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Current state-of-the-art methods for polyphonic piano transcription tend to

use high capacity neural networks. Most models are trained “end-to-end”, and

learn a mapping from audio input to pitch labels. They require large training

corpora consisting of many audio recordings of different piano models and

temporally aligned pitch labels. It has been shown in previous work that neural

network-based systems struggle to generalize to unseen note combinations, as

they tend to learn note combinations by heart. Semi-supervised linear matrix

decomposition is a frequently used alternative approach to piano

transcription–one that does not have this particular drawback. The

disadvantages of linear methods start to show when they encounter

recordings of pieces played on unseen pianos, a scenario where neural

networks seem relatively untroubled. A recently proposed approach called

“Differentiable Dictionary Search” (DDS) combines the modeling capacity of

deep density models with the linear mixing model of matrix decomposition in

order to balance the mutual advantages and disadvantages of the standalone

approaches, making it better suited to model unseen sources, while

generalization to unseen note combinations should be unaffected, because

the mixing model is not learned, and thus cannot acquire a corpus bias. In its

initially proposed form, however, DDS is too inefficient in utilizing

computational resources to be applied to piano music transcription. To

reduce computational demands and memory requirements, we propose a

number of modifications. These adjustments finally enable a fair comparison

of our modified DDS variant with a semi-supervised matrix decomposition

baseline, as well as a state-of-the-art, deep neural network based system that is

trained end-to-end. In systematic experiments with both musical and

“unmusical” piano recordings (real musical pieces and unusual chords), we

provide quantitative and qualitative analyses at the frame level, characterizing

the behavior of the modified approach, along with a comparison to several

related methods. The results will generally show the fundamental promise of

the model, and in particular demonstrate improvement in situations where a

corpus bias incurred by learning frommusical material of a specific genrewould

be problematic.
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1 Introduction

The work presented here is concerned with the task of note

transcription from polyphonic piano pieces. Specifically, we

target a more restricted sub-task: identifying the notes

sounding in short audio frames–a task we will call “frame-

based pitch identification” from now on. A technical starting

assumption motivating our approach will be that the acoustical

behavior of the soundboard in a piano can be linearly modeled,

with only negligible nonlinear properties (Ege et al., 2013). This

means that we assume that the sounds from taut metal strings

struck by hammers are produced in a highly nonlinear way, and

hence need to be modeled with nonlinear models, but that the

individual sounds mix additively and homogeneously both in the

soundboard, as well as in the air.

Given that this assumption approximately holds for

polyphonic piano music, we ask: why do linear transcription

systems appear to be less performant than their highly nonlinear

counterparts, when it comes to transcribing piano music? What

gives neural networks the edge? What holds matrix

decomposition systems back? One hint towards an answer can

be found in (Kelz and Widmer, 2017), where it was shown that

nonlinear neural networks tend to simply memorize chords

contained in the training corpus, which is advantageous if the

chord distribution in the test set is similar, but leads to a drop in

performance for unseen chords. Purely linear matrix

decomposition methods, on the other hand, are able to ignore

the chord distribution by design, and while their design enables

them to better generalize to arbitrary (unusual or even

unmusical) chords, their performance drops on sounds of

unseen pianos and recording conditions.

Put hyperbolically, the real question to be asked is whether

we are willing to use transcription systems that are biased

towards “known musical content”, or want systems that

attempt to “measure what was really played”. The former only

perform well on music that is similar to “what has come before”

but adapt well to new acoustic conditions, while the latter

perform worse on new acoustic conditions, yet treat “past,

present and (unknown) future music” as equally likely. Given

only these two choices, the answer to the question depends on the

nature of the downstream task that needs to use the output of the

transcription system. The approach proposed in this paper is our

attempt to provide the foundation for a third choice—a system

that is agnostic to musical content by design, while remaining

invariant to new sounds and recording conditions.

In the linear matrix decomposition approach to automatic

music transcription (AMT), a special case of musical source

separation takes place. Individual notes are considered to be

separate sound sources, and the signal is decomposed in the time-

frequency domain. This approach, in theory, yields a form of

decomposition that allows reconstructing the time-frequency

signal representations for individual sources, as well as the

overall activity of sources over time. This activity is then used

as a basis for frame-based pitch identification of notes.

In this contribution, we present a new perspective on how

some of the recent advances in the deep learning domain can be

purposefully combined with the advantages of linear

decomposition frameworks. We describe a particular way of

incorporating high-capacity deep neural network models into

the non-negative matrix factorization (NMF) framework, such

that the relevant system properties of interest are preserved, and

some are improved. Specifically, we will start from an approach

called “Differentiable Dictionary Search” (DDS) that we recently

proposed in (Marták et al., 2021), which combines the modeling

capacity of deep density models with the linear mixing model of

matrix decomposition, effectively decoupling the source

separation problem from the sub-problem of modeling

individual sources, for which high capacity models are used.

The resulting method has improved capacity to model unseen

instruments and recording conditions, while its ability to

generalize to unseen note combinations remains unaffected,

because the mixing model is not learned and thus cannot

acquire a corpus bias—the bias towards previously observed

musical content.

The initial formulation of DDS is, however, too impractical

for application to piano music transcription—it is inefficient in

utilizing resources and at the same time overly flexible, producing

large numbers of unnecessary errors. To reduce computational

and memory demands and to improve generalization, we

propose a number of modifications. In particular, our new

DDS formulation will constrain the modeling capacity by

fixing the number of dictionary entries used for each source

to a constant, by introducing the matrix multiplication structure

from the NMF framework, bridging one fundamental gap

between the two methods. This will introduce a new free

parameter, called “components per source”, that can be used

to constrain the modeling capacity. The second major

modification is to replace the separate, unconditional density

models used in the original DDS with a single, conditional

density model for all sources that combines both

discriminative and generative modeling aspects. This should

also support generalization through the increase in data

efficiency via parameter reuse.

Through these modifications, we are able to fairly compare

the DDS approach with a simple, semi-supervised matrix

decomposition baseline, as well as a state-of-the-art deep
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neural network model. To isolate the fundamental properties of

the methods we wish to study, we will refrain from using explicit

regularization mechanisms or post-processing steps, which

generally boost performance by incorporating prior

assumptions from the musical domain, about sparsity or

temporal structure of note activity. In targeted experiments

with both “unusual, non-musical” (i.e., random) chords and

musical material (real piano pieces), we will investigate

various aspects of the model, including another one of its

potential advantages: its comprehensibility. The results show

that the proposed, modified DDS model improves frame-

based pitch identification in situations where a state-of-the-

art, end-to-end trained, deep neural network shows lower

performance due to the musical bias acquired from the corpus

it was trained on.

