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In VoIP applications, such as Interactive Voice Response and VoIP-phone

conversation transcription, speech signals are degraded not only by

environmental noise but also by transmission network quality, and

distortions induced by encoding and decoding algorithms. Therefore, there

is a need for automatic speech recognition (ASR) systems to handle integrated

noise-network distorted speech. In this study, we present a comparative

analysis of a speech-to-text system trained on clean speech against one

trained on integrated noise-network distorted speech. Training an ASR

model on noise-network distorted speech dataset improves its robustness.

Although the performance of an ASR model trained on clean speech depends

on noise type, this is not the case when noise is further distorted by network

transmission. Themodel trained on noise-network distorted speech exhibited a

60% improvement rate in theword error rate (WER), wordmatch rate (MER), and

word information lost (WIL) over the model trained on clean speech.

Furthermore, the ASR model trained with noise-network distorted speech

could tolerate a jitter of less than 20% and a packet loss of less than 15%,

without a decrease in performance. However, WER, MER, and WIL increased in

proportion to the jitter and packet loss as they exceeded 20% and 15%,

respectively. Additionally, the model trained on noise-network distorted

speech exhibited higher robustness compared to that trained on clean

speech. The ASR model trained on noise-network distorted speech can also

tolerate signal-to-noise (SNR) values of 5 dB and above, without the loss of

performance, independent of noise type.
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1 Introduction

ASR systems provide services such as voice search and

automatic call transcription. Thus, ASR systems has been

widely implemented in health care systems, virtual assistants

on mobile devices, and cognitive bots. Because speech is the most

preferred and natural mode of communication between humans,

the industries utilizing ASR applications will continue to expand.

Today, Voice over Internet Protocol (VoIP) is the most

applied method for voice communication transmission. VoIP

is a common component of applications such as social

networking services, and multimedia streaming applications.

To improve the user experience and quality of service, the

ASR is built into VoIP applications. Few examples include AI-

powered meeting transcription and transcription in call centers.

The VoIP-transmitted speech presents a new challenge to the

ASR systems as it originates from diverse sources and is captured

in varying levels of environmental noise. This encompasses

hand-free devices on cars and VoIP calls in noisy

environments such as train stations and airports among other

examples. Furthermore, VoIP speech signals are distorted not

only by the environmental noise but also the transmission

network. These characteristics of VoIP speech signals cause

hindrance to the designing of robust and high accurate ASR

systems.

Deep learning has outperformed other ASR techniques Li

and Sim (2014). To build highly accurate and robust deep-

learning-based ASR, various techniques has been studied,

including feature extraction, language models, deep learning

architectures, and rich characteristics datasets Malik et al.

(2021). Deep learning is reliant on the availability of massive

amounts of data. Thus, speech datasets for the development and

evaluation of ASR systems have evolved over time.

Traditional deep-learning-based ASR systems were trained

on studio-recorded read speech signal datasets. The earlier such

datasets are the ATR Japanese speech database Kurematsu et al.

(1990), TIMIT Acoustic-Phonetic Continuous Speech Corpus

Garofolo et al. (1993), WSJ corpus Charniak et al. (2000), and

Mandarin Chinese broadcasting news Wang et al. (2005).

However, a speech read from a pre-prepared script lacks the

naturality of everyday human speech. Furui et al. introduced a

Corpus for Spontaneous Japanese Furui et al. (2000). The

spontaneous monologue bears close resemblance to the

natural human conversation. With the prevalence of deep

learning, much larger datasets were introduced to tap into the

potential of deep learning in ASR.

Deep learning based ASR models trained on large datasets

tend to yield high performance. Large datasets such as

LibriSpeech Panayotov et al. (2015), TED-LIUM Corpus

Rousseau et al. (2012), Köhn et al. (2016) and Common Voice

Ardila et al. (2020) contains a 1000s hours of speech. These large

datasets have improved the performance of ASR systems.

However, the performance still degrades in real application

environments, where speech signals are usually captured with

environmental noise.

The ASR systems trained on large datasets of studio-recorded

speech exhibit low performance on noisy or degraded speech.

This has led to the introduction of speech datasets recorded in

natural environments such as the domestic setting, for example

the DIRHA-English corpus Ravanelli et al. (2015), CHiME-2

Barker et al. (2013), CHiME-3 Barker et al. (2015), CHiME-5 and

Barker et al. (2018). Natural environment speech datasets

encompasses recorded speech spoken live in noisy

environments and simulated speech datasets that were

generated by artificially mixing the clean speech data with

noisy backgrounds. The introduction of speech datasets

recorded in natural, noisy environments has improved the

robustness of ASR. However, the speech may also get

distorted as a result of degradation that occurs when it is

transmitted through an IP network.

