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Blindrestoration of low-quality faces in the real world has advanced rapidly in
recent years. The rich and diverse priors encapsulated by pre-trained face GAN
have demonstrated their effectiveness in reconstructing high-quality faces from
low-quality observations in the real world. However, the modeling of degradation
in real-world face images remains poorly understood, affecting the property of
generalization of existing methods. Inspired by the success of pre-trained models
and transformers in recent years, we propose to solve the problem of blind
restoration by jointly exploiting their power for degradation and prior learning,
respectively. On the one hand, we train a two-generator architecture for
degradation learning to transfer the style of low-quality real-world faces to the
high-resolution output of pre-trained StyleGAN. On the other hand, we present a
hybrid architecture, called Skip-Transformer (ST), which combines transformer
encoder modules with a pre-trained StyleGAN-based decoder using skip layers.
Such a hybrid design is innovative in that it represents the first attempt to jointly
exploit the global attention mechanism of the transformer and pre-trained
StyleGAN-based generative facial priors. We have compared our DL-ST model
with the latest three benchmarks for blind image restoration (DFDNet, PSFRGAN,
and GFP-GAN). Our experimental results have shown that this work outperforms
all other competing methods, both subjectively and objectively (as measured by
the Fréchet Inception Distance and NIQE metrics).
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1 Introduction

Blind face restoration is important for various vision applications, from face recognition
in the wild (Ge et al., 2018) to the generation of 3D avatars (Ichim et al., 2015). Current state-
of-the-art generative models for face images, such as StyleGAN (Karras et al., 2018) and its
enhanced version (Karras et al., 2020) can produce synthetic images that are almost
indistinguishable from real ones (except for certain artifact problems). The power of
StyleGAN models has inspired the development of new face super-resolution (SR)
techniques to take advantage of the prior information embedded into pre-trained
generative models. One such method [e.g., GLEAN (Chan et al., 2021)] is capable of
achieving nearly perfect SR results when trained and tested on artificial low-resolution
images such as those generated with bicubic downsampling. However, the performance of
GLEAN rapidly degrades when tested on low-quality real-world face images.

Blind restoration of low-quality (LQ) face images from the real world has remained an
open problem due to the following challenges. First, the unknown degradation process in the
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real world can be complicated and diverse, from blur kernels to
compression artifacts. It is often difficult, if not impossible, to take
into account various uncertainty factors of image degradation for
likelihood modeling. Second, the effectiveness of the image prior,
regardless of semantic-aware style transfer as in PSFRGAN (Chen C.
et al., 2021) or a pre-trained face GAN as in GFP-GAN (Wang X. et
al., 2021), is highly dependent on the choice of latent space for the
disentangled representation of face information. When either
likelihood or the previous model falls short, the reconstructed
face images suffer from loss of facial details or undesirable artifacts.

The motivation behind our proposed solution is two-fold. On
the one hand, we take the lesson from a previous work (Bulat et al.,
2018) to carefully learn the degradation process from the real world.
Unlike PSFRGAN (Chen C. et al., 2021) working with style transfer
for the prior image, we argue that a more fruitful approach is to learn
the real-world degradation process by style transfer. This
unsupervised approach to degradation learning (DL) has been
shown to be effective for both synthetic and real-world LQ face
images. On the other hand, both GLEAN (Chan et al., 2021) and
GFP-GAN (Wang X. et al., 2021) have used multiscale pre-trained
GAN to facilitate the image reconstruction process. However, they
differ in the way of latent space manipulation: GLEAN (Chan et al.,
2021) uses a pre-trained generator as a latent bank, but requires a
separate decoder to generate the output image; while GFP-GAN
(Wang X. et al., 2021) introduces a spatial feature transform to
modulate the extracted GAN features. Inspired by the
complementary nature between GLEAN (Chan et al., 2021) and
GFP-GAN (Wang X. et al., 2021), we advocate a hybrid approach of
combining a transformer-based encoder with a pre-trained GAN-
based decoder, leading to a novel Skip-Transformer (ST) design.