2 Related work

Among neural network-based polyphonic piano

transcription systems that are trained on large musical

corpora, the current state of the art uses a Transformer model

(Hawthorne et al., 2021) to directly convert audio recordings of

piano music into a sequence of note symbols in an end-to-end

fashion. Previous work in (Hawthorne et al., 2019, 2018) relied

on predicting “Onsets and Frames” (and offsets) of individual

notes first, followed by a deterministic decoding of the

predictions into symbols, using hardcoded rules and

thresholds. In (Kelz et al., 2019) a probabilistic model with

hardcoded structure is used for decoding, while the thresholds

are learned from data. The approach in (Kim and Bello, 2019)

adds an adversarial objective to the model architecture described

in (Hawthorne et al., 2018), which is meant to emphasize

conditional dependencies among the individual notes to

produce “more musical” output. In a similar vein, Ycart et al.

(2019) use a musical language model trained on additional

symbolic music data to enhance transcription results. An

ablation study is conducted in (Cheuk et al., 2021), to

determine the relative importance of the separate output

heads in the “Onsets and Frames” architecture.

Regarding non-negative matrix decomposition and

factorization methods, we distinguish those with fixed

dictionaries of note spectra that assume oracle knowledge of

the sound of the test piano, such as (Cheng et al., 2016; O’Hanlon

et al., 2016) and those that do not assume such knowledge,

instead allowing the dictionary entries to adapt, subject to

harmonicity and spectral smoothness constraints (Vincent

et al., 2010).

We consider the following related work to be most similar in

spirit to the proposed method. The work in (Smaragdis and

Venkataramani, 2017) and (Venkataramani et al., 2020) employs

non-negative autoencoders embedded in a framework akin to

matrix decomposition, to model sound as a linear mixture of

nonlinear sources for the purpose of (blind) source separation. In

(Sübakan and Smaragdis, 2018) generatively trained models are

used with similar intent.

3 Extending Differentiable Dictionary
Search

The Differentiable Dictionary Search approach, which we

originally described in (Marták et al., 2021), treats audio

recordings as linear mixtures of sources. The dictionary

entries for a source are modeled as a deep generative density

model. The method assumes no oracle access to isolated

recordings of sources that appear in the mixture. The only

assumption is access to isolated samples of similar sound

sources, in the hope that those will suffice to generate useful

decompositions. In such a scenario, a semi-supervised NMF

framework with fixed dictionary will face difficulties, as the

entries in its dictionary might be too dissimilar to the sources

present in the mixture. It will struggle to correctly explain those

parts of the mixture that are not representable as linear

combinations of the dictionary entries. If adaptive dictionary

entries are used, the challenge lies in adequately constraining

their adaptation in a way that simultaneously allows the mixture

to be decomposed, while still preserving their original spectral

appearance.

The DDS framework addresses this challenge by constraining

the adaptation of dictionary entries with a likelihood penalty on

the generative model that produces these dictionary entries. The

generative model is a non-linear density estimator, which

effectively allows for a non-linear extrapolation of the basis.

The focus of the original proposal, as described in (Marták

et al., 2021), was on quantifying how well the generative

model deals with differences between training and target

sources. Consequently, to provide the method with absolute

flexibility, an “unconstrained” formulation was evaluated. Each

sound source was modeled separately, and the decomposition

objective treated each frame in the mixture completely

independently, effectively allowing one dictionary entry for

each source and each frame in the mixture1.

Expressed in this form, both computational demand and

memory consumption do not scale well to a more practical Music

Information Retrieval scenario, such as frame-wise polyphonic

pitch identification. Additionally, the excessive flexibility granted

by the lack of dictionary reuse (see Section 3.1 below) can also be

1 This particular aspect of the highly controlled experiment design was
motivated strictly by the objective to quantify direct effects of the non-
linear extrapolation capability of DDS, when juxtaposed against an
over-complete NMF baseline that is equipped with merely linear
capacity to extrapolate from the basis. It is also what makes scaling
this formulation up to a more practical problem scenario–such as
piano music transcription–extremely difficult and expensive.
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detrimental to the performance of the method at scale. We

propose a few modifications to the original DDS method that

are intended to improve its scalability, efficiency, as well as

decomposition performance. The remainder of this section

will describe our approach in detail. In the interest of

reproducibility, our implementation can be found at https://

github.com/CPJKU/DDS.

3.1 Differentiable Dictionary Search: The
general framework

Let us first recount the initial formulation of the general DDS

framework in the context of its closest relative—the linear NMF

baseline. To facilitate comparison, we will closely follow the

notation used in (Marták et al., 2021). The NMF decomposes

an input matrix S into two factor matrices: the dictionary matrix

W and the activation matrix H, such that S ≈W ·H. As depicted

in Figure 1A, the outer dimensions of this matrix multiplication

are determined by (1) the spectral resolution D (number of

spectral bins), and (2) the temporal length T (number of time

frames) of the target spectrogram S. The remaining inner

dimension M is thus the only free parameter, specifying the

“number of components” used for the NMF decomposition,

manifested as the number of columns in the dictionary matrix

W as well as number of rows in the activation matrix H.

Therefore, individual column vectors in W can be said to

represent “dictionary components”, and are also often referred

to as “dictionary entries”, interchangeably.

An analogous decomposition, implemented by the initial

formulation of the DDS method (Marták et al., 2021), is shown

in Figure 1B. As can be seen, using the frame-level

decomposition objective that grants each time frame in S its

own unique dictionary entry for each possible source, yields a

very resource-intensive decomposition structure. Each of the K

possible sources has an associated generative density model,

which generates a dictionary Wk of a shape equal to that of

target spectrogram S, and subsequently guides its “search”

during the decomposition. The scalar values in the activation

vectors hk are used to scale the individual dictionary entries in

FIGURE 1
This figure illustrates decomposition of an input spectrogram S via two different methods, giving the shapes, sizes, and interactions of their
different components. (A) is the standard NMF framework, while (B) shows the DDSmethod—in its initial, frame-level, unconstrained formulation as
described in (Marták et al., 2021). The matrix of latent codes Z, columns of which are used by the source models to generate the corresponding
dictionary entries in W, is omitted in favor of clarity.

