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Airborne forward-looking radar (AFLR) has beenmore andmore impoatant due to
its wide application in the military and civilian fields, such as automatic driving, sea
surveillance, airport surveillance and guidance. Recently, sparse deconvolution
technique has been paidmuch attention in AFLR. However, the azimuth resolution
performance gradually decreases with the complexity of the imaging scene. In this
paper, a data-driven airborne Bayesian forward-looking superresolution imaging
algorithm based on generalized gaussian distribution (GGD- Bayesian) for
complex imaging scene is proposed. The generalized gaussian distribution is
utilized to describe the sparsity information of the imaging scene, which is
quite essential to adaptively fit different imaging scenes. Moreover, the
mathematical model for forward-looking imaging was established under the
maximum a posteriori (MAP) criterion based on the Bayesian framework. To
solve the above optimization problem, quasi-Newton algorithm is derived and
used. Themain contribution of the paper is the automatic selection for the sparsity
parameter in the process of forward-looking imaging. The performance
assessment with simulated data has demonstrated the effectiveness of our
proposed GGD- Bayesian algorithm under complex scenarios.
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1 Introduction

Forward-looking radar (FLR) are increasingly receiving a lot of attention in many
military and civilian fields due to its advantages over optical sensing tools, such as search and
rescue, sea surveillance, airport surveillance and guidance (Curlander and McDonough,
1991; Cumming andWang, 2005; Richards, 2005; Skolnik, 2008). Traditional Doppler beam
sharpening (DBS) (Long et al., 2011; Chen et al., 2017) and synthetic aperture radar (SAR)
(Moreira and Huang, 1994; MoreiraPrats-Iraola et al., 2013; Li et al., 2016; Sun et al., 2022; Lu
et al., 2023; Huang et al., 2017) usually work on the strip mode or the squint mode, and the
observation area are on the side or squint side of the flying trajectory. The Doppler history
caused by the relative movement between the platform and imaging scene is the key point for
DBS or SAR imaging. Constrained by the Doppler imaging principles, however, neither of
these two methods can perform high-resolution imaging for the area in front of the flight
direction, resulting in a forward-looking blind zone. In addition, under the forward-looking
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imaging model, the observation area that are symmetrical about the
trajectory have the same range history, resulting in the Doppler
ambiguity for the left and right sides of the trajectory. The constant
pursuit of azimuth resolution performance is the driving force for
the development of forward-looking imaging techniques.

In order to acquire the fine details of the observation scene for
FLR, high range resolution can be guaranteed by exploiting the wide
bandwidth signals and pulse compression technology. According to
Radar hand book, the azimuth resolution is mainly inversely
proportional to the antenna aperture size, and it can expressed as

ρα ∝R
λ

D
(1)

where R is the slant range,D is the antenna aperture size of the radar
and λ is the wavelength. A antenna beam width will become smaller
and smaller when the antenna aperture becomes larger and larger. In
this case, high azimuth resolution can be acquired.

Forward-looking superresolution imaging technique (Richards,
1988; Kusama et al., 1990; Dropkin and Ly, 1997) become a research
hotspot in recent years, which can break through the inherent
limitation of the real antenna and can obtain higher azimuth
resolution than the real beam. Previous researchers have
proposed that the AFLR echoes can be expressed as a
convolution relationship between the antenna pattern and the
scatterers in the imaging scene. Theoretically, deconvolution
methods can be used to increase the azimuth resolution. The
deconvolution problem is ill-posed due to the low-pass
characteristics of the real antenna in the highly noise-sensitive case.

To mitigate the ill-posedness of the forward-looking
deconvolution problem, the truncated singular value
decomposition method (TSVD) is introduced by Huang and
Tuo et al. (Huang et al., 2015; Tuo et al., 2021), which can
enhance the azimuth quality by discarding some smaller
singular values. Then, Yang and Zhang et al. introduce the IAA
method (Zhang et al., 2018a; Zhang et al., 2018b) into the forward-
looking imaging. The regularization method (Chen et al., 2015; Li
et al., 2019; Zhang et al., 2019) is a good tool to transform the ill-
posed problem to the nearby well-conditioned problem, and this
operation can be achieved by selecting different regularization
constraints on the least square algorithm. Regularization can relax
the forward-looking deconvolution problem and acquire better
performance. Moreover, Yang and Zhang et al. proposes the total
variation (TV) (Zhang et al., 2020a; Zhang et al., 2020b) based
method to describe the scene information, which performs well for
the in preserving the contour of the target. To make full use of the
prior information of the forward-looking imaging scene, Yang,
Chen and Li et al. propose the Bayesian framework (Yang et al.,
2020; Chen et al., 2022; Li et al., 2022) based forward-looking
methods, which converts forward-looking into the optimization
estimation. The key point of these methods is to well establish the
imaging scene model.