In this work, we propose using a coupled StyleGAN-based
generator to learn the real-world degradation model from real-
world LQ face images. Once learned, our degradation is combined
with that of GFP-GAN (Wang X. et al., 2021) to create a second order
degradation model, that is, GFP-GAN (Wang X. et al., 2021) serves
as a second order degradation, improving the generalization
property of our DL based on style transfer. We have also
developed a new hybrid architecture design, named the skip-
transformer (ST), based on powerful transformer encoder
modules. By plugging the pre-trained face GAN as decoder
modules, we can seamlessly integrate the representation power of
the transformers with generative face priors (Wang X. et al., 2021).
Furthermore, we have developed a novel extension of the skip
connection to the skip layers, which facilitates the information
flow between transformer-based encoders and StyleGAN-based
decoders. A summary of our technical contributions is listed below.

• Degradation learning via style transfer. We study how to
train state-of-the-art methods (Chan et al., 2021; Wang X. et
al., 2021) in our DL style transfer model. Our approach to DL
exploits pre-trained models (i.e., StyleGAN) and style transfer
in the latent space. To our knowledge, this work is the first
approach to DL that has shown convincingly better
performance than GAN-based (Bulat et al., 2018).

• Hybrid architecture design. Our ST network architecture
combines transformer encoder modules with a pre-trained
StyleGAN-based decoder using skip layers. Such a hybrid
design is innovative in that it represents the first attempt to

jointly exploit the global attention mechanism of the
transformer and pre-trained StyleGAN-based generative
facial priors.

• Real-world blind face image restoration. Extensive
experimental results on real-world face datasets show that
the proposed DL-ST method outperforms existing state-of-
the-art blind restoration methods, including DFDNet (Li et al.,
2020a), PSFRGAN (Chen C. et al., 2021) and GFP-GAN
(Wang X. et al., 2021). The subjective evaluation of
restored images is also convincingly in favor of our method.

2 Related work

2.1 Blind face restoration

Blind face restoration aims to recover high-quality face images
from low-quality observations that suffer from various sources of
degradation in the real world [e.g., noise (Anwar et al., 2017), blur
(Shen et al., 2018; 2020), and compression artifacts (Yang et al.,
2018)]. Early work assumes the availability of a high-quality
reference [e.g., (Li et al., 2018)] or the feasibility of learning a
degradation model [e.g., (Bulat et al., 2018)] to guide the image
restoration process. These methods were further enhanced in (Li et
al., 2020b) by using multiple-exemplar images and adaptive fusion
of features from guidance and degraded images and in DFDNet (Li
et al., 2020a) by learning facial component dictionaries. More
recently, blind face restoration was formulated as a semantically
guided generation problem in HiFaceGAN (Yang L. et al., 2020) and
solved using a collaborative suppression and replenishment
approach. The success of StyleGAN for the synthesis of facial
images (Karras et al., 2020) has also inspired the development of
GFP-GAN (Wang X. et al., 2021), which adopts a pre-trained GAN
prior. Unlike GAN inversion methods that require image-specific
optimization for inference, GFP-GAN can jointly restore facial
details and enhance colors in a single forward pass. The most
recent advances in blind image restoration include approaches
based on building a 3D facial prior (Hu et al., 2021) and a
restoration framework with memorized modification (RMM) (Li
et al., 2021). However, those existing blind face restoration
approaches face the fundamental barrier of domain shift,
i.e., when the real-world degradation varies, the performance
often degrades rapidly.

2.2 Face image super-resolution

A closely related problem to blind face restoration is single-
image super-resolution (SISR) for face images. Early work such as
FSRNet (Chen et al., 2018) has assumed that low-resolution (LR)
face images are artificially generated by downsampling high-
resolution (HR) face images. The key idea behind FSRNet is to
use the geometry prior, such as facial landmark heatmaps and
parsing maps, to superresolve LR face images without well-
aligned requirement. To generate realistic faces, FSRNet has been
extended to FSRGAN by incorporating adversarial loss. Inspired by
the success of StyleGAN for the synthesis of face images (Karras et
al., 2018; 2020), self-supervised photo-upsampling via latent space