Frontiers in Signal Processing frontiersin.org04

Marták et al. 10.3389/frsip.2022.975932

https://github.com/CPJKU/DDS
https://github.com/CPJKU/DDS
https://www.frontiersin.org/journals/signal-processing
https://www.frontiersin.org
https://doi.org/10.3389/frsip.2022.975932


Wk. Summing the result across all K sources completes the

linear combination of the non-linear differentiable

dictionaries2.

3.2 Proposed modifications

In the first step towards reducing computational demands

and constraining the excessive flexibility, we fix the number of

dictionary entries used for each source to a constant—a free

parameter of the method, called “components per source”, that

can be specified by the user—by introducing the matrix

multiplication structure from the NMF framework, and

bridging one fundamental gap between the two methods. The

generated dictionary entries can now be reused over time. This

means that the objective we minimize to obtain both the

decomposition and the adapted dictionary entries, is now

defined with respect to the whole input spectrogram, as

opposed to its individual frames.

The second step towards improving resource utilization

replaces the separate, unconditional density models with a

single, conditional density model for all sources. This model

combines both discriminative and generative aspects of

dictionary modeling, by learning a mapping of data onto such

a representation that carries information about the class identity

of the source separately from the specifics of the particular

sample. This considerably reduces the total parameter count

used to model all sound sources, as well as reducing

computational demands during decomposition. It also

supports generalization through the increase in data efficiency

via parameter reuse, as all of the training samples from all sources

are now combined to train a single model with its unique set of

parameters. Additionally, it completely removes the need to

estimate the non-discriminative intervals on the likelihood

axis—those parts of the likelihood space under a particular

source model, where samples of the true source mix with

samples of a different source—for K · (K − 1)/2 pairs of

separate source models and different source samples, after

they have been trained3. To improve the performance of the

density model, we adapt several modifications to the architecture

that is described in (Kingma and Dhariwal, 2018). The remainder

of this section describes our modified approach in further detail,

with an overview of the relevant components for both the basic

NMF decomposition structure and the updated differentiable

dictionary model in Figure 2.

3.3 Fusing the DDS framework with the
NMF decomposition structure

Let N denote the aforementioned parameter “components

per source” — the number of dictionary entries that our modified

DDS model will be able to use to express each one of the K

possible sound sources. The representational power and

adaptability of the method can be adjusted by tweaking this

parameter.

Given a magnitude spectrogram S ∈ RD×T
+ with D frequency

bins and T time frames, NMF approximates its contents as

Ŝ � W ·H. We will inherit this decomposition structure in our

adaptation. For a decomposition with DDS, however, the

dictionary W ∈ RD×KN
+ and activation H ∈ RKN×T

+ matrices are

structured into K groups that correspond to individual sources,

each of which encompasses N columns in W and N rows in H,

jointly modeling the spectral representation and temporal

activity of individual sources. After minimizing the

decomposition objective, activities of source templates are

distributed over their N components. We aggregate them by

summing up the actitivities over these components. This results

in an activation matrix of shape [K × T], representing source

activity over time.

The entries of the dictionaryW are obtained by transforming

a corresponding set of latent codes Z ∈ RD×KN, through a

bijective mapping. This mapping is implemented as a

Normalizing Flow (Tabak and Vanden-Eijnden, 2010), and

unifies both discriminative and generative aspects as will be

outlined in the following.

3.4 The multi-source class-conditional
density model

To be able to model probability densities of different sound

sources with a single model, we need a conditional density model

that allows explicit conditioning on the class of dictionary entry

to be generated, via sampling x ~ pmodel(x|y), conditional on the

source class label y. The approach described in (Jacobsen et al.,

2018) is a perfect match for these requirements. It was originally

designed to study the relationship between “invariances to

meaningful” perturbations, and “vulnerabilities to adversarial”

sample perturbations that are made to the input of deep neural

networks. Both are unwanted effects, as an “invariance to

meaningful” perturbation means the network is not changing

the predicted class in response to a relatively large perturbation

that actually changes the meaning of the input, whereas a

“vulnerability to adversarial” perturbation means the network

2 For an insightful illustration of how DDS approximation of individual
spectral frame could look like for piano music—including certain
details (which are omitted from Figure 1B in the interest of clarity)
of the generative source model—an interested reader may look at
Figure 2 in (Marták et al., 2021).

3 This needs to be done in the original approach in order to quantify the
potential for confusion of one source with another, potentially similar
source, during the dictionary search, with implications for calibrating
the global weight coefficient applied to scale the likelihood penalty
term in the decomposition objective. Demonstration of such
quantification can be found in Section IV.B of (Marták et al., 2021).
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is changing the predicted class in response to an almost

imperceptible, meaningless change in the input.

3.4.1 Training Procedure
A normalizing flow Fθ maps the data point x ∈ Rd onto a

latent code z ∈ Rd of equal dimension d, as z = Fθ(x), exposing an

explicit inverse mapping x � F−1
θ (z) by design. Given a labeled

dataset with C classes, the vector z can conceptually be split by its

dimension into two parts: a semantic part zs ∈ RC, and a nuisance

part zn ∈ Rd−C. With the help of a small adversary, a so called

nuisance classifier network Eθnc, which has a separate set of

parameters θnc, and is only used during training, we can now

describe both the objective that is minimized, as well as the

procedure that needs to be followed.

Each training step contains a sub-routine preceding the

computation of the main objective, and the update of θ.

While the main set of parameters θ is held fixed, the nuisance

classifier Eθnc is trained for a few iterations to minimize the cross-

entropy CE(y;Eθnc(Fθ(x)n)) between the true class label in 1-hot

encoding y ∈ {0,1}C, and its own class predictions from the

nuisance variables Fθ(x)n = zn, updating the parameters θnc.

Subsequently, the main objective is evaluated to compute the

update for θ once.

The main objective combines the standard normalizing flow

maximum likelihood estimation term nMLE(x) (cf. Eq. 3)— the

negative log-likelihood—computed on the nuisance part Fθ(x)n =

zn, with an adversarial objective (Jacobsen et al., 2018) called

independence cross-entropy (iCE). The iCE term combines

minimization of semantic cross-entropy sCE(y; σ(Fθ(x)s))

between the labels and semantic dimensions, with

maximization of nuisance cross-entropy nCE(y;Eθnc(Fθ(x)n))
(cf. Eq. (2)) between the labels and predictions of the nuisance

classifier Eθnc , which also applies softmax σ to output probabilistic

predictions.

