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Independent component analysis (ICA) has been widely used for
electroencephalography (EEG) analyses. However, ICA performance relies on
several crucial assumptions about the data. Here, we focus on the granularity
of data rank, i.e., the number of linearly independent EEG channels. When the data
are rank-full (i.e., all channels are independent), ICA produces as many
independent components (ICs) as the number of input channels (rank-full
decomposition). However, when the input data are rank-deficient, as is the
case with bridged or interpolated electrodes, ICA produces the same number
of ICs as the data rank (forced rank deficiency decomposition), introducing
undesired ghost ICs and indicating a bug in ICA. We demonstrated that the
ghost ICs have white noise properties, in both time and frequency domains,
while maintaining surprisingly typical scalp topographies, and can therefore be
easily missed by EEG researchers and affect findings in unknown ways. This
problem occurs when the minimum eigenvalue λmin of the input data is
smaller than a certain threshold, leading to matrix inversion failure as if the
rank-deficient inversion was forced, even if the data rank is cleanly deficient by
one. We defined this problem as the effective rank deficiency. Using sound file
mixing simulations, we first demonstrated the effective rank deficiency problem
and determined that the critical threshold for λmin is 10−7 in the given situation.
Second, we used empirical EEG data to show how two preprocessing stages, re-
referencing to average without including the initial reference and non-linear
electrode interpolation, caused this forced rank deficiency problem. Finally, we
showed that the effective rank deficiency problem can be solved by using the
identified threshold (λmin = 10−7) and the correct re-referencing procedure
described herein. The former ensures the achievement of effective rank-full
decomposition by properly reducing the input data rank, and the latter allows
avoidance of a widely practiced incorrect re-referencing approach. Based on the
current literature, we discuss the ambiguous status of the initial reference
electrode when re-referencing. We have made our data and code available to
facilitate the implementation of our recommendations by the EEG community.
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Introduction

Independent component analysis (ICA) has been widely used in
EEG studies for the purposes of both artifact rejection and signal
extraction (Bell and Sejnowski, 1995; Makeig et al., 1996). The ICA
model can be described as indicated in the following expression.

x � As, (1)
where x represents the observed multi-channel EEG signals at scalp
electrodes, A is the mixing matrix, and s is the multi-channel time-
series activation of the latent independent components (ICs). ICA
solves this problem such that A makes the time-series of ICs
temporally maximally independent. The physiological
interpretation of the ICA model is that the mixing process with
no delay by A corresponds to the volume conduction effect and the
temporal independence of s corresponds to the neuroscientific
assumption that when groups of neurons are engaged in different
processes, the observed electric signals from them should be
independent. Thus, temporal independence is identified as
functional independence.

ICA relies on several assumptions and requirements to be
reliable and accurate. Violating them may lead to inaccurate
findings or even processing failure, depending on which
assumption is violated. In this technical study, we focused on one
of these cases in which ICA produces erroneous results without
being detected by the algorithm. We also caution against the widely
adopted, incorrect practice of re-referencing EEG data to average,
which is a human error that also causes this issue.

Defining the problem: The effective rank
deficiency

When we see multi-channel EEG recording as a matrix, the
rank of the data refers to the number of linearly independent
channels. For example, standard unipolarly referenced 64-ch EEG
data have a data rank of 64. When the multi-channel data consist of
linearly independent channels, the data are considered rank-full.
On the other hand, if a pair of scalp electrodes adjacent to each
other are bridged due to an injection of an excessive amount of
saline water, for example, these pairs of electrodes are electrically
connected and record identical signals redundantly. In this case,
two channels have identical data and the data rank is no longer 64;
it is reduced to 64–1 = 63. When the number of channels is larger
than the number of linearly independent sources, the data are
called rank-deficient. Data rank is important in ICA because ICA
produces the same number of ICs as the data rank number, not the
apparent number of scalp electrodes. When ICA is forced to
produce more ICs than the data rank, the process fails and
yields ghost ICs, at least in the case of implementation in
EEGLAB (Delorme and Makeig, 2004). The ghost IC is akin to
ICA’s “bug,” which we have examined to determine its properties
in the time, frequency, and spatial domains.