Frontiers in Signal Processing frontiersin.org02

Cheikh Sidiya et al. 10.3389/frsip.2023.1106465

https://www.frontiersin.org/journals/signal-processing
https://www.frontiersin.org
https://doi.org/10.3389/frsip.2023.1106465


exploration of generative models (PULSE) was developed in (Menon
et al. (2020) for SISR of large factor (up to × 64). Recognizing the
weakness of estimating landmark and component maps from LR
images, the FSR method based on iterative collaboration between
two recurrent networks was proposed in Ma et al. (2020), focusing
on facial image recovery and landmark estimation, respectively. In
each step, the recovery branch uses the knowledge of the landmarks
of the previous step to refine higher-quality images, which facilitates
a more accurate landmark estimation in an iterative fashion. Most
recently, the Generative Latent Bank (GLEAN) (Chan et al., 2021)
went beyond current practices by directly leveraging rich and diverse
priors encapsulated in a pre-trained GAN. By incorporating a simple
encoder-bank-decoder architecture with multiresolution skip
connections, GLEAN can easily handle images from diverse
categories. Unfortunately, these existing face SR techniques
mostly assume an over-simplified observation model for LR and
cannot deliver satisfactory results on real-world scenarios.

2.3 Vision transformer

The field of vision transformers (Wang W. et al., 2021) has
evolved rapidly in the last year. The great success of transformers in
high-level vision, such as object detection [e.g., DETR (Carion et al.,
2020)] and semantic segmentation [e.g., SWIN transformer (Liu et
al., 2021)], has led to a flurry of low-level vision tasks, such as high-
resolution image synthesis, for example, taming transformer (Esser
et al., 2021), texture transformer (Yang F. et al., 2020), TransGAN
(Jiang et al., 2021), and Ganformer (Hudson and Zitnick, 2021). So
far, the study of vision transformers in image restoration has been
scarce. The few exceptions in the open literature include the pre-

trained image processing transformer (IPT) (Chen H. et al., 2021),
the SWIN transformer for image restoration (SWINIR) (Liang et al.,
2021) and the unpublished work of the U-shaped transformer
(Uformer) (Wang Z. et al., 2021). Despite the promising
experimental results reported on SISR and IPT image denoising,
its network design consists of a standard transformer encoder/
decoder pair originating from Vaswani et al. (2017). The design
of novel transformer-based architectures to support low-level vision
tasks such as blind image restoration serves as the primary
motivation behind this work.

3 Methodology

3.1 Overview of the proposed approach

In the following sections, we first describe the general framework
of our DL-ST method and then elaborate on the individual
components. Given a low-quality (LQ) face image X suffering
from unknown degradation, the goal is to restore an image Y
with high quality (HQ). The proposed method consists of two
basic modules: 1) DL: degradation learning via style transfer; and
2) ST: transformer-based image restoration with skip layers.

Our DL method is based on the training of a pair of pre-trained
models [StyleGAN2 generators (Karras et al., 2020)] in a coupled
manner to approximate real-world degradation. The network design
is inspired by previous work on style transfer (Pinkney and Adler,
2020; Richardson et al., 2021) in latent space, but our targeted
application is degradation learning instead of image manipulation
(Wang et al., 2020). In fact, modeling image degradation in the real
world as style transfer is supported by its application in SISR

FIGURE 1
Overall architecture of the proposed DL networks. Red generator weights are kept fixed during training to generate the headquarters data. The
output of the green generator is passed through a discriminator and compared with real-world LQ face images.

Frontiers in Signal Processing frontiersin.org03

Cheikh Sidiya et al. 10.3389/frsip.2023.1106465

https://www.frontiersin.org/journals/signal-processing
https://www.frontiersin.org
https://doi.org/10.3389/frsip.2023.1106465


(Johnson et al., 2016). Unlike the Unet-based degradation removal
module (Wang X. et al., 2021), both modules in our DL network (red
and green generators in Figure 1) can be used to generate unlimited
number of LQ and HQ face image pairs once trained. Compared to
previous work on learning real-world degradation (Bulat et al.,
2018), our approach is more powerful because it leverages the
power of a style-based generator to represent more realistic
image degradation.