During the sub-routine, the nuisance classifier E tries to

predict class-specific (semantic) information from the part of the

latent vector z that actually should be class-agnostic (nuisance).

By maximizing the error of nuisance classifier, the conditional

FIGURE 2
Overview of ourmodified formulation of DDS. Sub-figure (A) shows the adaptation of NMF decomposition, with the particular structuring of the
dictionaryW and activationHmatrices into K sources expressedwithN components each. The red frames exemplify how this structure allows one to
get a reconstruction containing only activity of a particular source (e.g., note C#4) in a sub-selected time snippet (e.g., time frames from 2nd to 4th),
capacity of which we will leverage in Section 5.1. (B) shows the multi-source dictionary model generating the complete dictionary matrix, as
necessitated by the NMF decomposition structure in order to efficiently fuse it with the DDS framework. As opposed to the single-source multi-
model approach that would project different noise vectors from Z by different single-source models to create W, expressing the source identity in
themodels, ourmulti-sourcemodel enables explicit separation of the noise vectors in the nuisance parts Zn, from the source identity parts, which are
expressed in the semantic parts Zs of the latent codes. The “Dictionary Model” component is implemented as a normalizing flow, and the conditional
sampling, as described in Section 3.4, can be performed by combining the 1-hot code of the source class zs, with the nuisance vector that can be
sampled from the model’s prior zn ~ pZ(z), and projecting the result to the data space using the explicit inverse exposed by the model, as w �
F−1θ ([zs , zn]).
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density model Fθ is incentivized to remove any semantic

information that is still mapped to zn, while minimizing the

semantic error draws it to map it all to zs. This adversarial

objective may also be viewed through the lens of information

theory, as minimizing a lower bound on the mutual information

I(y; zn), with the maximization term seeking to tighten the

bound4.

3.4.2 Building the dictionary model
In the context of our multi-source audio modeling problem,

the spectral resolution D dictates the data dimensionality, while

the K sources are treated as separate classes. This splits the latent

code z into two parts. The first K dimensions make up the

semantic part zs, and the remaining D − K dimensions form the

nuisance part zn.

To be able to condition the generative model on a particular

sound source, we deviate from the original iCE objective by

replacing the softmax output and the cross-entropy term sCE(y;

Fθ(x)s) in the objective, with a linear output and a mean squared

error term sMSE(y; Fθ(x)s) (cf. Equation 1). The reason for this

change is simply that a softmax function would not be explicitly

invertible, at least not without sampling. As a result, conditioning

on the source identity when generating a sample is as simple as

setting the semantic dimensions zs to the 1-hot code that

identifies the desired source, while sampling the nuisance zn
from the prior. The final objective combining our modified iCE

with nMLE is thus given by Equation 4.

sMSE y; ŷ ≔ Fθ x( )s( ) � ∑K
k�1

yk − ŷk( )2 (1)

nCE y; ŷ ≔ Eθnc Fθ x( )n( )( ) � −∑K
k�1

yk log ŷk( ) (2)

nMLE zn ≔ Fθ x( )n( ) � −∑ log p zn( )|det Jxθ( )|( ) (3)
min
θ

max
θnc

L θ, θnc( ) � LsMSE θ( ) − LnCE θ, θnc( )︸����������︷︷����������︸
modified iCE

+LnMLE θ( ) (4)

We find the relative weighting of the adversarial cost terms

(sMSE and nCE) to be crucial for successfully concentrating the

class information in the semantic dimensions zs.

Finally, to further boost the modeling capacity of our unified

source model, we introduce the key architectural components of

the Glow architecture. Each step of the normalizing flow first

normalizes the input using actnorm (Kingma and Dhariwal,

2018), a form of minibatch-independent normalization with

data-dependent initialization. The shuffling of dimensions

between flow steps is then carried out via an invertible

1x1 convolution (Kingma and Dhariwal, 2018), which can be

seen as a generalization of the fixed, random permutations layers

used in (Dinh et al., 2017). Since the 1 × 1 convolution kernel is a

fully trainable linear transformation matrix without additional

constraints, it can effectively learn to perform amixing operation.

We follow (Kingma and Dhariwal, 2018) in parameterizing this

mixing matrix in its LU-decomposition and use no bias for this

layer. Following (Marták et al., 2021), we use affine coupling

layers, and discard the multi-scale architecture of (Dinh et al.,

2017; Kingma and Dhariwal, 2018), which was originally devised

to save computational resources when modeling high-

dimensional data with 2-dimensional structure. This is

because we merely need to model individual spectral frames

of 1-dimensional structure, with spectral resolutions resulting in

affordable resource demands5.

3.5 The decomposition objective

Given a conditional generative density model that generates

samples as x � F−1
θ ([zs, zn]), we can now structure our matrix of

latent codes Z ∈ RD×KN into the semantic Zs ∈ RK×KN and

nuisance Zn ∈ RD−K×KN sub-matrices. The full dictionary is

then simply expressed as W � ReLU(F−1
θ ([Zs,Zn])) ∈ RD×KN

+ ,

using the rectifier activation to satisfy the non-negativity

constraint of the generated samples for convenience, as

alternative implementations of the projection to the non-

negative orthant are possible.

We initialize the semantic parts of the latent vectors Zs to 1-

hot encodings to specify which sources we want to model, and

hold them fixed during decomposition. To further increase the

flexibility of the dictionary search, it is possible to allow for slight

deviations from the sharp binary values with a soft constraint, but

we opted not to do so for now. Section 5.2 offers further

discussion of semantic conditioning in our dictionary model.

The nuisance parts of dictionary entries Zs can be sampled

from a standard normal distribution. In practice, we find that

initializing them all to the zero vector 0 yields good results more

consistently. We believe that this eliminates the chance of

samples “spawning in the wrong volume of the latent space”.

The DDS decomposition of an input spectrogram S ≈W ·H is

then obtained by minimizing the objective L (cf. Equation 5) by

alternating updates of H and Zn, following the gradients zL
zH and

zL
zZn

respectively.

L � ‖S − Ŝ‖2 −∑ logp Zn( ) (5)

For the sake of clarity, we omit the complex weighting

scheme of the likelihood penalty term in Eq. 5. The global

weighting of the total likelihood penalty after summation is

complemented by a local weighting of each dictionary

4 An interested reader may refer to Lemma 10 in Appendix C of
(Jacobsen et al., 2018).

5 Nonetheless, a 1-dimensional analogue of themulti-scale architecture
can be devised and applied, in the interest of further computational
cost optimization.
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element’s likelihood before summation, via their time-aggregated

frame-wise relative activity contributions in H. It was devised to

allow the likelihood penalty term to be appropriately balanced

with the temporally aggregated reconstruction error, allowing

each dictionary element a penalty contribution proportional to

the “amount” of input it is used to explain.