Whether a pair of channels are linearly dependent or not is a
qualitative question that can be answered with yes or no. However,
the mathematical meaning of the rank has more granularity, as
shown as follows. First, we applied the eigenvalue decomposition to
the channel-by-channel covariance matrix of the input EEG data
matrix. Next, we obtained the condition number c by dividing the
largest eigenvalue λ max by the smallest eigenvalue λ min (Strang,
2006).

c � λ max

λ min
. (2)

A very large condition number c indicates that the input data
matrix is close to being rank-deficient and singular (i.e., not
invertible), if not fully rank-deficient. A geometric explanation
for this situation is that a pair of vectors are near parallel but not
completely parallel. Since λmax is usually bounded by the range of
the measurement, λmin is the dominant factor that determines the
scale of c. Based on this observation, we propose the effective rank
deficiency, which we define as follows: an input EEG data matrix is
effectively rank-deficient if λmin is non-zero, but ICA (and any other
operation that involves matrix inversion) results show signs of
forced rank-deficient decomposition. The effective threshold of
λmin is expected to be dependent on the application, but
providing a demonstration under controlled conditions should
still be useful for gaining insight regarding this issue. For
example, when EEG data have a very small λmin, such as 10−8,
and ICA results show at least one ghost IC, then the EEG data are
considered effectively rank-deficient. If the same data are differently
processed so that λmin is slightly larger, such as 10−6, and ICA results
do not show any ghost ICs, then the EEG data are effectively rank-
full. We aimed to achieve the following goals in our study: 1) to
determine the effective threshold using a simulation study; 2) to
confirm the signatures of forced rank-deficient decomposition,
namely ghost ICs, using empirical EEG data; and 3) to identify
solutions and recommendations for this problem. In the following
paragraphs, we discuss two EEG preprocessing stages in which
effective rank deficiency can arise.

Case 1: Incorrect re-referencing practice
causes effective rank deficiency

In performing standard scalp-EEG preprocessing, there are two
stages during which effective rank deficiency can occur. The first
stage is re-referencing, which is often performed to the average
potential because it is easy to calculate and it minimizes local bias if
uniform electrode spacing is applied (Bertrand et al., 1985; Nunez
and Srinivasan, 2006). However, the ‘problem’ arises from an
incorrect implementation of average re-referencing, at least as
observed in EEGLAB. First, we review the basic facts of EEG re-
referencing in the following paragraphs.

It has been common practice to use a unipolar reference
(i.e., potentials at multiple scalp locations are measured against a
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potential at one, often non-scalp, location) when recording scalp
EEG data. The unipolarly referenced data have three key properties
(Hu et al., 2019): 1) rank-deficient by 1; 2) no memory effect; and 3)
orthogonal projector centering. The first property is the most
important and naturally leads to the second property. We focus
on the first two properties in the following paragraph.

The first property can be rephrased as follows: the unipolarly
referenced scalp EEG data are always rank-deficient by 1 if the initial
reference is taken into account. For those who have not yet
considered this, the statement may sound counterintuitive and
could even be a stumbling stone. Imagine the case of a simple
bipolar recording: two electrodes record a one-channel signal as a
difference (voltage is by definition a difference between potentials at
two locations). This relation of two-electrodes-to-one-signal is the
origin of rank deficiency by 1. Because unipolarly referenced
recording can be understood as the parallel repetition of bipolar
recordings for multiple electrodes while keeping the same reference
location, the same rank deficiency by 1 is inherited. This is the EEG-
context explanation to support the need for rank deficiency by 1 to
be corrected before re-referencing. If we follow the convention that
n-channel data refer to the data that contain n non-zero, full-rank
data channels, we need to ensure n + 1 channels by adding an
additional zero-filled channel to the rank-full EEG data before
re-referencing.