Based on the learned degradation model, we will train a hybrid
network architecture for face image restoration. The newly designed
restoration network, called the Skip-Transformer (ST), consists of three
parts: a transformer-based encoder, a skip layer, and a StyleGAN-based
decoder. The encoder consists of transformer blocks for every resolution
level between 512 × 512 and 4 × 4, as well as a fully connected layer that
outputs the latent vector w. The skip layer is responsible for connecting
the output of the encoder layer with that of the decoder. Finally, the
decoder network borrows the architecture of the StyelGAN2 (Karras et
al., 2020) generator as a pre-trained model. Although a similar idea of
using a pre-trained GAN existed in Chan et al. (2021), (Wang X. et al.
(2021), the combination with the transformer encoder and the

introduction of skip layers differ our network design from others.
To our knowledge, this hybrid design (transformer + StyleGAN)
represents the first attempt to jointly exploit the global attention
mechanism of transform-based and StyleGAN-based generative
facial priors. Next, we will discuss these two modules in detail.

3.2 Degradation learning via style transfer

In blind face restoration, the challenge with DL lies in the lack of
paired HQ/LQ images in the wild. To overcome this barrier, we
propose here a new style transfer-based approach to DL that works
for unpaired HQ/LQ images.

3.2.1 Real-world LQ data collection
To collect LQ images with real-world degradation, we used the

Wider Face dataset (Yang et al., 2016) as a starting point. First, we
crop and detect the face region using Zhang et al. (2017) and keep
the cropped regions with a resolution threshold greater than or equal
to 20 × 20. The cropped images are resized to 1024 × 1024 resolution

FIGURE 2
Examples of paired (Corrupted/Clean) randomly generated with the trained generators.

FIGURE 3
Overview of the proposed Skip-Transformer (ST) network architecture. The size numbers in the rectangle box stand for the output height andweight
size of the corresponding boxes.
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using bicubic interpolation as the LQ input. Finally, all images are
aligned using the facial landmark method of Kazemi and Sullivan
(2014), which generates a total of 30,000 LQ images.

3.2.2 Degradation learning via style transfer
Our architecture for learning real-world face image degradation

can be interpreted as a style transfer method between unpaired LQ
and HQ face images (in our case, the HQ comes from the output of a
pre-trained StyleGan generator). It consists of two generator
networks (marked by the red and green colors in Figure 1)
initialized with the weights of the pre-trained StyleGAN2 (Karras
et al., 2020). The mapping network that projects the noise vector
from the Z space to theW space is shared between the two networks
and kept fixed [also initialized with the weights of the
StyleGAN2 (Karras et al., 2020) mapping network]. The red
generator that is responsible for outputting the high-resolution
face image is also fixed during training. The green generator is
responsible for the generation of the degraded face images. Two
types of losses are applied during training: GAN loss is responsible
for pushing its output to a style similar to the real-world LQ data
(Yang et al., 2016), and the loss of content is used to keep the content
similar to the output of the fixed red generator. Our framework
shares similarities with previous work (Pinkney and Adler, 2020;
Richardson et al., 2021), the main difference being that we make a
conscious choice to avoid the use of projection algorithms in the

latent space of StyleGAN2 (Karras et al., 2020) because they often
distort the projected image and slow down the training.

3.2.3 Loss functions
During training, a random noise vector Z is sampled from the

normal distribution and inputted into the mapping network before
going through both generators. The mapping network and the red
generator are kept fixed and the green generator is trained according
to the objective function of (1); where ŷ and y refer to the output of
the green and red generators, respectively. It consists of L2 loss, VGG
loss, and adversarial loss. VGG loss is used to preserve the color
information and the average downsampling is applied with a factor
of 64 to its input. The weights α, β and γ are 1, 0.02 and 0.01,
respectively. ϕ(·) gives the output of the 18th feature layer of the pre-
trained VGG19 (Simonyan and Zisserman, 2015) network, ↓smeans
the down-scale operator.