This particular weighting scheme, conceptually following

and adapted from (Marták et al., 2021), is not a result of

exhaustive search, but rather merely one of many possibilities

that we ended up using in our experiments, and is therefore

subject to further scrutiny. It is, however, fully described by the

source code accompanying this paper.

3.6 Impact on resource efficiency and
performance

Coming back to the aforementioned disadvantages of the

original approach, we should note that the optimizations

introduced in our reformulation above were directly

motivated by our experiments attempting to scale up the

original formulation. Despite being able to train and evaluate

the original approach on 5 octaves of piano sounds, we have seen

the linear growth of complexity in both sources K and time T

quickly become burdensome computation-wise, while the

excessive dictionary capacity allowed unnecessary errors to

accumulate.

More specifically, to highlight the difference in performance

between the two formulations, let us inspect their most expensive

component—the dictionary modeling. Let U denote the number

of matrix multiplications involved in a single forward pass in a

normalizing flow used as a source model. The matrices have

shapes approximately on the order of (batch × D) for the data,

and (D × D) for parameter matrices. To generate the dictionary,

the original approach uses K models, each of which processes a

batch of T samples, while our optimized variant uses one model

to process a single batch of KN samples (where N is the number

of components per source–defined in Section 3.3 above). In terms

of the raw cost of the matrix multiplications, this yields an

improvement from K · Θ (TD2) · U to Θ(KND2) · U in time,

and from K · Θ (TD + D2) · U to Θ(KND + D2) · U in space

complexity. By fixing the number of dictionary entries, we have

reduced the linear time complexity factor in input length T to a

constantN, which is the most significant improvement, especially

because it factors into the quadratic cost in spectral resolutionD2.

By replacing K models with a single one, we have reduced the

memory complexity by (K − 1)D2, as much fewer parameters

need to be held in memory for the dictionary search-related

updates. Given a constrained memory budget6 and a 10 min long

audio recording, we measured the wall clock time cost of its

decomposition by both the original, and our optimized

formulation, and found an average iteration cost of 72.8 s

(original), and 2.4 s (optimized), with both iteration costs

averaged over 1,000 iterations. This is a ≈ 30-fold speed-up.

Additionally, we have also seen improvements in terms of

decomposition performance, as the two introduced changes both

reduce the excessive flexibility of the original model: (i) by

limiting the number of dictionary components and allowing

their re-use, and (ii) by concentrating the use of all relevant

training samples to optimize parameters of the unified dictionary

model, improving overall generalization potential. A small-scale

quantitative performance comparison as well as an asymptotic

complexity comparison for different components of multiple

method variants can be found in Marták et al. (2022).

4 Results

To test the behavior of our modified approach, we make use

of the MAPS dataset (Emiya et al., 2009), as it provides the

necessary variety of recording conditions as well as musical and

non-musical content that allows us to study certain aspects of the

problem in isolation. We describe the specifics of our

experimental setup in Section 4.1, report on quantitative

performance in Sections 4.2, 4.3 for non-musical and musical

signals, respectively, and present qualitative analysis in

Section 5.1.

4.1 Experimental setup

4.1.1 Data
The MAPS (MIDI-Aligned Piano Sounds) dataset (Emiya

et al., 2009) is a collection of piano recordings with temporally

aligned MIDI annotations that has been designed to support

evaluation of various MIR research problems, and has often been

used in the literature for evaluating Multi-Pitch Estimation

(MPE) as well as AMT algorithms. It is structured into

4 subsets: the ISOL set contains isolated notes, the RAND set

contains random note combinations, the UCHO set comprises

“usual” chords from Western music, and the MUS set contains

30 pieces of classical piano music for each set of recording

conditions7. Each of these subsets is further sub-divided into

sample recordings made with different instrument models in

various recording conditions. This particular aspect of MAPS

6 We used a single GeForce RTX 2080 Ti GPU with a VRAM capacity
of 11GB.

7 For each set of recording conditions, the 30 pieces were randomly
selected from a set of about 238 pieces, available at the time of
database creation in the online collection of “Classical Piano MIDI
files” at http://www.piano-midi.de. Therefore, some of them were
chosen into several sub sets.
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makes it well suited for our evaluation, as we can use samples

with different timbre and recording conditions for training and

evaluation, while controlling for other parameters, in order to

emulate the problem scenario of realistic transcription that we

investigate.

To train the multi-source conditional density model, we use

only those parts of the ISOL subset of MAPS that contain isolated

notes synthesized using software samplers. The other parts of the

RAND and MUS subsets that were recorded from a Yamaha

Disklavier piano are used for testing. The RAND subset was

generated by drawing notes uniformly at random from a given

range, with varying degrees of polyphony and levels of intensity.

That is why we will use it to benchmark performance of

transcription systems on non-musical piano sounds (note

combinations) in Section 4.2. Comparing this to the models’

performance on the MUS subset (Section 4.3), which we take to

represent typicalmusical piano sounds, we can now gain insights

about their respective susceptibility to the problem of corpus bias

acquisition.

Additionally, we work exclusively with data from the note

range M36-95 (the range of central five octaves, from C2 to C7),

and exclude samples that use the sustain pedal. In the context of

our spectrogram decomposition framework, each note within

this range is considered a separate sound source.

4.1.2 Audio processing
The MAPS audio samples are encoded as 44.1 kHz stereo

WAV files, accompanied by temporally aligned symbolic ground

truth in the form of MIDI files. Before computing spectrograms,

we downsample the recordings to 16 kHz mono waveforms. For

spectral analysis, we use a DFT window size of 2048, a hop size of

512 samples and the Hann window function, resulting in a

frequency resolution of 1,024 spectral bins, capturing

frequencies up to 8 kHz. The magnitudes of spectral activity

are normalized to the interval [0; 1] and projected to logarithmic

scale. We use a reversible data-independent normalization-

logarithmization scheme, which first normalizes spectral

magnitudes by

S � 2 · S
∑Hann 2048( ), (6)

and then logarithmizes the features on this scale as

S � log 1 + S · str( )
log 1 + str( ) . (7)

The parameter str controls what we call “logarithmization

strength”, and we use value of str = 104 in all our experiments.