The second property, the “no memory effect,” indicates that, as
long as we follow the correct re-referencing, we can re-reference to
any other location without changing the linear property of the data if
the data are unipolarly referenced. In other words, one can re-
reference unipolarly referenced EEG data offline from the original
reference location A to the new reference location B, then from B to
C, and from C to A, which brings back the original data without any
change, regardless of the history of prior re-referencing processes.
However, once we re-referenced to the average potential, for
example, we would need to re-reference back to a unipolar
reference with any chosen electrode for the next re-referencing.
Repeating average-referencing after rejecting the initial reference
electrode invalidates the data and should be avoided.

Based on these facts, there is no ambiguity about how to re-
reference the data properly. Unfortunately, the current
implementation of the re-referencing process in the past and
current versions of EEGLAB (ver. 2022.0 or prior) does not
follow this correct practice. Additionally, there are several
implementation issues in the related solutions, which further
complicate the problem:

1. EEGLAB does not account for the initial reference electrode.
Therefore, EEGLAB reduces data rank by re-referencing. This
violates the first and second properties described previously (Hu
et al., 2019).

2. Although EEGLAB’s implementation of the ICA (pop_runica)
includes an effective rank deficiency checker, the hard-coded
detection of λ min <10−7 at the bottom (suggested by SH) does not
operate to make the input data effectively rank-full by reducing
input data dimensions; instead, it forces ICA into effectively
rank-deficient decomposition.

3. Even if the data rank is ensured to be cleanly deficient by one
[which can be detected by using the rank () function] through
EEGLAB’s re-referencing process, EEGLAB calculates λ min,

which reintroduces a non-zero small number
(typically <10−10) via numerical error. This non-zero noise
forces effectively rank-deficient decomposition.

In this study, we focused on these processes to quantify the
margin of the effective rank deficiency. We report the influence of
using the initial reference on λ min in applying average reference.

Case 2: Electrode interpolation can cause
effective rank deficiency

The second common practice that can produce effective rank
deficiency in EEG data is the spatial interpolation of rejected
electrodes (considered artifactual) using non-linear methods such
as spherical spline (Perrin et al., 1989), which is the default
interpolation method implemented by EEGLAB. Although linear
interpolation leads to a clean rank deficiency, non-linear methods
result in interpolated electrode signals that are not exactly the
weighted linear sum of other electrodes, leading to effective rank
deficiency. Similar to Case 1, we quantified the effect of the non-
linear electrode interpolation on λmin to evaluate the margin of the
effective rank deficiency.

The goal of the current study

The study goals included the following: 1) to determine the
effective λmin threshold; 2) to confirm the signatures of forced rank-
deficient decomposition, namely ghost ICs, using empirical EEG
data; and 3) to confirm solutions for this problem. For these goals,
we split the study into two parts. The first part was a simulation
study using auditory signals to determine the smallest λmin that
causes the ghost IC issue. We parametrically manipulated the
mixing weights to systematically vary λmin from 10−1 to 10−12

logarithmically to determine where ICA starts to fail. In other
words, the aim of the first part was to perform a torture test for
ICA to determine its tolerance to the progressively smaller λmin.

The second part was an investigation of how effective rank
deficiency arises from the two EEG preprocessing stages, namely,
incorrect re-referencing and electrode interpolation, using empirical
EEG data and EEGLAB. Based on the critical threshold of λmin

determined in the first part, the goal of the second part was to
evaluate λmin obtained from incorrectly re-referenced data, correctly
re-referenced data, and non-linearly channel-interpolated data.

Materials and methods

Audio signal mixing simulation

As an homage to the original ICA demonstration performed in
the late 1990s by four researchers from the Salk Institute (Terry
Sejnowski, Te-Won Lee, Scott Makeig, and Tzyy-Ping Jung), we
recorded the following four sentences as independent sound
recordings:

“Independent component analysis is a new data tool that is
sensitive to higher-order structure in multidimensional data” (JL).
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“ICA is also a potentially important tool for data mining, factor
analysis, clustering, and data compression” (SC).

“Neural networks that perform information maximization may
emulate processes that drive evolution and brain
organization” (MM).