In this paper, on the basis of the forward-looking imaging
model established previously (Richards, 1988; Kusama et al.,
1990; Dropkin and Ly, 1997; Chen et al., 2015; Huang et al.,
2015; Zhang et al., 2018a; Zhang et al., 2018b; Li et al., 2019;
Zhang et al., 2019; Zhang et al., 2020a; Zhang et al., 2020b; Yang
et al., 2020; Tuo et al., 2021; Chen et al., 2022; Li et al., 2022), a
data-driven airborne Bayesian superresolution imaging method

via generalized gaussian distribution (GGD- Bayesian) for
complex imaging scene is proposed. The main contribution of
the paper is the forward-looking method for the automatic
selection of the sparsity parameter. Moreover, the proposed
method performs parameter updating during each iteration,
which means that it is robust to different situations. The key
ingredient of the proposed GGD-Bayesian method is the use of
the quasi-Newton algorithm.

The arrangement of this paper is organized as follows. Section 2
introduces the Doppler convolution model for the FLR. In Section 3,
the data-driven airborne Bayesian forward-looking imaging model
via Generalized Gaussian Distribution is introduced in detail. In
Section 4, simulations by different methods are conducted to verify
the performance of the GGD-Bayesian method. Section 5 provides a
brief conclusion of this paper.

2 Forward-looking imaging model

2.1 Instantaneous range history model

Figure 1 shows the AFLR imaging geometric model. In the
reference Cartesian coordinate defined byOxyz, the radar platform is
flying along theX-direction with velocity v, and the flying altitude is
denoted with H. We assume that the instantaneous slant range
between the target P and the airborne-platform is (tm) , where tm is

FIGURE 1
AFLR for high-speed platform.

Frontiers in Signal Processing frontiersin.org02

Chen et al. 10.3389/frsip.2023.1093203

https://www.frontiersin.org/journals/signal-processing
https://www.frontiersin.org
https://doi.org/10.3389/frsip.2023.1093203


the slow-time variable. R0 is the initial slant range for tm � 0. θ0 is
the initial spatial azimuth angle. The wavelength is denoted with λ.
The FLR scans the imaging areas at an angular velocity ω.

The instantaneous range history can be given as

R tm( ) �
���������������������������
R2
0 − 2R0vtm cos θm cosφ + vtm( )2

√
(2)

where θm represents the instantaneous azimuth angle history, and
θm � θ0 + ωtm.

Performing higher-order Taylor series expansion on Eq. 2, we
can obtain the following form

R tm( ) � R0 − vtm cos θ cosφ + vtm cos θm cosφ( )2
2R0

+ O t2m( ) (3)

where O(t2m) is the higher-order term of t2m. Since vtm � R0, the
higher-order terms can be ignored. Thus, Eq. 3 can be expressed as

R tm( ) � R0 − vtm cos θm cosφ (4)

2.2 Decoupling effect model between range
and azimuth

Assume that the AFLR transmits a linear-frequency-modulation
(LFM) pulse signal, which is given as

s τ( ) � rect
τ

Tp
( ) · exp j2π fcτ + Kr

2
τ2( )[ ] (5)

where τ denotes the fast-time, representing range information. γ
denotes the LFM rate. Tp is the pulse width. The function rect(·) is
the rectangular window function, which is defined as

rect
τ

Tp
( ) � 1, τ| |≤ Tp

2

0, otherwise

⎧⎪⎨⎪⎩ (6)

After demodulation we can get

Sr τ, θ( ) � ∑
R

∑
θ

σ R tm( ), θm( )g θ − θm( ) · rect
τ − 2R tm( )

C
Tp

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝ ⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
· exp jπKr τ − 2R tm( )

C
( )2[ ] · exp −j4π R tm( )

λ
( )

(7)

where g(·) is the two-way antenna pattern, σ(R, θ) represents the
scattering coefficient.