Modeling spectral features in this form has several benefits.

First, normalizing flows, as much as any other class of deep

neural network models, have been shown to perform better on

normalized data. Second, the spectral components of the

harmonic overtone series specific to musical sound sources get

amplified within the logarithmic domain of features, which helps

the models capture their behavior, and separate them from the

‘noise’. This can be seen as a means to control the signal-to-noise

ratio in the features of magnitude spectra.

Using such a reversible projection leaves an opportunity to

project spectrograms generated by our models into their

corresponding un-normalized form on linear scale. From

there, one can simply use an arbitrary phase approximation

method in order to arrive at audible sound excerpts from

these generated spectrogram samples, by transforming them

with the inverse DFT.

4.1.3 Models in comparison
In order to evaluate and highlight certain properties of

interest of our new method, we will put it in context with a

related linear matrix decomposition method, and a trainedmodel

from the recent literature that represents the current state of the

art in (full) polyphonic piano note transcription. In addition, in

Section 4.3 we will cite performance measures from other, only

partly comparable models from the literature (see Table 1 there).

4.1.3.1 The overcomplete NMF baseline

To assess the improvements in decomposition performance

that we expect as a result of our non-linear source modeling, we

will compare to an overcomplete semi-supervised NMF baseline.

“Overcomplete” refers to the fact that each source will be

represented in the dictionary W by the set of all training and

validation samples, that are otherwise also used for training and

model selection of the DDS dictionary source model. With the

dictionary W fixed and only activations H adapting during the

decomposition, this formulation will allow us to see the

differences between the respective linear and non-linear

extrapolation capacities, as the remaining properties between

this baseline and our DDS formulation are similar. In this regard,

we follow the comparison made in (Marták et al., 2021) as closely

as possible. We expect to find the increased capacity of DDS to

model unseen sources, to have positive effects on the

decomposition performance relative to this baseline. In the

following, we will call this model simply “NMF” for short.

4.1.3.2 The “onsets and frames” model

As a third point of comparison, we chose a model that can be

considered representative of the current state of the art in

polyphonic piano note transcription, in terms of recognition

performance: the “Onsets and Frames” transcription system by

Hawthorne et al. (2019), which was trained on the MAESTRO

dataset. For this model, we will use the author provided code, as

well as the model checkpoint that they generously made

available8. Please note that the MAESTRO training set is

approximately 10× larger than the MAPS training set, and

8 https://github.com/magenta/magenta/tree/main/magenta/models/
onsets_frames_transcription
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about 170× larger than the set of isolated notes we used to train

DDS. Furthermore, the model is geared towards a somewhat

different task: rather than framewise polyphonic pitch

identification, it transcribes entire notes (onset, offset, key,

volume). It is also much more complex and sophisticated than

our simple model. In particular, it involves task-specific temporal

post-processing routines conditioned on the onsets of individual

notes. Any experimental comparison will thus have to be taken

with a grain of salt.

4.1.4 Training
To train our unified conditional density model that generates

the dictionary entries, we use the modified 1-dimensional Glow

architecture as described in Section 3.4. The model is built with

32 flow steps. Each affine coupling layer is parameterized as a

multi-layer perceptron with 3 densely connected layers of

2048 units, using the LeakyReLU activation function. The

Adam optimizer (Kingma and Ba, 2014) is used with the

learning rate set to 1 · 10–5 for up to 2,500 epochs with a

minibatch size of 512, and an early stopping patience of

100 epochs. We compute the average log-likelihood on 20% of

the training data that we set aside for validation purposes and

early stopping.

For the overcomplete variant of NMF that we compare the

proposed method to, we construct the dictionary W from all

training samples, including the 20% of data, which is held out for

validation in the training of the DDS dictionary model. This

means that NMF has a small advantage in terms of direct access

to data, compared to DDS.

4.1.5 Decomposition
For an NMF dictionary W with M components, the

activation matrix H is initialized to 1
M everywhere. For DDS,

the differentiable dictionary Z is initialized according to the

description in Section 3.5, while the activation matrix H is

initialized to small, random numbers in the range [0;
���
�S

KN

√
],

where �S denotes the grand average of the whole spectrogram

matrix S.

During decomposition, we use a step size of 1 · 10–2 for NMF

and 1 · 10–3 for DDS. The global likelihood weight c is set to 1 ·
10–4. Each decomposition is run for at most 1,000 iterations. We

follow the early stopping conditions as described in (Marták

et al., 2021), but do not find them triggered in our experiments.

4.1.6 Calculating metrics
To make framewise evaluation as objective as possible, we

tried normalizing the dictionary entries to equal-length vectors

(for both NMF and DDS), such that the values of H are on

comparable scales of activity contribution, in terms of explained

magnitude spectral energy. Enforcing equal norms of vectors

after each step proved to heavily burden the optimization in DDS

by disrupting the dynamics of dictionary search. Also, such a

basis re-normalization strategy has been shown to be suboptimal

in sparse NMF, at least for sound separation (Le Roux et al.,

2015), compared to incorporating the normalization into the

parameterization of W directly.

We choose to keep the dictionary norms free, and as a

remedy, when computing metrics, we first re-scale each scalar

activation in H by the norm of its corresponding dictionary

vector fromW, the one that is “activated” by it. Only afterwards is

the activity of sources summed up across their components. This

is a cheap way to express the activation values in H on a

consistent, W-independent scale. In Section 5.1, we will refer

to suchW-norm-scaled version of the activation matrix asHscore.

When computing the F-score metric from the thresholded

activation matrix H for our results in Section 4.3 we assume the

existence of an oracle (in the form of the ground truth), that

enables us to compute the optimal threshold in terms of F-score

for each snippet. This is done so we can compare the

decomposition quality of both methods in terms of familiar

metrics, while avoiding any variance in performance measures

that would be due to the thresholding technique. We include it

merely to enable a fair comparison to the state-of-the-art, deep

neural network baseline.

In order to control for the effects of the thresholding method,

we compute and report the area under the precision-recall curve

(AUC-PR), as a general quantifier of the upper bound on

performance in terms of frame-wise AMT metrics. This

relates to the fact that frame-level pitch labels are heavily

imbalanced, due to most notes being inactive most of the

time. Since we generally care more about the positive class

(active notes) in an AMT problem that is generally sparsely

labeled, AUC-PR as a quantifier of average precision is a well-

suited metric.