Although Environmental noise degrades the speech quality,

distortion and degradation are also introduced in the

transmission of speech through computer networks. Low

bandwidth, echo, encoding–decoding distortion, differences in

handsets, and network poor quality all present new challenges

toward building robust and highly accurate ASR systems. For the

CTIMIT Brown and George (1995) dataset generated by

transmitting clean voice speech through a cellular network,

network distortions caused a 58% drop in the ASR

performance. Training on network-distorted speech increased

the recognition accuracy by 82%.

VoIP applications use packet-switched networks, which have

different characteristics from that of circuit-switched networks.

In the VoIP applications, the speech quality is degraded by delay,

jitter, packet loss, packet burst loss, network bandwidth,

encoding and decoding algorithms da Silva et al. (2008). The

effect of combined noise, network and encoding parameters on

deep-learning-based ASR models has not been extensively

studied.

The first contribution of this paper is the analysis of the

impact of noise-network speech distortions on the ASR system

accuracy. This analysis is important for designing and planning

VoIP-based ASR systems, such as Interactive Voice Response, as

well as VoIP-phone conversations transcription. The second

contribution of this paper is a discussion of the potential

performance optimization of the existing ASR models pre-

trained on clean speech datasets by re-training the models

using integrated noise-network distorted speech. Using

transfer learning, the performance of the existing ASR models

can be optimized to robustly handle noise-network distorted

speech.

The reminder of this paper is structured as follows. Section 2

explains the noise-network dataset characteristics and

parameters, and the network emulation process used to

generate the noise-network distorted speech dataset. The

process encompasses the generation, encoding, transmission
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through a simulated network environment, and decoding of

noisy speech, in order to generate the noise-network distorted

speech. Section 3 presents the experiment setup for a

performance evaluation of the ASR on noise-network

distorted speech dataset. We evaluated two ASR speech

models: the ASR model trained on clean speech dataset

(CSM) and the ASR model trained on noise-network speech

dataset (NNSM). The NNSM was trained by fine-tuning a pre-

trained CSM on noise-network distorted speech. The evaluation

examines the effects of noise type and network conditions such as

delay, jitter and packet loss on the performance of the ASR

systems. The performance of the two models is compared on

clean speech dataset, and noise-network distorted speech dataset.

Section 4 presents the evaluation results. Finally, section 5

concludes our contribution and suggests future directions of

research.

2 Dataset

The datasets used for the training and testing of deep-

learning-based ASR systems has evolved from clean-read

speech, spontaneous-speech, large dataset size speech corpus,

artificially added environmental noise, speech recorded in

domestic environments, and speech transmitted through

cellular networks. The proposed dataset aims to build on the

existing datasets with the addition of distortions induced by

network conditions and encoding-decoding schemes on speech

transmitted through the VoIP system. This dataset is built on

clean speech, which is then distorted by noise at different signal-

to-noise ratios (SNR), then transmitted at different network

quality of service (QoS) parameters to generate noise-network

distorted speech dataset.

2.1 Acoustic characteristics

Noisy speech signals were obtained from a noisy speech

corpus (NOIZEUS) Hu and Loizou (2007). This database

contains 30 IEEE sentences produced by three male and three

female speakers, recorded in a sound-proof booth, and then

artificially corrupted by eight different real-world noises see

Table 1. The NOIZEUS database was selected, as it includes

all the phonemes in the American English language.

2.2 VoIP network characteristics

VoIP network QoS characteristics include delay, jitter, bit

rate, loss rate, and loss distribution. VoIP application parameters

that affect speech quality can also include Encoding–decoding

parameters, such as bit rate and Forward error correction. The

impact of these factors on the perceived QoS in VoIP

communications has been studied extensively Sun and

Ifeachor (2002, 2006); da Silva et al. (2008); Hu et al. (2020).

There are many network QoS parameters that can affect the

transmitted speech signals quality. However, we considered only

those with a high impact on QoS of VoIP applications, which are:

loss rate, burst packet loss, delay, and jitter. We studied

G.722 ITU-T (2005) a wideband speech codec.

