhibited superior prediction accuracy, these values
increased to 12.7 and 11.8. These results imply that the improvement
rate would escalate when the deviation between the original pixel color
and the apparent color is more pronounced. Secondly, Figure 7
demonstrates that the proposed system’s saturation correction
enhancement is restricted. In the high-saturation region, the
prediction accuracy may have diminished due to the inability to
represent saturation by the regression model, resulting in a
decreased improvement rate. These issues could be resolved by
augmenting datasets within these domains and re-selecting more
appropriate features and the prediction model.

Moreover, Figure 6 reveals that the performance also degraded
in the region where the difference between the original pixel color
and the predicted color is minor. During the authors’ assessment,
participants were presented with the pixel color and the predicted
color and instructed to compare which color was closer to their
perception. In areas where color differences are minimal in Figure 6,
participants would struggle to distinguish between colors. To take an
extreme case, if no color difference existed between the two, the
correct response rate would reach approximately 50%. Thus, it
would be reasonable for the results to approximate 50% (the
proportion of correct answers in the event of random selection)

in regions characterized by minimal color differences. In other
words, the diminished prediction performance in the realm of
minor color discrepancies would constitute an issue inherent to
the evaluation experiment design, which might not solve the
problem with system improvement.

Below, the authors discuss the influences of the model structure
and features on the predictions. The proposed model adopted the
multi-scale pixel values (px27) as features. However, the results in
Figure 2B suggest that there is no significant difference in the
prediction accuracy between the model with single-scale pixel
values (px3) and multi-scale pixel values (px27). The results
suggest that the improvement in prediction due to considering
multi-scale colors was limited. However, it is known that color
perception is affected by complex combinations of various factors,
such as color constancy, color temperature, higher-order object
recognition, and display chromaticity. Features that reflect color
temperature and object labels may improve the prediction accuracy
of the apparent color.

The authors constructed the color prediction model using a
data-driven and linear regression model (Figure 1). Linear models
resist over-fitting and allow for reasonable predictions even when
the number of data is small. However, a deep learning model,
including a convolutional neural network or a biological model
referring to the sensory information processing of the brain, would
be effective for building color prediction models. When adopting a
deep learning model, it would be necessary to design appropriate
features or collect additional training data to prevent over-fitting. A
biological model based on the brain’s information processing would
also be a candidate for the apparent color picker. Although no
unified color perception model has been proposed, computational
models that reflect color perception characteristics were reported
(Moroney et al., 2002). As human color perception involves
environmental and physical factors, including lighting
environment and illumination, it would be necessary to calibrate
such models to environmental conditions.

The apparent color picker may be affected by the characteristics
and arrangement of the user interface. The experimental
participants used an interface with a white background because
participants were asked to turn off the night-shift and dark modes of
the browser during the experiment. Given the property of the
simultaneous contrast effect, the direction of the luminance shift
is expected to be nearly reversed. Constructing a prediction model
compatible with dark mode may be possible by reversing the
direction of the luminance shift. Although the scale of the
displayed image would affect the predictions, the proposed model
could cope with changes in image size by constructing multi-scale
features that correspond to the image size.

However, the inability to reproduce parts of the apparent color when
themodel extracts the apparent color from photographs to the square on
a white background is a significant limitation. Owing to the different
surrounding colors, the representable range of colors would differ
between the photos and the square on the white background. The
methodology to overcome this limitation requires hardware-based
improvement of the display. This issue would not be solved by
software-based improvements, such as the construction of color
prediction models.

By combining the color extraction model of this paper and its
reversed model, it may be possible to construct a color transfer model
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that reproduces the colors from one image to another. To achieve this, it
may be necessary to include object recognition techniques related to
both lower-order relationships with surrounding colors and the context
of images for higher-order cognition. This color transfer model may be
utilized to transform not only the pixel-wise color itself but the
surrounding color so that the color context of the images preserves.

Dealing with human perception and cognition, physical
measurements are often taken as the correct values, and human
perception is often described as inaccurate or biased. The manifested
discrepancies between these two states are often called illusions.
However, the world recognized by humans and computers cannot
have one being correct and the other wrong. Illusions are caused by the
sensory information processing of the brain, which is influenced by
various factors, including physical objects, brain functions,
environment, knowledge, and memories. Properly measuring the
gaps between the “perceptual” world of humans and computers and
building a model that grasps human perception based on the gaps are
essential in dealing with illusions. By constructing the apparent color
prediction model, this study has reached a milestone in capturing the
characteristics of human perception in a daily environment.

5 Conclusion

In this paper, the authors investigated the suitable model structure
and features for an apparent color picker that extracts the apparent
color from photographs. First, the regression model was constructed to
predict the apparent color using the apparent color dataset collected by
psychophysical experiments, which is annotated with the apparent
color that participants perceived in photos. Based on the performance
evaluation for various models and features, a linear regression model
with features that reflect the adjacent color inmulti-scale (px27 features)
was suitable for predicting the apparent color. A comparator was built
into the prediction model to prevent deteriorating the accuracy when
there was a slight difference between the predicted and pixel colors. To
assess the performance in the actual situations, evaluation experiments
were conducted with the inclusion of eleven participants. These
evaluations utilized images extracted from two different datasets: the
DTD dataset and the Places dataset. The results indicated that the
estimated color was closer to the apparent color than the pixel color for
75%–85% of trials at medium luminance and low or medium
saturation. However, the improved rate decreased in accuracy under
several conditions with low luminance images. In conclusion,
evaluation experiments confirmed that the proposed model could
predict the apparent color to some extent. In contrast, it is suggested
that further improvement could be achieved by taking into account
factors that the model did not incorporate, such as the influences of
higher-order cognition and illuminant information.
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