“Infomax ICA is proving successful at modeling complex
biological time series and imaging data” (TPJ).

These sound demonstrations are available at https://github.com/
MakotoMiyakoshi/Effective-Rank-Deficiency.

In the current study, the audio files were recorded using a
condenser microphone Perception 200 (AKG), a USB audio
interface E-MU 0404 (Creative), and Thinkpad T42 (IBM) with a
sampling rate of 44,100 Hz. Offline, the signals that were shorter
than 9.288 s were zero-padded at the end, so they all were of equal
length. The signals were z-scored.

The four-channel audio signals were mixed differently to
generate four mixed signals. The mixing matrix M that was used
is as follows:

M �
1 1 − ρ 0.5 0.5

1 − ρ 1 0.5 0.5
0.5 0.5 1 0.5
0.5 0.5 0.5 1

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦,

where ρ varied logarithmically from 10−1 to 10−12, which gives the
ground truth of the minimum eigenvalue λmin. The mixed signals
were imported into EEGLAB 2022 (Delorme andMakeig, 2004) and
decomposed using Infomax ICA (Bell and Sejnowski, 1995). The
criterion for successful decomposition was to hear a single person’s
voice when playing the decomposed signals.

In addition to the required conditions relating to the goal of the
study, we took advantage of this simulation to perform several
confirmatory demonstrations in hope of helping novice ICA users
directly experience important properties of ICA by listening to the
decomposed signals, including 1) the time-invariant property by
shuffling the 1-s time blocks before ICA; 2) undercomplete data
decomposition by using four three-source mixings with four
channels—see Chapter 13 of the book Independent Component
Analysis (Hyvärinen et al., 2001); and 3) overcomplete data
decomposition by using three four-source mixings with three
channels. In addition, the difference between correct and
incorrect re-referencing to average is demonstrated to provide an
additional example that can be tested by ears. For these
demonstrations, the following mixing matrix M was used.

M �
1 0.9 0.8 0.8
0.8 1 0.7 0.9
0.7 0.8 1 0.9
0.6 0.8 0.7 1

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦.

Empirical EEG data demonstrations

We designed a demonstration of the two cases of effective rank
deficiency caused by 1) incorrect re-referencing and 2) non-linear
electrode interpolation using EEGLAB’s tutorial dataset (128 Hz
sampling, 32 channels, 238.3 s), which was obtained from a
previously published study (Makeig et al., 1999). To briefly
describe the data, a visual attention experiment was performed,

where stimuli appeared in any of five squares arrayed horizontally
above a central fixation cross. In each experimental block, one
(target) box was a color that was different from the rest.
Whenever a square appeared in the target box, the subject was
asked to respond quickly with a right thumb button press. If the
stimulus was a circular disk, the subject was asked to ignore it. These
data were constructed by concatenating 3-s epochs from one subject,
each containing a target square in the attended location (“square”
events, left-hemifield locations 1 or 2 only), followed by a button
response (“rt” events). The data were stored in continuous data
format to illustrate the process of epoch extraction from continuous
data. There were 80 trials included in the analysis, regardless of the
conditions.

For the case of incorrect average referencing, we compared two
re-referencing approaches: one with the addition of the initial
reference channel (i.e., a channel with zero-filled data) and the
other approach without (current default method). We calculated
λmin for each case to determine how much margin they had before
causing effective rank deficiency. The additional ICA was performed
using the Infomax algorithm implemented in EEGLAB’s runica()
function with default parameters (“extended,” 1). The subsequent
equivalent dipole fitting was applied to ICs using Fieldtrip library
(Oostenveld et al., 2011) and the electric forward model based on the
Montreal Neurological Institute (MNI) template (Evans et al., 1993;
Collins et al., 1994).

For the case of spherical spline channel interpolation (Perrin
et al., 1989) implemented in the default EEGLAB option, we
performed leave-one-out cross-validation (LOOCV) to balance
the possible effect of spatial selection on the minimum
eigenvalue obtained. The final number of channels used was 30,
after rejecting two non-EEG channels. Mean values were reported.