Finally, we also report the reconstruction error (RE) of a

frame, defined as the mean absolute error summed over

frequency and averaged over time

RE(S, Ŝ) � (∑ abs(S − Ŝ))/T. Alternatively, one could average

over both the time and frequency dimensions, to get the average

error for a single time-frequency bin. However, since we use

constant spectral resolution throughout the reported results, we

choose to report the average frame error.

4.2 Evaluation on non-musical piano
sounds

The samples of random note combinations in the RAND

subset of MAPS come in two different ranges of loudness: 60–68

(mezzo-forte) and 32–96 (from piano to forte).9 The samples

9 These numbers represent the velocity attribute of notes in the MIDI
standard. Ranging from 0 to 127, these values represent the full
dynamic range of a MIDI instrument, from silent (0) to loudest
possible (127).
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with smaller dynamics range (only mezzo-forte notes) could be

taken to correspond to a typical chord situation, where all notes

are played together with similar intensity. The samples with a

larger dynamics range (notes ranging from piano to forte) may

represent the polyphonic music scenario where several melodic

lines mix together more heterogeneously. The samples also come

in 6 different polyphony levels ranging from P2 to P7.

As mentioned in Section 4.1, the spectral decomposition

methods (DDS and NMF) in our comparison were trained using

only samples from the ISOL subset of MAPS, while the deep

neural network approach was trained on the considerably larger

MAESTRO dataset, which gives it a certain advantage with

respect to musical content. Each of the testing snippets used

in this evaluation is created by concatenating the active parts

from the relevant files of the used subset of MAPS, where notes

are being played, to avoid spending compute time on silence. In a

separate experiment, we tested the propensity of the compared

methods to produce false positives on the parts that were cut out,

and conclude that all methods behave similarly, with no false

positives for silent parts.

We evaluated our modified DDS model together with an

overcomplete NMF baseline on the samples with both dynamics

ranges separately, andmeasured consistently higher performance

of both methods on the samples with smaller dynamics range

60–68. This result confirms the intuition that recognizing soft

notes in a mixture that may also include loud ones, is a more

difficult problem. In Figure 3, we report results for the harder

scenario, using samples with larger dynamics range 32–96,

showing the aggregated metrics for different polyphony levels

separately. We used samples of Disklavier (Dk) piano recorded in

“Close” (Cl) microphone conditions, identified via instrument

code ENSTDkCl within MAPS.

The framewise pitch identification performance comparison

of the DDS method with the NMF baseline in the top row of

Figure 3 is accompanied by performance numbers for the state-

of-the-art “Onsets and Frames” system (OaF, OaF+TD), which

we introduced as our second baseline above (see Section 4.1.3.2).

The bottom row of Figure 3 features comparison of

reconstruction performance, which is only relevant to the two

spectrogram decomposition methods.

Unsurprisingly, across all methods in all three metrics (AUC-

PR, F-score and RE) we see a dependency of performance on the

degree of polyphony. As performance decreases with increasing

polyphony level, the latter can be viewed as the determining

property of the problem complexity.

We note that DDS appears to consistently outperform the

linear NMF baseline across all metrics, with larger margins at

higher polyphony levels, hinting at the possibility that its superior

source modeling capacity is more useful in more complex

problem scenarios. This can be seen as evidence for the

improved capacity of DDS to deal with unseen sources,

because the Disklavier instrument used in our testing samples

has not been seen by either method during training. In particular,

the more “flexible” parameterizations of DDS (those with higher

values of N) appear to consistently improve the reconstruction

performance (RE). However, this does not seem to be the case for

the frame-wise pitch identification performance, as assessed by

the AUC-PR and F-score metrics. Even though DDS generally

performs better at higher capacity settings, the largest N

parameterizations do not always translate into the best

decomposition results (i.e. the darkest blue dots in the AUC-

PR and F-score subplots of Figure 3 are not necessarily the

rightmost ones).

Our interpretation of this is two-fold. On the one hand, the

superior representational power of DDS clearly benefits the

overall transcription performance potential. It most certainly

does allow the method to explain increasingly larger amounts of

magnitude spectral energy, reducing the reconstruction error as a

result. Nonetheless, this flexibility can be a double-edged sword,

as too much of it can have detrimental effects on performance.

We have seen this in a separate set of experiments with the initial,

unconstrained formulation of DDS, where the dictionary

adaptation is overall much less constrained, as its entries are

not reused over time. In a degenerate case, the DDS model finds

ways to misuse its spare capacity, explaining leftover residual

energy of the magnitude spectrum with “un-exhausted”

dictionary components of arbitrary sources. This ends up

reducing the reconstruction error at the cost of impairing

pitch identification accuracy. In theory, this may happen

whenever the gains achieved in reconstruction performance

do not get outweighed by the likelihood penalties associated

with the misused dictionary components, as they should. This, in

turn, may point towards imperfections in the model, or the

weighting of the likelihood penalty.

We identify three fundamental handles through which a

practitioner of the DDS method can attempt to control the

extent to which its modeling capacity is used to their benefit:

(i) tweaking N to adjust NT — the ratio of number of components

to number of time frames across which they may be reused; (ii)

adjusting the global likelihood penalty weight, in an attempt to

strike a balance between the incentive to explain magnitude

activity and the incentive to explain it correctly; and (iii) the

rather more abstract behavior of the trained source model, which

can be inspected and addressed by assessment of such qualities as

generalization or discriminative performance. In Section 5.1, we

will see an example of such malfunction in Figure 4,

demonstrating a particular way to draw actionable insights

from the model, by leveraging its modular nature.

Finally, and perhaps quite surprisingly, we observe that the

state-of-the-art, deep neural network baseline (OaF, OaF+TD)

performs worse than linear decomposition methods on these

unusual chords, at least for a degree of polyphony greater than

two. We conjecture that due to the large shift between the

distribution of note combinations occurring in classical piano

music (which the neural network was trained on), and the

uniform distribution used to generate note combinations in
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the test data, we can see evidence of the corpus bias wementioned

before. As the amount of possible (random) two combinations is

far smaller than for greater degrees of polyphony, and therefore

also has much greater coverage in musical corpora, we can

observe the neural network outperforming the decomposition-

based methods for P2. Perhaps, then, this result is only surprising

in the context of how these systems have always been evaluated:

using musical pieces of the same genre (or musical style) as the

pieces used for training, where the genre property encompasses

the specific distribution of note combinations. In this more

typical evaluation scenario involving musical pieces (see

Section 4.3), the deep neural network-based models

consistently outperform their decomposition-based

counterparts, as their bias towards musical content is actually

beneficial in this scenario.