Combining the VoIP and acoustic characteristics, the new

noise-network distorted speech dataset characteristics are

summarized in Table 1.

The dataset also included clean speech audio files, these were

studio-recorded utterances with no artificially added noise. Clean

speech utterances were also distorted when they were sent

through the networks. The parameters were selected to closely

match those of the real-world environmental noise and the

internet QoS. The noise types were babble, car, exhibition

hall, restaurant, street, airport, train station, and train. The

network parameters were selected to encompass the

characteristics of both good and poor internet quality

environments.

2.3 Noise-network distorted dataset

To generate the noise-network distorted speech database, the

clean speech artificially corrupted by noise was transmitted

through an emulated network. We used Netem Linux

TABLE 1 Noise-network distortion parameters.

Distortion Parameter Values

Network Packet Loss (%) 0, 10, 15, 20, 25, 30, 35

Delay (ms) 0, 100, 200, 300, 500

Jitter (% delay) 0, 10, 20, 30, 40

Codec G722

Noise Noise type Babble, Car, Exhibition Hall, Restaurant, Street, Airport, Train Station, Train

SNR (dB) 0, 5, 10, 15
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Foundation (2021) network emulation software in collaboration

with Tc Hubert (2001), a tool used to configure traffic control in

the Linux kernel. Netem and Tc provide network emulation

functionalities to emulate the properties of wide area networks.

The Netem is a kernel component which can be enabled or

disabled. In recent Linux distributions, Netem is already enabled

and Tc software is pre-installed.

A speech generation environment was set up as shown in

Figure 1. The router had the following hardware specifications:

SoC Broadcom BCM2837 1.2 GHz ARMCortex-A53 Quad Core

Processor (ARMv8 Family), Memory: 1 GB LPDDR2 running

Debian operating system (OS). The Debian OS had Netem and

Tc enable Linux kernel. FFmpeg version 4.2.4 The FFmpeg

developers (2020) the open-source command-line tool for

converting multimedia formats was used to encode and

decode the speech signals. Encoding and decoding application

platform was Intel(R) Core(TM) i5-10210U CPU @ 1.60 GHz,

23 GB RAM, 2 TB drive, running Ubuntu OS version 20.04.

Speech signals were transmitted using the User Datagram

Protocol.

In wide area networks, parameters such as packet loss, jitter,

and delay are random variables. Several mathematical models are

used to represent this randomness. For simplicity, we used a

normal distribution to generate the following noise-network

distorted speech delay function:

X is normally distributed with mean μ and standard

deviation σ:

X ~ N μ, σ2( ) (1)

whereX is the delay distribution, μ is themean delay, and σ is the jitter,

expressed as the percentage of delay as shown inTable 1. In the case of

packet loss, the loss was normally distributed with the mean σ = 0.

A total of 246,500 sentences with different acoustic and

network distortions were generated from 30 utterances. Each

sentence length was 2 s as a result the generated noise-network

distortion dataset contained 192.5 h of speech. The generated

noise-network distorted speech database was used to study the

performance of the ASR systems for VoIP-based applications.

3 Performance evaluation of ASR on
noise-network distorted dataset

Different ASR engines have been proposed. To evaluate the

performance of ASR systems on the noise-network distorted

database, we used DeepSpeech version 0.9.3 Mozilla (2020).

DeepSpeech is an open-source speech-to-text engine that uses

a model trained by machine-learning techniques based on

Baidu’s study Hannun et al. (2014). This technique does not

require hand-designed features to model background noise,

reverberation, or phoneme dictionary. Instead, it relies on

large amounts of varied data for training. The aforementioned

features render DeepSpeech Engine the best candidate for

evaluating the performance on noise-network distorted

speech. Evaluation was carried on both models, the

Deepspeech CSM and NNSM.

3.1 Dataset

The noise-network distorted speech dataset was divided into

a training dataset and a testing dataset. The testing data was

selected from the total sample of noise-network distorted dataset

using stratified random sampling. The total sample was divided

FIGURE 1
Noise-network speech dataset generation system.
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into groups of sentences with similar attributes, as shown in

Table 1. In each similar attribute group, there were 30 sentences,

which were further divided into utterances of male and female

speakers. Then, three samples were selected from each

group. Finally, through the stratified random sampling, 20%

of the total sample was set for testing, while the remaining

80% was used for training. This testing dataset sampling

method was selected to ensure that different sample attributes

were equally represented in training and testing datasets. One

hundred and fifty four hours of speech were used for training and

38.5 h of speech were used for testing.