The properties of the ghost ICs were evaluated for the case of
spherical spline interpolation, in both the frequency (power spectral
density, PSD) and time domains (event-related potential, ERP).

Results

Audio signal mixing simulation

Logarithmic variation of λmin from 10−1 to 10−12 demonstrated
that ICA fails when λmin <10−7. The results are summarized in
Table 1. The source audio signals, their linear mixings, the

TABLE 1 Results from the audio signal mixing simulation.

λmin Description of the decomposed signals

> 10−6 Normal decomposition obtained

10−7 Two ICs had mixed voices

10−8 One IC had mixed voices, and one IC became white noise

10−9 Complex numbers appeared in the mixing matrix

10−10 Complex numbers appeared in the mixing matrix

10−11 Two ICs had mixed voices, and one IC became silent

10−12 Yielded only three ICs
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decomposed signals obtained, and the demonstrating summary
movies are available at https://github.com/MakotoMiyakoshi/
Effective-Rank-Deficiency/.

The results from the ICA demonstration are summarized in
Table 2. Note that the condition of random shuffling of the 1-s
blocks should not impact ICA performance because all the time
frames are shuffled differently to minimize learning bias at the

beginning of each iteration of the gradient descent process. Also,
note that, due to the lack of an effective countermeasure for the
rank-deficient input data, the decomposition under the
undercomplete condition failed. It was necessary to manually
specify the correct rank number by using the “pca” option, which
performs dimension reduction by rejecting principal components, as
many as required, by counting the ones with the smallest

TABLE 2 Results from the ICA demonstration using audio signals.

Description of the conditions Description of the decomposed signals

Randomly shuffling the 1-s blocks Normal decomposition obtained

Undercomplete (three sources and four mixings) Two ICs mixed; success after PCA dimension reduction to 3

Overcomplete (four sources and three mixings) All ICs mixed

TABLE 3 Results from the empirical EEG demonstration.

Operation Description of the decomposition Order of λ min

Control data Normal decomposition obtained 100

Re-referencing (correct) Normal decomposition obtained 100

Re-referencing (incorrect) Ghost IC appeared 10−10

Electrode interpolation Ghost IC appeared 10−10

FIGURE 1
Left, power spectral density (PSD) of all the independent components (ICs) after applying spherical spline electrode interpolation. The PSD plot for
the ghost IC is highlighted in red, and those for other ICs are represented in gray. Note that the ghost IC’s PSD does not follow the 1/f exponent or the large
line noise at 60 Hz that is commonly present in other ICs. Right, ERP, the time-domain representation, of the ghost IC compared with the first-ranked
(i.e., it had the largest variance) “Normal” IC. The shaded area indicates one standard error of the mean. The ghost IC was ranked as the last IC (i.e., it
had the smallest variance), and the averaged potential did not show any ERPmodulation. The ghost IC showed surprisingly normal spatial distributionwith
below-average (3.6% vs. mean 20.2%, SD 12.0) residual variance from the equivalent dipole fitting, and it largely overlapped with the “Normal” IC.
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eigenvalues. These results from the case of undercomplete ICA
replicated the predictions made by the classic study on the
nature of ICA (Hyvärinen et al., 2001). We will discuss the
recommended solution for the case of EEG preprocessing in
which data are known to be rank-deficient. The source audio
signals, their linear mixings, and the decomposed signals
obtained are available at https://github.com/MakotoMiyakoshi/
Effective-Rank-Deficiency/.

Empirical EEG data demonstrations: Ghost
ICs are ICA’s bug

For the case of re-referencing, the correct method, i.e., including
the initial reference when re-referencing and then discarding the
initial reference channel, resulted in a successful rank-full
decomposition. Meanwhile, the incorrect method, i.e., without
including the initial reference ICA, failed to decompose the
signals. ICA failed for the case of non-linear electrode
interpolation using spherical spline interpolation. These results
are summarized in Table 3.