After range pulse compression and range cell migration
correction (RCMC), the echoed signal can be expressed as

Sr τ, θ( ) � ∑
R

∑
θ

σ R tm( ), θm( )g θ − θm( )

· sinc B τ −
2 R0 − v

θm − θ0
ω

cos θm cosφ( )
c

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

· exp −j4π R0 − v
θm − θ0

ω
cos θm cosφ( )( ) (8)

where B is the range bandwidth of the signal. sinc(·) function is
defined by

sinc x( ) � sin πx( )
πx

(9)

From Eq. 9, it can be found that the coupling effect between the
range and the azimuth make it different to choose enough pulses.
Therefore, the range walk must be eliminated.

Keystone Transform (KT) can be used to compensate the linear
range walk (Li et al., 2008; Li et al., 2022), and the range migration
can be corrected as

Sr τ, θ( ) � ∑
R

∑
θ

σ R tm( ), θm( )g θ − θm( )

·sinc B τ − 2R0

c
( )( )

· exp −j4π R0 − v
θm − θ0

ω
cos θm cosφ( )( )

(10)

2.3 AFLR Doppler deconvolution model

Then we can further transform Eq. 10 as

Sr τ, θ( ) � ∑
R

∑
θ

σ R tm( ), θm( )g θ − θm( )

·sinc B τ − 2R0

c
( )( ) exp −j4π R0

λ
+ j2πfdtm( ) (11)

where fd represents the Doppler centroid. The Doppler centroid
can be written as

fd θm,φ( ) � 2v cos θm
λ

cosφ (12)

From above equation, it can be found that the echoed signal
in one range cell is the convolution between the antenna
pattern and the scattering coefficient (Zhang et al., 2020a;
Zhang et al., 2020b; Yang et al., 2020; Chen et al., 2022),
which is given as

Sr R, θ( ) � σ R tm( ), θ tm( )( ) ⊗ g θ( ) sin c Bτ( ) exp j2πfdtm( ) (13)

where ⊗ is the convolution operator.
Considering the effect of noise, Eq. 13 can be rewritten as

Sr θ( ) � σ θ( ) ⊗ g θ( ) ⊙ ϕ fd( )( ) + n θ( ) (14)
where ⊙ denotes the Hadamard product. n(θ) is the additive white
noise

From the previous derivation (Zhang et al., 2020b; Yang et al.,
2020; Chen et al., 2022; Li et al., 2022), the Doppler convolution
model can be written into the matrix form

S � G ⊙ Φσ + n (15)
where G is the antenna pattern matrix with the size of M × K, gi is
the two-way antenna pattern. S denotes the received signal matrix, σ
represents the target scattering coefficient matrix. Φ is the Doppler
Matrix.
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Φ �

1 1 / 1

ej2π
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fd θ2( )
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PRF

..

. ..
.

/ ..
.
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(17)

3 Data-driven airborne bayesian
forward-looking superresolution
imaging based on generalized Gaussian
distribution

In order to improve the performance of Doppler deconvolution,
it is very important to extract prior information. More recently,
sparsity information has been used for FLR imaging (Chen et al.,
2015; Zhang et al., 2018b; Li et al., 2019). However, the direct use of
sparsity is limited because the scatterers may not be sparse in the
single-beam space.

To solve this problem, we propose a multiple beam space model
(Chen et al., 2022). The single-beam echo is spliced to form a high-
dimensional space in the azimuth direction. When the number of
scattering points in the forward-looking scene is limited, the imaging
scene can be regarded as sparse. The sparsity of the scene is further
enhanced by the beam-merging operations. To fully describethe
sparsity of the scatters, Bayesian method based on the maximum a
posteriori (MAP) criterion is adopted. From our previous derivation
(Chen et al., 2022), the echoed signal in the high-dimensional space
can be given as
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For one range bin, Eq. 18 can be further expressed as

Y � H ⊙ ΦX + N (19)
where Y and X are echoes matrix and scatterers matrix in the high-
dimensional space, respectively. P is the number of beams,H and Φ

are the antenna matrix and expanded Doppler convolution matrix,
respectively.