LDL � αLl2 + βLVGG + γLadv, (1)
Ll2 � ‖ŷ − y‖2, (2)

LVGG � ‖ϕ ŷ↓s( ) − ϕ y↓s( )‖2 (3)
the introduction of Ladv is to transfer the low-resolution real-world
face style to the output of the green generator. Similarly to Karras
et al. (2020), the logistic loss is adopted:

Ladv � −γEŷSoftplus D ŷ( )( ) (4)

FIGURE 4
Architecture of the Transformer Block. For input resolution greater than 32 × 32, the self-atention block and the first residual skip connection are
eliminated.

FIGURE 5
Architecture of the Self-Attention Block. The input is passed through three separable depth-wise convolution layers (Howard et al., 2017) to
generate the features Q, K, and V.
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where Softplus(x) = log(1 + exp(x)) is a smooth approximation of the
ReLU activation function.

The discriminator network is trained to distinguish between the
output of the green generator and the Wider Face data (Yang et al.,
2016). It has the same architecture and is initialized with the trained
weights of StyleGAN2 (Karras et al., 2020). Following Mo et al. (2020),
the early layers of the discriminator are frozen during training. The
learning rate is 1 × 10−4 for both the green generator and the
discriminator and is kept constant during training. We use Adam
optimization with beta parameters equal to (0, 0.9). The architecture is
trained for 90,000 iterations with a batch size of 12.

3.2.4 Second-order training procedure
Once trained, the green and red networks are used to produce

paired clean and degraded face images. Similarly to the training
procedure, a random vector is passed through the mapping network
and both generators to output the pair of face images. Figure 2 shows
examples of paired generated images. To further improve the
generalization performance of our DL network, we propose the
following second-order training procedure.

Our learned degradation is combined with the degradation of
GFP-GAN (Wang X. et al., 2021) as a second-order refinement in
the following way: we use 35,000 pairs of clean and degraded faces
generated by trained green and red generators. Other high-
resolution images 35,000 are randomly selected from the FFHQ
dataset (Karras et al., 2018). The same degradation as in Wang X.
et al. (2021) is applied to both 35,000 degraded faces and the HQ
FFHQ dataset. In total, we have 70,000 training pairs of images that
cover both synthetic and real-world LQ images. The inclusion of
FFHQ high-resolution data enables us to have HQ training face
images with more diverse poses and fewer artifacts than the ones
generated by pre-trained models. Meanwhile, the use of GFP-GAN
degradation as a second-order degradation in generated LQ images
covers a wider range of LQ images, such as a mixture of low-
resolution, blur, noise, and JPEG artifacts (Wang X. et al., 2021).

3.3 Face restoration via Skip-Transformer

Training data collected based on the procedure in 3.2 are used to
optimize our ST image restoration network. The overall architecture
of the ST network is shown in Figure 3. It can be interpreted as a
hybrid encoder-decoder architecture [as in GLEAN (Chan et al.,

2021)] and a progressive style transformation [as in PSFRGAN
(Chen C. et al., 2021)], which connects the transformer-based
encoder with the StyleGAN-based decoder through skip layers.
The key novelty of our design lies in 1) the joint exploitation of
the global attention mechanism [via multiscale/pyramid
transformer (Wang W. et al., 2021)] and pre-trained models [via
StyleGAN (Karras et al., 2020)]; 2) the introduction of skip layers,
which generalizes the existing skip connection (Huang et al., 2017),
facilitates the information flow across the hybrid network.

3.3.1 Encoder
The encoder is made up of nine blocks in total, the first four

consists of one or multiple residual blocks, the next four are called
transformer blocks, and the last block is a fully connected layer.
Every block starts with a convolution layer that is used to
downsample features by setting the convolution stride as 2 (see
the supplemental materials for more details). In the transformer
block, we follow O’Shea and Nash (2015) and use depth-wise
separable convolution (DSConv) (Howard et al., 2017) to project
the input features to query, key, and value (Q, K, V). To reduce
training and inference time, we divide the output of DSConv into
smaller patches as in Eq. 5 and flatten them as in Eq. 6 where p2

means how many patches to divide. Both the Q and K features are
multiplied to generate the attention mask that is multiplied by the V
feature map, as in Eq. 7 where d is the number of channels on the
input feature map, to obtain the output. Inverse operations of
flattening and patch division, called Patch Merge module, are
performed to give the final output the same dimension as the
input. Finally, a convolution layer is applied. Figures 4, 5 detail
the components of the transformer block.