The spatial, temporal, and frequency properties of the ghost
IC obtained are illustrated in Figure 1. The frequency domain
analyses confirmed that the ghost IC did not follow the patterns
of other ICs and showed unreasonable independence. The ghost
IC’s flat PSD resembled white noise. In the time domain analysis,
the ghost IC did not show visible ERP modulation. The ghost IC
was ranked as the last IC among others, indicating it had the
smallest variance. Visual inspection of the scalp topography of
the ghost IC indicated surprisingly normal spatial distribution.
The subsequent equivalent current dipole fitting produced a very
good result, and the residual error was as small as the most
dominant IC (i.e., the first-ranked IC after variance sorting; 3.5%
vs. 3.6%, respectively). The scalp topography of the ghost IC
showed overlap with the most dominant IC. This suggests the
ghost IC’s dependence on the most dominant IC and the
formation of a subspace.

Discussion

What is the bug, after all?

The main problem we were motivated to address in this study is
that even if the input data are confirmed to be rank-full (e.g., using
MATLAB’s rank () function), under the condition where the
minimum eigenvalue λmin is smaller than 10−7, the effective rank
is no longer full from the viewpoint of ICA, which causes rank
deficiency. Such decomposition produces ghost ICs, which forces
the ICA to produce a number of components that is larger than the
effective rank; hence, the “bug”. We investigated the two major
causes of this issue in the scenario of standard EEG preprocessing,
namely an incorrect average reference calculation and the non-linear
spherical spline interpolation for electrode interpolation. To avoid
this issue, we propose two solutions: 1) apply the correct average
referencing, and 2) calculate the effective data rank that is used for
PCA dimension reduction in applying ICA.

The first goal of the study: To determine the
practical threshold of λmin

Although the effective threshold is expected to be dependent on
each application, with the given conditions and tools that are
described in this study, we determined that the critical threshold
of λmin exists between 10−6 and 10−7. This means that whenever we
perform ICA, we should check whether the criterion λmin > 10−6 is
met to prevent ghost ICs from appearing. For better validation of
this critical threshold, more empirical tests are required. We hope
user information and feedback on this point are systematically
accumulated to improve the accuracy of this estimate.

The second goal of the study: To confirm the
signature of forced decomposition of rank-
deficient data

In this study, we established a reproducible procedure to
generate ghost ICs. We confirmed the properties of the ghost ICs
as follows: 1) power spectral density (PSD) does not follow the
pattern that all other ICs follow, such as the 1/f exponent, the alpha
peak, or even the large 60-Hz line noise peak. The PSD of the ghost
IC was rather flat, which indicates a resemblance to white noise; 2)
the ghost IC did not show the temporal structure of the event-related
potential, which is shown, as expected, by other ICs. This
observation is in line with the PSD finding that the data appear
similar to white noise; 3) counterintuitively, the scalp topography of
the ghost IC had a normal appearance. The subsequent equivalent
dipole fitting showed a good result, and the residual variance was
below average. We speculated that the ghost IC may appear as an
imperfect or broken subspace of the most dominant IC. If this is the
case, it suggests that a ghost IC should be paired with a dominant IC
with a largely overlapping scalp topography. Overall, the ghost IC
showed clearly distinguishable properties in the time-frequency
domain, which is a useful clue for suspect detection. Meanwhile,
the presence of ghost ICs can be easily missed upon visual inspection
of the IC scalp topographies.

The third goal of the study: To confirm the
solution

The effective rank deficiency caused by EEGLAB’s re-
referencing is a human error as there is no theoretical reason for
data rank to become deficient during this operation. Although we
wait for EEGLAB’s update and correction, we provide a modified
function “reref.m” that can be used to overwrite the relevant code as
a temporary patch to address the issue; the patch code can be
downloaded at https://github.com/MakotoMiyakoshi/Effective-
Rank-Deficiency. On the other hand, to address the effective
rank deficiency introduced by non-linear electrode interpolation,
the best solution is to explicitly input the effective rank for ICA,
i.e., the number of eigenvalues larger than 10−6. Using the MATLAB
command line, it can be calculated as follows:

dataRank � sum eig cov double EEG.data′( )( )( )> 1E − 7( ).
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Then, enter the obtained number as input for the “pca” option
for runica.m or “pcakeep” for runamica.m. Meanwhile, we suggest
changing the default behavior of the rank checker implemented in
pop_runica () so that when it detects λmin < 10−7, the algorithm uses
the number of the effective rank by using the “pca” option to prevent
ghost ICs from appearing.