Y � s1
T, s2

T, . . . , sP
T[ ]T (20)

X � σ1
T, σ2

T, . . . , σP
T[ ]T (21)

Φ �
Φ̂1

Φ̂2

1
Φ̂P

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ (22)

H �
G1

G2

1
GP

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣ ⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ (23)

From above analysis, the distribution functions of imaging scene
of one range bin may include the Gaussian distribution, Laplace
distribution, and other distributions in expanded beam space.
Therefore, the generalized Gaussian distribution (GGD) (Bishop,
2006; El-Darymli et al., 2015) is introduced to describe the sparsity
property of the forward-looking imaging scene, which is given as

PDF Xi

∣∣∣∣γ, β, σ2( ) � γ

2βΓ 1
γ( ) exp − x| |

β
( )γ[ ] (24)

where β � σ
����
Γ(1/γ)
Γ(3/γ)

√
, then Eq. 24 can be further expressed as

PDF Xi

∣∣∣∣a, b, μ, p( ) � a exp − b Xi − μ
∣∣∣∣ ∣∣∣∣( )p[ ] (25)

where a � p
2βΓ(1/p), b � 1/β, β � σ

����
Γ(1/p)
Γ(3/p)

√
, and p is shape parameter of

the distribution, μ and σ2 are mean and variance, respectively.
Since μ � 1

M∑M

i�1|Xi|, σ2 � 1
M∑M

i�1(Xi − μ)2, which can be
estimated from the real data. Then, we can get the estimated
shape parameter p̂, which is given as p̂ � F−1(μ2σ2) , where
F(x) � Γ2(2/p)

Γ(1/p)Γ(3/p), Γ(·) is the gamma function.
In order to simplify the derivation process, the mean can be

compensated. Then, we can get the following express

PDF Xi

∣∣∣∣a, b, μ, p( ) � a exp − b Xi| |( )p[ ] (26)

Under the condition of independent identically distributed
(i.i.d.), the probability density function (PDF) of the imaging
scene can be written as

PDF X
∣∣∣∣p( ) � aN exp −b X‖ ‖p( ) (27)

Based on Bayesian framework, the maximum a posterior (MAP)
estimation of the forward-looking imaging scene can be given as

X̂ � argmax PDF Y
∣∣∣∣X, ε2( ) · PDF X

∣∣∣∣p( )[ ] (28)

Where PDF(Y |X, ε2) � (2πε2)(−N/2) exp(− 1
2ε2‖Y −H ⊙ ΦX‖22),

which is the likelihood function.
After some simplification, the forward-looking imaging problem

can be illustrated as the following form

X̂ � argmin Y −H ⊙ ΦX‖ ‖22 + μ X‖ ‖p{ } (29)

where μ � 2ε2b is the regularization parameter, which is used to
balance the sparsity and forward-looking imaging quality in FLR.

To solve Eq. 28, we make the following approximation
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X‖ ‖p ≈ ∑L
i�1

x| |2i + ε( ) p
2 (30)

where ε is the parameter that balances the trade-off between
smoothness and approximation, and we choose ε � 1e − 5 in the
experiment.

Substituting Eq. 29 into Eq. 28, we can get

J X̂( ) � argmin Y −H ⊙ ΦX‖ ‖22 + μ∑L
i�1

x| |2i + ε( ) p
2

⎧⎨⎩ ⎫⎬⎭ (31)

To obtain the optimization solution, we can get the gradient of
J(X̂) with respect to X, which is given as

∇J X̂
n( ) � 2BHB + μΛ X̂

n( )[ ]X − 2BHY (32)

where B � H ⊙ Φ , Λ(X̂n) � diag ( 1

(|xni |2+ε)1−
p
2
){ }, the superscript

[·]H is the conjugate transpose operation, and we further define

A � 2BHB + μΛ, and the diag(·) is the diagonal matrix operation.
Moreover, we can obtain the iterative solution with the quasi-

Newton method, which can be written as

X̂
n+1 � X̂

n − A X̂
n( )[ ]−1 · ∇J X̂

n( ) (33)
where n is the iteration index. The forward-looking imaging result
X̂
n+1

moves from an initial position X̂
0
to the optimization result in

the direction of gradient ∇J(X̂n) descent
As is seen from the above derivation, we can see that the

regularization parameter is very important. Detailed
regularization parameter estimation information can be found in
(Cetin et al., 2014; Xu et al., 2015).

Suppose M is the number of azimuth sampling points, it need to
calculate antenna pattern matrix inversion, whose computational
complexity is O(M3). In addition to the operation of matrix inversion,
the calculation of gradient matrix is still essential. The dimension of
gradient matrix is the same as echo matrix, and the computational
complexity is O(M2). Let k and P is the number of iterations and the
number of beams, respectively. Then, we can get the computational
complexity of the proposed algorithm is O(k(PM)2 + k(PM)3).

4 Experimental data processing

Simulations are conducted in this section. We compare the
performance of real beam, TSVD, iterative shrinkage threshold

TABLE 1 System parameters.