The self-attention layer is not used for the first four blocks due to
computational cost, and instead we have only the residual block. Inspired
byGLEAN (Chan et al., 2021), the first block of resolution 512 × 512 does
not down-sample its input and contains four successive residual blocks.
The last block is a fully connected layer that outputs the latent vector w
from the W ∈ R512 space of StyelGAN2 (Karras et al., 2020).

Patch Division: R C,W,H( ) → R
Cp2 ,Wp ,

H
p( ) (5)

Flatten: R
Cp2 ,Wp ,

H
p( ) → R

WH
p2

,Cp2( )
(6)

Output � softmax QKT( )V��
d

√ (7)

FIGURE 6
Design of the Skip Layer. The goal is to merge the features from both sources: Encoder and Decoder, by concatenation and passing the result
through a transformer block similar to the one in Figure 4.
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3.3.2 Skip layers
Skip layers are used to combine encoder features with decoder

features and can be thought of as an extension of skip connections
(Huang et al., 2017). In total, we used six skip layers for the output
resolution between 256 × 256 and 4 × 4; the multiscale
concatenation of the skip layer is similar to that of the encoder
block. For a hybrid design, we have used residual blocks for a

resolution greater than 32 × 32 and a transformer block for other
resolutions. The encoder and decoder features are concatenated,
passed through the skip layer, and passed through a convolution
layer to restore the original feature dimension of the decoder layer.
For a better illustration, Figure 6 shows an example of how the skip
layer works (for a resolution greater than 32 × 32, the self-attention
block is not used).

TABLE 1 Comparison of degradation methods (lower FID is better).

Degradation type → networks type ↓ GFP-GAN (Wang et al., 2021b) FID ↓ Ours FID ↓

GFPGAN (Wang et al., 2021b) 59.20 58.93

GLEAN (Chan et al., 2021) 60.76 58.53

Skip-Transformer (ours) 55.23 53.08

The bold values denote the best performance.

FIGURE 7
Visual comparison among different approaches trained on the two types of degradation. Column (A) refers to the output of networks trained in GFP-
GAN degradation (Wang X. et al., 2021) and column (B) refers to those trained in our degradation. Each row corresponds to a specific network
architecture: GFP-GAN (Wang X. et al., 2021), GLEAN (Chan et al., 2021) and Skip-Transformer (ours) respectively.
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3.3.3 Decoder
The decoder architecture is borrowed from the

StyleGAN2 generator (Karras et al., 2020), and we use pre-
trained weights to initialize the decoder network. Each layer takes
the latent vector w (output from the fully connected encoder layer)
and the output of the previous skip layer as input. Progressively, the
decoder combines the corresponding encoder and decoder outputs
into a pyramid reconstruction of the target face images. A similar
architecture was used in both GFP-GAN (Wang X. et al., 2021)
where a pre-trained GAN was used a priori and GauGAN (Park et

al., 2019) where a series of residue blocks is used for semantic image
synthesis.

3.3.4 Loss functions
ST network is optimized with the loss in Eq. 8. It consists of L2 loss

and loss of characteristics, where the pre-trained network ϕ (VGG16) is
used to extract deep features from the input and the ground truth. The
weights α, β and γ are 1, 0.02 and 0.02, respectively.

LST � α‖ŷ − y‖2 + β‖ϕ ŷ( ) − ϕ y( )‖2 + γLadv (8)

TABLE 2 Comparison with state-of-the-art methods. ↓ means that a lower value is better.