Is using PCA before ICA always bad?

One study made a claim that applying the principal component
analysis (PCA) before applying ICA for the sake of dimension
reduction requires caution because abusing PCA for excessive
dimension reduction deteriorates the quality of ICA (Artoni
et al., 2018). This conclusion itself is not surprising based on the
definition of lossy compression, i.e., greater dimension reduction at
the cost of greater information loss. However, our confirmatory
demonstrations using sound files showed that undercomplete ICA
(i.e., number of sources < number of mixings) failed, and specifying
the correct data rank by using PCA dimension reduction to
manually set the rank-full decomposition helped ICA yield the
sources correctly. The failure in the undercomplete
decomposition and the use of PCA dimension reduction to make
it effectively rank-full or reduce non-signal-subspace redundancy
are predicted by the classical study on ICA, per Chapter 13 of the
book by Hyvärinen et al. (2001). Thus, the study by Artoni and
colleagues should not be taken as a message that using PCA before
ICA is unconditionally bad. Rather, our view is that their study
focused on the upper bound (i.e., abuse) of the use of PCA in
preprocessing, while the study by Hyvärinen and colleagues focused
on the lower bound (i.e., shortage) of the use of PCA. We
recommend that PCA dimension reduction should be used
whenever effective rank deficiency is detected. One important
point Artoni and colleagues clarified, in our opinion, is that
obtaining 95% of the variance after PCA reduction could be still
considered aggressive, whereas Hyvärinen and colleagues casually
hinted at 90% as a general idea. Because the scalp-recorded EEG data
are heavily correlated due to volume conduction, the variance
distribution across PCs is severely skewed. For the case of
applying ICA to realistic scalp EEG recordings, it is an
overcomplete decomposition (i.e., more sources than electrodes)
as long as the data signal-to-noise ratio is reasonably high. Thus, for
the standard EEG data decomposition, the recommended practice is
to use PCA only for rank adjustment and to avoid possible
overfitting (i.e., data length is too short for the number of
electrodes). The EEGLAB developers have been suggesting a
heuristic criterion, indicating that the input data length should be
greater than (number of electrodes)2 x 20 (Makeig andOnton, 2011),
given a 256 Hz sampling rate or lower. If the input data length is
shorter than this criterion, the use of PCA is recommended to avoid
overlearning. Unfortunately, the current implementation of the data
rank checker in EEGLAB is suboptimal because it is unable to reduce
the data rank using PCA to allow effective rank-full decomposition.
We propose that the number of λ larger than 10−6 should be
routinely calculated to enable rank-guided ICA for improvement.

Ambiguous status of the initial reference in
the literature when re-referencing

The difference between “correct” and “incorrect” re-referencing
could be trivial if the matrix inversion is not calculated; hence, the
rank of data does not matter. Otherwise, the widely used spherical
spline channel interpolation (Perrin et al., 1989; Kang et al., 2015)
would have been considered an issue. However, as the use of a linear
spatial filter including ICA became popular, the impact of the
problem caused by effective rank deficiency also became non-
negligible.