Parameters Values Parameters Values

Platform 300 m/s Time width 10us

Platform height 1000 m Azimuth beam 3°

Band width 300 MHz Scanning area −15°–15°

FIGURE 2
True original scene of point target.

FIGURE 3
The Sparse statistical characteristics of forward-looking image. (A) Real part of the image. (B) Imaginary part of the image.
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algorithm (ISTA), IAA, and Bayesian method with the proposed
method.

4.1 Point targets experimental results

In order to verify that the method proposed has superior
performance. In this section, five-point targets are considered.
All of them have the same amplitude values. The comparisons
between real beam, TSVD, ISTA, IAA, Bayesian and the proposed
Bayesian method are given. Simulation parameters are shown in
Table 1.

Figure 2 shows the true original scene. In this experiment, the
white Gaussian noise is set as 20 dB. The real part and the imagery
part histogram statistical results for the imaging scene are shown in
Figure 3.

From Figure 3, we can see that the Laplace prior can be used
to describe the static property of the imaging scene. However, the

Laplace model matching performance is worse than GGD model.
The sparsity of the echo signal is well described in the GGD
model. The imaging results with different methods is given in
Figure 4.

From Figures 4A, B, we can see that the real beam and TSVD
methods has obvious signal aliasing, and they are hard to recover
the two close targets. Figure 4C shows the results of the ISTA
method, and ISAT method has lower sidelobes. Although the
resolution has been improved, it is still hard to distinguish the

FIGURE 4
Angular super-resolution results. (A) Real beam imaging method; (B) TSVD method; (C) ISTA Method; (D) IAA method; (E) Bayesian method. (F)
Proposed GGD-Bayesian method; (G) Comparison results of angular super-resolution.

TABLE 2 System parameters.

Parameters Values Parameters Values

Platform 300 m/s Time width 10us

Platform height 1000 m Azimuth beam 3°

Band width 300 MHz Scanning area −12°–12°
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two close targets. The result of IAA method is shown in Figure 4D.
It can be seen that the two closely spaced targets are well separated,
and the targets outline is sharpened. However, the IAA method
suffers from high sidelobes. Figure 4E gives the Bayesian based
forward-looking imaging results. The imaging results are clear, but
there is a certain degree of attenuation in the signal amplitude,
which reduce the image quality. Obviously, the proposed GGD-

Bayesian method in Figure 4E performs the best among all the
forward-looking imaging methods. Moreover, the GGD-Bayesian
method can eliminate the signal aliasing phenomenon and
suppress the noise amplification. The forward-looking
comparison results under different methods are illustrated in
Figure 4G, which further verify the effectiveness of the
proposed GGD-Bayesian algorithm.

4.2 Simple surface-target experimental
results

Point target simulation is demonstrated the performance of
the proposed GGD-Bayesian method from above results. A
simple surface target scene is constructed in this simulation.
Simulation parameters are shown in Table 2. Figure 5 gives
the true original scene. Then, the SNR is set as 10dBand 20 dB to
the echo, respectively. For the sake of consistency, all the
forward-looking results are normalized with the same color
scale.

In Figures 6A–F, the SNR is set as 10 dB. From Figure 6, we can
see that the real beam method has obvious signal aliasing
phenomenon. The TSVD method suffer is seriously affected by
noise, which may be caused by the difficulty in selecting proper
singular values at low SNR. The ISTA method has maintains the
integrity of the imaging information, but some residual images
appear around the target. The imaging results based on IAA

FIGURE 5
True original scene of point target.

FIGURE 6
FLR super-resolution imaging results with SNR = 10 dB. (A) Real beam imaging method; (B) TSVD method; (C) ISTA method; (D). IAA method (E)
Bayesian method; (F) Proposed GGD-Bayesian method.
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method is shown in Figure 6D. We can see that the targets outline is
sharpened, and the imaging information maintains intact. However,
there are many residual sidelobes around the target. Figures 6E, F
show the imaging results of Bayesian and the proposed GGD-
Bayesian method. Both of them perform well, and the proposed

GGD-Bayesian method performs the best. From Figure 6, we
can see that proposed GGD-Bayesian method not only enhance
the forward-looking imaging resolution, but also suppress the
noise.