Our test data PSFR-RealTest WebPhoto-test

Method FID ↓ NIQE ↓ Method FID ↓ NIQE ↓ Method FID ↓ NIQE ↓

DFDNet 109.67 5.80 DFDNet 76.15 5.24 DFDNet 101.28 5.22

GLEAN 72.05 4.91 GLEAN 51.40 4.47 GLEAN 90.85 5.02

PSFRGAN 62.28 4.14 PSFRGAN 52.28 4.09 PSFRGAN 85.32 4.06

GFP-GAN 54.78 3.99 GFP-GAN 44.41 4.02 GFP-GAN 87.76 4.21

DL-ST (Ours) 53.05 3.63 DL-ST (Ours) 43.19 3.73 DL-ST (Ours) 81.96 3.76

The bold values denote the best performance.

FIGURE 8
Qualitative comparison of our DL-ST and three competing methods (note that the eyes and ear regions were better restored than others).
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we have used cross-entropy loss for adversarial loss (Ladv). The
discriminator network has the same architecture and is initialized
with the trained weights of StyleGAN2 (Karras et al., 2020).

3.3.5 Training procedure
The learning rate is 5 × 10−5 for the encoder and skip layers of the

generator, as well as for the discriminator. For the decoder (the prior
network), the learning is 5 × 10−6. We use cosine annealing with warm
restarts (Loshchilov and Hutter, 2016) as a learning rate scheduler. Adam
optimizer with beta parameters equal to (0.5, 0.99) and a batch size of eight
is applied. To stop early, our network is trained for 220,000 iterations.

4 Experimental results

In this section, we show that 1) our training data generation
procedure can improve the results of two other state-of-the-art
architectures as well as ours, thanks to the improved DLmodel; 2)
the proposed DL-ST network trained with our generated data
outperforms previous state-of-the-art methods both visually and
in terms of objective metrics, especially in the situation of
extreme poses; 3) both second-order training and the self-
attention mechanism contribute to the good performance of
DL-ST.

FIGURE 9
Qualitative comparison of ours and three competing methods on WebPhoto-Test data (top row) and PSFR-RealTest data (bottom row).

FIGURE 10
Our approach can restore faces with richer details and fewer artifacts than DFDNet (Wang X. et al., 2021), PSFRGAN (Chen C. et al., 2021) and GFP-
GAN (Wang X. et al., 20210.
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4.1 Test dataset

To generate challenging test data, we collected low-quality face
images from several public datasets: CelebA (Liu et al., 2015),
VGGface2 (Cao et al., 2017), AFLW (Koestinger et al., 2011),

LS3D-W (Bulat and Tzimiropoulos, 2017). We keep images with
a face region of size smaller than or equal to 40 × 40. In total, the
653 facial images were aligned well before testing.

4.2 Data generation methods

To verify the effectiveness of our data generation approach, we
train two state-of-the-art network architectures: GFP-GAN (Wang
X. et al., 2021) and GLEAN (Chan et al., 2021). Both were created
from scratch using our generated training dataset and the FFHQ
dataset (Karras et al., 2018) with the degradation implemented in
GFP-GAN (Wang X. et al., 2021).

For a fair comparison, all networks are trained in
200,000 iterations, and the losses and hyperparameters are kept
the same as in the original paper. Fréchet Inception Distance (FID)
scores were calculated. Table 1 shows that, when tested on our test
dataset, the proposed data generation method leads to a lower FID
metric for the three architectures. The visual comparison in Figure 7
confirms the superiority of networks trained on our degradation.

4.3 Comparison with state-of-the-arts
methods

We compare our DL-ST method with four other state-of-the-art
approaches: DFDNet (Li et al., 2020a), GLEAN (Chan et al., 2021,
PSFRGAN (Chen C. et al., 2021), and GFP-GAN (Wang X. et al.,
2021). Three datasets are used to evaluate network performance: our

FIGURE 11
Qualitative comparison of results for input with challenging pose.

TABLE 3 Comparison between the different training data generation
approaches: (1) is the generation of data without two-order degradation; (2) is
the proposed generation of data.

Dataset → Our test data PSFR-
RealTest

WebPhoto-
test

Approach ↓ FID ↓ NIQE ↓ FID ↓ NIQE ↓ FID ↓ NIQE ↓

Method (1) 58.96 3.92 43.82 3.88 84.29 4.01

Method (2) 53.05 3.63 43.19 3.73 81.96 3.76

The bold values denote the best performance.