3.2 ASR pre-trainedmodel and fine-tuning
process

The pre-trained model of DeepSpeech was trained on Fisher,

LibriSpeech, Switchboard, Common Voice English, and WAMU

radio-shows databases. The acoustic models were trained on

American English with synthetic noise augmentation, and the

model achieved a 7.06% word error rate on the LibriSpeech clean

test corpus. The performance of the pre-trained DeepSpeech

CSM on noise-network distorted speech dataset was analyzed,

and then the model was optimized through transfer learning.

Transfer learning transfers the knowledge gained when

solving one problem and applies it to a different problem in a

related domain. Fine-tuning is a transfer learning technique that

starts with a pre-trained model on the source task and trains it

further on the target task. Fine-tuning is a common technique in

computer vision tasks Kornblith et al. (2019). In ASR, fine-tuning

was successfully applied in low resource languages, where models

trained to recognize speech in rich resource languages were then

transferred to low resource languages [Huang et al. (2013);

Kermanshahi et al. (2021); Shi et al. (2018)]. To the best of

our knowledge, this is the first case the transfer of knowledge

gained by a model in speech–to–text conversion of clean speech

is applied on speech–to–text conversion of noise-network

distorted speech.

The noise-network dataset contained the same alphabet set as

the dataset used to train the DeepSpeech model. Therefore, the

released DeepSpeech model output layer matches noise-network

data, and there were no need for a different classifier in our

experiment. We fine-tuned the entire model graph with the

noise-network dataset without adding new layers. In this

experiment, the model parameters and architecture were equal

to those of the released DeepSpeech model with the training

dataset as the only difference. Hence, transfer learning on noise-

network dataset was evaluated as the sole factor to the ASR

performance improvement.

The training system environment had the following

hardware and software specifications. Hardware specifications

were: Processor: Intel® CoreTMi7-9750H CPU @ 2.60 GHz × 12,

Graphics: NVIDIA Corporation TU117M [GeForce GTX,

1650 Mobile/Max-Q]/GeForce GTX 1650/PCIe/SSE2,

Memory: 31.2 GB, Disk capacity: 1.3 TB. While the OS

platform used was Ubuntu 20.04.2 LTS, 64-bit, and GNOME

Version:3.36.8 with Windowing System: X11.

The open-source TensorFlow framework was used to build

the model and train the network. The model network

architecture was the same as that of DeepSpeech. The network

was trained in six stages of 10 epochs each, and a generalization

evaluation was performed at each stage. The training, testing, and

validation used the following parameters: The training batch size,

test batch size, and validation batch size were 112, as the dataset

was in the multiples of 112. This is different from the original

DeepSpeech model, which used a batch size of 128 for training,

testing, and validation. As in the original model, a training

learning rate of 0.0001 and dropout rate of 0.4 were used. For

each stage, the generalization performance of the network was

monitored using a subset of the Mozilla Common Voice Corpus

1 English dataset. This speech dataset is referred to as the clean

speech in the experiment result presentation.

3.3 ASR performance metrics

An automatic ASR performance measurement is necessary

for the rapid system development and the performance

comparison of different ASR systems. Researchers generally

report the performance of ASR systems using the Word Error

Rate (WER) metric. WER is defined as the ratio of the total

number of errors (substitution, deletion, and omissions) in the

transcription output to the number of words in the speech signal

input to the ASR system, given by the equation below.

WER � S +D + I

N
(2)

where S is the number of erroneous word substitutions, D is the

number of word deletions, I is the number of insertions of false

words in the ASR output, and N is the number of words actually

spoken in speech input to the ASR system.

The WER does not reflect human judgment, such as the

relative importance of certain words for the meaning of the

message. Therefore, more intuitively appealing measures for

ASR–the match error rate (MER) and word information lost

metric (WIL) – were also used Morris et al. (2004). MER is the

probability of a given match being incorrect, obtained by simply

dividing the WER by its maximum possible value. Let H, S, D,

and I denote the total number of word hits, substitutions,

deletions, and insertions, respectively.

MER � S +D + I

H + S +D + I
(3)

The WIL metric is the difference between 100% word

preservation and percentage on output words preserved. Where

H > S + D + I, the word information preserved (WIP) is given by:
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WIP � H

N
(4)

Then, WIL is derived from WIP, which is given by the

equation below.