The literature on EEG research shows that one of the earliest
studies on the use of average reference is a one-page article with a
large schematic illustration that clearly shows the “rank-deficient
by 1” property (Offner, 1950). Another early study clearly
indicated that the initial reference is included when re-
referencing the unipolarly referenced EEG to the average
potential (Osselton, 1965). Thereafter, however, the status of
the initial reference electrode when re-referencing became
ambiguous. Whether the initial reference should be included or
not is not discussed in a later theoretical study (Bertrand et al.,
1985). Similarly, whether n in p.35 (Dien, 1998),N in Eqs 7.8–7.10
(Nunez and Srinivasan, 2006), and m in Eq. 3 (Dong et al., 2017)
include the initial reference electrode or not remains ambiguous.
We contacted these authors and confirmed that they included the
initial reference when re-referenced data were calculated (Dezhong
Yao, Joseph Dien, Ramesh Srinivasan, and Paul Nunez, personal
communications). We summarized the problem that relates to the
confusion about average referencing in Figure 2. There are actually
2 × 2 ways to calculate average-referenced data, depending on
whether the initial reference is included in calculating the average
and whether it is recovered after subtraction. However, there is
only one incorrect method, which is method “A”, as this approach
does not include the initial reference electrode in any way. As a
result, after re-referencing, the data rank is deficient by 1,
indicating a loss of information. The other three methods, “B,”
“C,” and “D”, do not cause this rank deficiency, and the original
information and data, in a linear sense, are preserved. In this sense,
these three methods are all valid. Interestingly, in our personal
communications, four researchers indicated that “D” was the
correct method, while two researchers indicated that method
“B” was correct. Note that the differences between “B” and “D”
are only scalar and minor (for an n-channel system, the
denominator is 1

n for “B” and 1
n+1 for “D” and “C”).

Unfortunately, some of the popular EEG analysis toolboxes,
such as EEGLAB (Delorme and Makeig, 2004) and Fieldtrip
(Oostenveld et al., 2011), take an approach that follows method
“A”. This may be due to the lack of a clear description of this point
in the previous literature. We suggest that the authors of these
toolboxes adopt a correct re-referencing method to prevent the
problems of effective rank deficiency and ghost ICs from arising in
the downstream process. Meanwhile, some other applications,
such as EP Toolkit (Dien, 2010), support correct re-referencing,
thereby eliminating the potential issue of “ghost PCs” in later PCA
decomposition.
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Future study

A potential future study on the issue of effective rank-deficient
ICA includes an investigation of the validity of other ICs when a
ghost IC appears. Because of the multivariate nature of ICA,
obtaining one invalid IC could undermine the quality of all other
ICs. However, as demonstrated in this study, a ghost IC may be
paired with a certain normal IC as a pseudo-subspace, and the
impact on other ICs may be limited. We attempted to address this in
our study but encountered an issue with the reproducibility of the
ICA. Using the same tutorial data, we confirmed that using the
options “extended,” 1, “lrate,” 1e-5, and “maxsteps,” 2000 allowed
reproducible results in IC scalp topographies and their variance-
sorted orders across 10 runs. However, we decided not to include
this test in the current report for practical purposes; when we find a
ghost IC in our results, the whole batch of datasets processed using
the same code should be re-processed anyway, for the sake of
perfection. In that sense, investigating the validity of other ICs in
the presence of a ghost IC is not very meaningful.

Conclusion

To conclude, effective rank deficiency occurs in electrode
interpolation because the spherical spline interpolation is a non-
linear method; however, it should not be a concern in re-
referencing if re-referencing is applied correctly by including

the initial reference. We propose a simple effective rank
deficiency checker, which should be used to perform the
effective rank-full decomposition as it reduces the data
dimension using PCA dimension reduction whenever it
detects effective rank deficiency. For future steps, it is advised
that, when preprocessing EEG data, the proposed effective rank is
explicitly calculated before using any solution involving matrix
inversions.
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FIGURE 2
Summary description of the problem, which relates to confusion about average referencing. There are 2 x 2 ways to calculate the average reference.
Note that rank deficiency occurs only when using method A. For the case of method B, one may discard any one channel, except the initial reference, to
retain the data rank N and make the averaged reference data rank-full. We found that there is debate regarding the correctness of methods B, C, and D;
however, in the linear sense, they are all the same since they maintain the same rank between the points before and after the average referencing.
The difference between subtracting the average potentials of the N and N + 1 channels only relates to scalar differences.
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