TABLE 4 Comparison between the two network architectures with and without
Self-Attention.

Dataset → Our test data PSFR-
RealTest

WebPhoto-
test

- FID ↓ NIQE ↓ FID ↓NIQE ↓ FID ↓ NIQE ↓

w/o attention 55.33 3.76 44.23 3.82 85.43 4.05

w attention 53.05 3.63 43.19 3.73 81.96 3.76

The bold values denote the best performance.
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test data described in Section 4.1,WebPhoto-Test dataset fromGFP-
GAN (Wang X. et al., 2021), and the PSFR-RealTest dataset from
PSFRGAN (Chen C. et al., 2021). Table 2 shows that our DL-ST
outperforms the others in both the FID and the NIQE metrics.
Subjective comparisons of the qualitative results shown in Figures
8–10 also indicate that our method can arguably preserve more
details and suffers from fewer artifacts than state-of-the-art
methods. Note that the visual quality improvements are mostly
visible around facial landmarks (e.g., eyes and mouth). This is
because DL-ST has adopted a pre-trained StyleGAN-based
decoder in our hybrid design.

4.3.1 Challenging poses
To further verify the validity of our DL-ST, we compare our

proposed method with GFP-GAN (Wang X. et al., 2021) in the case
of input faces with challenging poses. Figure 11 shows a visual
comparison where both methods cannot perfectly reconstruct low-
quality faces with challenging poses, but our proposed method can
better reconstruct more details, especially for eyes and mouth with
fewer artifacts. This improvement is directly related to the two-
generator architecture for degradation learning. Compared to GFP-
GAN, DL-ST has a better generalization property because it
attempts to simulate a wide range of real-world degradations by
style transfer (refer to Section 3.2).

4.4 Ablation study

4.4.1 Training Data Generation
To investigate the effectiveness of our proposed data generation

method, we used 50% of the HQ data generated by the red generator
(Figure 1) applied the degradation of GFP-GAN and 50% of the LQ
data generated by the green generator (Figure 1) without the
degradation of GFP-GAN applied to train our ST network
[dubbed Method (1)]. Table 3 shows that with our proposed
second-order data generation strategy [dubbed Method (2)], both
the FID and the NIQE scores have been improved. Unlike the
combination method we have been using so far [or what we call (2)
in Table 3], GFP-GAN’s degradation is not applied on top of the
learned one; instead, both degradation sources are used 50% of the
time. Furthermore, only high-quality synthetic images are used.

4.4.2 Importance of self attention
To demonstrate the validity of the attention mechanism in

helping with the restoration task, we carried out another
experiment that removed all self-attention modules from our
proposed ST network. Table 4 shows that the ST network with the
attentionmechanism leads to a reduction in the FID andNIQE scores.

4.4.3 Failure cases
Despite the improvement over the current state-of-the-art, we

recognize that DL-ST has its own limitations. The experimental
results reported in this paper have only shown an improved
generalization on a few popular test datasets. The generalization
performance of DL-ST in more challenging real-world scenarios
(e.g., extreme pose) remains to be further explored. Meanwhile, our
experimental findings have shown that DL-ST is also susceptible to
undesirable artifacts, such as wrinkles and specularities around the

cheek regions. The question of how to address these weaknesses has
been left for future research.

5 Conclusion

In this work, we proposed a state-of-the-art DL-ST framework
for real-world face restoration tasks. The DL method combined the
learned degradation style from real-world LQ face images and hand-
made degradation to create a robust training dataset. Furthermore, a
newly designed ST network with transformer and skip layers allows
us to better use the generative priors for LQ face reconstruction. Our
extensive experimental results convincingly outperform previous
state-of-the-art methods, both subjectively and objectively. Future
work includes the investigation of the explainability of the proposed
DL-ST model and its further optimization in more challenging
situations (e.g., extreme poses). How to suppress undesirable
artifacts in reconstructed HR face images also deserves further study.
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