WIL � 1 −WIP (5)

The DeepSpeech model performance was tested using both

clean speech and noise-network speech, before and after fine-

tuning with the noise-network speech dataset. The metrics used

for comparison were the WER, WIL, and MER. In the next

section, the results of the comparison between the performances

of the two models are presented.

4 Experiment results

Fine-tuning a CSM on a noise-network distorted speech dataset

improved model performance on noise-network distorted speech.

However, the ASR model fine-tuned on noise-network speech

undergoes a slight degradation on the generalization performance

on clean speech compared to the ASRmodel trained on clean speech.

The WER of the DeepSpeech model on the clean speech

dataset was 0.12 and 0.24 before and after fine-tuning,

respectively. However, the model performance on the noise-

network distorted speech dataset improved significantly from

0.79 before fine-tuning to 0.07 after fine-tuning. The ASR

performance on the noise-network distorted speech improved

at the expense of generalization performance, but the

degradation was less when compared to the improved

robustness.

The performance of CSM on clean and noise-network-

distorted speech datasets was compared with that of the

NNSM on the noise-network-distorted speech dataset.

Generally, noise-network distortions resulted in equal

degradation on WER, MER, and WIL, with WER and MER

increasing from 0.19 to 0.79 and the WIL rate increasing from

0.24 to 0.85. The fine-tuning improved the model performance

on WER and MER from 0.79 to 0.07, while WIL decreased from

0.85 to 0.09.

FIGURE 2
Effects of SNR, noise type, and network distortions on WER, and the effect of jitter on WER, MER and WIL. (A) Effects of SNR and network
distortion on WER. (B) Effect of street noise and station noise without network distortion on WER. (C) Effects of street noise and station noise with
network distortion on WER. (D) Effects of jitter on WER, MER, and WIL, for a delay of 200 ms with packet loss of 0%.
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4.1 Isolated effect of noise and network
distortion on WER

To examine the individual effect of noise distortion and

network distortion on noisy speech data, the noise distorted

speech data without any network distortion was used. Then, the

general network distortion effect for each SNR was observed. The

performance of the two models, the CSM and NNSM are shown

in Figure 2A.

As expected, WER decreased with an increase in the SNR.

However, it was noticed that the network distortion effects

were high on high SNRs and did not cause significant

differences to speech signals with low SNR, which were

already highly distorted by noise. The fine-tuned model

exhibited the same performance for SNR greater than 5 dB.

However, the performance decreased significantly for the SNR

less than 5 dB. Therefore, NNSM has improved robustness for

speech signals with SNR greater than 5 dB, independent of

network distortions.

4.2 Effect of noise type and network
distortion on WER

Different noise types have different characteristics. We

intend to understand the influence of various noise types at

different SNR values on the performance of CSM, and NNSM.

Moreover, we intend to understand the manner in which the

network distortion impacts different noise types. Noise type

affects WER, WIL, and MER differently, as shown in

Figure 2B–by a comparison of street noise and train station

noise. Train station noise constitutes the noise from different

sources, such as approaching trains, public addressing speakers,

and nearby conversations. Street noise constitutes the noise from

passing cars, singing birds, and other sources. The CSM

performance on station noise was lower than that of the CSM

on the street noise for all SNR values. Moreover, the robustness of

the fine-tuned network using noise-network distorted speech is

evident, as the performance of NNSM is not affected by

noise type.

When the noise-distorted speech was further distorted

by network transmission errors, there was no difference in

the performance of CSM and NNSM on different noise

types as shown in Figure 2C. The network distortion on

noisy speech masks the noise effects on WER. The WER

increased with a decrease in the SNR of the speech for the

CSM, but for the NNSM, the performance was the same for

SNR values greater than 5. The NNSM performance on

noisy speech and noise-network distorted speech data

deteriorates for the SNR values of less than 5 dB. The

NNSM can learn the effect of noise-network distortions

when the SNR is greater than 5 dB. Hence, the NNSM is

more robust than the CSM.

4.3 Effect of jitter on WER, MER, and WIL

Figure 2D shows the effect of jitter on WER, MER, and WIL.

If all network parameters are constant and the jitter is less than

0.2 of delay, there is a constant effect on WER, MER, and WIL.

However, with a jitter greater than 0.2 of delay, WER, MER, and

WIL begin to increase proportionally to the jitter.