The forward-looking results under different methods with
20 dB signal-to-noise ratio is shown if Figure 7. Similar to
Figure 6, the real beam method has low azimuth resolution in
Figure 7A. From Figures 7B, C, we can see that the TSVD and
ISTA method can be used to increase the azimuth resolution.
However, the resolution improvement is limited, there are
many residual shadows. The IAA method performs well to
improve the azimuth resolution. However, there are many
residual sidelobes around the target in Figure 7D. Though the
Bayesian method has better performance than IAA as shown in
Figures 7D, E, the proposed GGD-Bayesian method has the best
beam sharpening ability and noise suppression ability among all
the methods.

FIGURE 7
FLR super-resolution imaging results with SNR = 20 dB. (A) Real beam imaging method; (B) TSVD method; (C) ISTA method; (D). IAA method (E)
Bayesian method; (F) Proposed GGD-Bayesian method.

FIGURE 8
True original scene of complex surface targets.

TABLE 3 System parameters.

Parameters Values Parameters Values

Platform 300 m/s Time width 10us

Platform height 1000 m Azimuth beam 3°

Band width 512 MHz Scanning area −15°–15°
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4.3 Complex surface-target experimental
results

To further verify the performance of the proposed method, a
more complex airplane model is considered in this section. The SNR
is about 20 dB in this experiment. The airplane model is shown in
Figure 8. Simulation parameters are shown in Table 3.

As shown in Figure 9, the complex surface-targets using real
beam, TSVD, ISTA, IAA, Bayesian and the proposed GGD-Bayesian
method is first analyzed.

In Figure 9A, the forward-looking imaging result based on real
beam is blurred, whichmeans that the azimuth resolution is poor. As
illustrated in Figures 10B–D, the imaging results based on ISAT,
TSVD and IAA methods performs better than the real beam
method. However, there are still some shadows and sidelobes in
the images. The Bayesian method can realize better resolution than
IAA, and it can image the outline of targets, but more detailed
information is still blurred. In contrast, more detailed airplane
information has be recovered in the proposed GGD-Bayesian
algorithm, and few shadows can be found. In addition, we can
findmore detailed information (i.e., the aircraft engine) in Figure 9F.
The forward-looking imaging resolution is greatly improved, the
aircraft target is clear. Like above experiments, the results of the

proposed GGD-Bayesian method have higher azimuth super-
resolution ability and better noise suppression ability than those
of other methods.

4.4 Real data experimental results

In this section, the real data collected with a airborne Radar is
used to demonstrate the effectiveness of the proposed GGD-
Bayesian algorithm. The forward-looking area covers −9° to 9 in
the azimuth direction. The experiment was undertaken at Yixian,
Hebei Province. This scenario includes two typical areas
characterized by adjacent houses and roads, respectively.

As shown in Figure 10A, the real beam image suffers
from low resolution. The TSVD and ISTA imaging results
can be used to improve the azimuth resolution, as shown in
Figures 10B, C. In contrast, the IAA, Bayesian and GGD-
Bayesian method provides higher resolution. Moreover, the
proposed GGD-Bayesian method has the best performance.
The house and roads are more distinguishable in Figure 10E.
In addition, for the houses, the sharpening ability provided by
GGD-Bayesian method outperforms the existing super-
resolution methods.

FIGURE 9
FLR super-resolution imaging results with SNR = 20 dB. (A) Real beam imaging method; (B) TSVD method; (C) ISTA method; (D). IAA method (E)
Bayesian method; (F) Proposed GGD-Bayesian method.
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Based on above experiments, we can conclude that the proposed
GGD-Bayesian method can greatly improve the azimuth resolution
and suppress the noise.

5 Conclusion

Forward-looking imaging has attracted more and more attention
with the advantages of automatic driving and precision guidance. This
paper proposes an efficient data-driven airborne forward-looking
superresolution imaging algorithm based on Generalized Gaussian
Distribution. In the proposed GGD-Bayesian method, the sparsity
information of the imaging scene is described and constructed with
the generalized Gaussian distribution, which is quite essential to
adaptively fit different imaging scenes. The main contribution of the
paper is the automatic selection for the sparsity parameter in the process
of forward-looking imaging. This operation can ensure robustness
to different situations. Through the results of simulated data
processing, it is proved that the proposed method has better noise
suppression and azimuth resolution improvement than traditional
methods. In the future, we will focus on reducing the computational
complexity of the algorithm with enhanced forward-looking
performance.

In the future, we will focus on the forward-looking performance
enhancement with complex trajectory for the airplane applications.
(Huang et al., 2017).
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