For the CSM, WIL is greater than MER and WER. However,

for the NNSM, WER, MER, and WIL are equal when the jitter is

less than 0.2 of delay, with the WIL higher than the WER and

MER when the jitter is greater than 0.2 of delay.

4.4 Effect of packet loss on WER, MER,
and WIL

With the jitter, delay, and burst-loss kept constant, the effect

of packet loss on the clean-speech-trained model is constant for

loss less than 10%. However, for a packet loss greater than 10%,

the WER, MER, and WIL increased proportionally to the packet

loss. By contrast, for the noise-network-trained model, the effect

of an increasing packet loss begins to be seen when the loss is

greater than 15%. When the packet loss is greater than 15%, the

WIL error rate increase is greater than that of WER and MER, as

shown in Figure 3A.

4.5 Combined effect of SNR and packet
loss on WER

The combined effect of SNR and packet loss shows that both

SNR and packet loss contribute significantly to the decreased

performance of the clean-speech-trained ASR as shown in

Figure 3B. The WER of clean-speech-trained ASR model

increases with an increase in packet loss for all SNRs, whereas

the WER increases with the decrease of SNR. However, for an

SNR of 0 dB, the effect onWER is dominated by SNR rather than

packet loss.

The NNSM yields significantly improved performance

compared to that of the CSM. Furthermore, the NNSM shows

better robustness compared to the CSM. A change in packet loss

and SNR generates a small change in accuracy of the NNSM

compared to that of the CSM. The NNSM performance can

withstand the packet loss of less than 15% and the SNR values

greater than 5 dB without loss of accuracy.

4.6 Combined effect of SNR and jitter
on WER

An examination of the effect of jitter and SNR on ASR

performance shows that the effect of SNR was significant

compared to that of jitter, as shown on Figure 3C. However,
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when the ASR is trained using noise-network speech distorted

dataset, the robustness of the ASR increases. The effect of SNR

and jitter is observed for the SNR less than 5 dB and the jitter

greater than 30% of the delay, and the SNR effect does not

dominate the jitter effect on the noise-network-trained ASR

system.

4.7 Combined effect of jitter and packet
loss on WER, MER, and WIL

The combined effect of jitter and packet loss has an increased

impact on the performance of ASR for WER, MER, and WIL.

Figure 3D shows the effect of jitter and packet loss on WER.

Training ASR on noise-network distorted speech minimizes the

WER. However, the improvement starts to decrease when the

jitter is higher than 0.3 of delay and the packet loss is greater than

15%. The NNSM can learn the patterns for jitter and packet loss

better than the CSM models.

5 Conclusion

For VoIP transcription or any other ASR that translates noisy

speech transmitted through IP network into text, the ASR model

trained on noise-network distorted speech performs better than

the clean-speech-trained model. The ASR model trained on

noise-network distorted speech can tolerate a jitter of less

than 20% and a packet loss of less than 15% without a

decrease in the performance. These results are based on

FIGURE 3
The effect of packet loss on WER, MER and WIL, and combination noise-network effects on WER. (A) Effects of packet loss on WER, MER, and
WIL, for a constant delay of 200 ms without jitter. (B) Effects of SNR and packet loss on WER, for a constant delay of 2 ms without jitter. (C) Effect of
SNR and jitter onWER, for a delay of 200mswith packet loss of 0%. (D) Effects of packet loss and jitter onWER, for a constant delay of 200mswithout
jitter.
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G.722 speech codec without any jitter buffer algorithms and

packet loss concealment support. In the next study we will extend

this study to include highly versatile codecs like Opus codec Valin

et al. (2012) which can scale from low bitrate narrowband speech

to fullband speech, support for packet loss concealment and jitter

buffer algorithms.

In this study, the dataset includes 30 sentences, which covers

all phonemes in the American English language. However, this

dataset is small, which results in a degradation on generalization

performance. In future studies, a large dataset with a rich set of

utterances and speakers can be considered in order to improve

the generalization performance of the ASR model trained on

noise-network distorted speech dataset. The training method

should also be improved in order to maintain generalization

performance while learning noise-network distortion features.

It should be noted that the proposed model does not consider

the effect of degrading talking or conversation quality. These

include response delay, side-tone, talker-echo or any other two-

way interaction features.

This study provides an overview of the effect of noise

distortions and VoIP-transmission-induced distortions on

speech when used as input to ASR. The results of this

study can help with network planning for VoIP

transcription applications or the deployment of ASR

systems, where speech is captured in noisy environments

and the transcription is performed remotely.
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