Regarding the evaluation of the state-of-the-art “Onsets and

Frames” polyphonic piano transcription model (Hawthorne

et al., 2019), denoted by “OaF” and “OaF+TD” in the first

and middle rows of Figure 3, there are a few things to note. In

order to compute AUC-PR and maximum attainable F-score,

we had to modify the provided code. The binarization

thresholds for onset, frame and offset output heads were

originally set to a constant 0.5, and then post-processed with

a straightforward, hard-coded, temporal decoding routine. We

modified the code slightly, in order to change the three

aforementioned binarization thresholds simultaneously, and

only subsequently run the temporal decoding routine

afterwards. In the interest of fairness, we evaluated the neural

network model twice: with and without temporal decoding,

referred to by “OaF+TD” and “OaF” respectively in Figure 3.

We did this for the following reason: due to the nature of the

temporal decoding routine, which is fully dependent on an onset

being present, the AUC-PR and F-score values might have been

unduly influenced by detection errors propagated over time. As

we can see from the performance numbers, our concerns were

largely unnecessary, as it appears that the temporal decoding

step improves over the framewise result for almost all degrees of

polyphony.

4.3 Evaluation on musical piano sounds

We now turn to the evaluation scenario where the test

snippets contain musical piano sounds, coming from the MUS

subset of MAPS, while the training material—except for the Deep

Neural Network (DNN) based methods (Hawthorne et al., 2018,

2019)— is still isolated notes (MAPS/ISOL). Let us reiterate that

the samples of isolated notes used to train NMF and DDS were all

selected to contain all the other instruments than the

Disklavier—the synthesizers. On the other hand, the testing

pieces used for evaluation were all selected to contain only the

Disklavier. Thus, the realistic transcription scenario, where we

evaluate on previously unseen sources, fully applies to our results

in Table 1. In fact, this particular split strategy corresponds to

configuration II in (Sigtia et al., 2016).

Since the DDS and NMF methods are both restricted to the

sources in the 5 central octaves of piano claviature (C2-C7), any

labels outside of this range (of which there are very few) are

excluded from the metric computations. In cases where spectral

activity produced by a note outside of this range occurs, the

compared decomposition methods are at equal disadvantage

when presented with the challenge of explaining this activity

somehow. This naturally decreases their performance globally,

but does not impair the quality of their relative comparison. We

report the measures averaged over the pieces in Table 1. Please do

note the comments in the last column of Table 1 that outline the

many differences between train/test protocols, which make many

of the measures not directly comparable.

First, we observe that the DDS approach outperforms the

NMF baseline on musical signals by slightly smaller, but

generally similar margins, as on the non-musical ones shown

in Figure 3. We conjecture that the lower performance of both

methods on real music can be attributed to certain intuitive

musical differences between the tasks: real music may contain

larger note dynamics ranges, especially with different parts of

various notes overlapping, as well as generally higher levels of

polyphony.

Multiple variants of an adaptive decomposition method with

harmonic constraints on the dictionary are described in (Vincent

et al., 2010), and for Table 1 we picked the highest F-score that is

reported. This result is not readily comparable to others,

however, as the authors state that all parameters of their

harmonic constraints were optimized on the testset (to

facilitate a fair comparison of the potential of their approach

and reimplementations of other approaches). The method

proposed in (O’Hanlon et al., 2016) learns its dictionary

specifically from isolated notes recorded in the same acoustic

conditions as the musical pieces it is tested on. Similarly, the

“Attack/Decay” temporal post-processing approach proposed in

(Cheng et al., 2016) achieves a rather high F-score, while also

learning their dictionary from isolated notes of the piano in the

testset. Given that all the NMF based methods in the table either

use information that is unavailable to DDS or the NMF baseline

we chose, or whose adaptive acoustic models are tuned to

maximize performance on the testset, this essentially makes a

fair comparison nigh impossible.

If we now compare the performance of the proposed,

modified DDS approach and the best performing deep neural

network-based system (“Onsets and Frames”, “OaF”) that is

described in (Hawthorne et al., 2019), the performance gap is

almost ~ 27 percentage points in frame-wise polyphonic pitch

detection performance on the MAPS MUS subset.

To summarize: for classical music, as represented by both the

MAPS and MAESTRO datasets, all deep neural network-based

solutions outperform DDS by a very large margin. Yet, even the

system that was trained with more than 170 h of polyphonic
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piano data still struggles with “unusual chords”, as shown in

Figure 3 in Section 4.2. We take this as strong empirical evidence

that the “corpus bias” problem that was initially outlined in (Kelz

and Widmer, 2017) is not yet solved, and simply increasing the

amount of training data with additional music will most likely

not fix it. Let us assume, we were to try to remedy the situation,

and “just include all unusual chords during training”. Such

approaches face a combinatorial explosion of possible chords

FIGURE 3
Frame-level pitch identification performance of the threemethods (DDS, NMF, andOaF), quantified in terms of the AUC-PRmetric and F-score,
is shown in the top and middle rows of the figure. The reconstruction error of the two spectrogram decomposition methods is additionally assessed
by the RE metric in the bottom row. Our new formulation of DDS is evaluated multiple times, for a set of different values for the components per
source parameterN, introduced in Section 3.3. Remember that it can be viewed as controlling the “flexibility” or “representational power” of the
method. The darker shades of blue would then correspond to larger representational power. This allows us to examine its influence on the two
aspects of method behavior.

TABLE 1 Average performance across the first 30 s of the classical pieces contained in the MUS subset of MAPS—played on the Yamaha Disklavier in
Close and Ambient recording conditions. The F-score metrics for DDS and the NMF baseline were calculated from binarized activations using
oracle thresholds (see Section 4.1.6). The F-score for the deep neural network baselines were all calculated using fixed thresholds of 0.5.

Method F-score (30s)

Close Ambient Both

oc-NMF 65.14 60.41 62.78 Threshold optimized on testset

DDS(N = 64) 66.64 61.73 64.18

Vincent et al. (2010) (NMF) 67.00 Acoustic model optimized on testset

O’Hanlon et al. (2016) (NMF) 74.10 Oracle access to test piano

Cheng et al. (2016) (NMF) 79.01

Hawthorne et al. (2018) (DNN) > 78.30 Trained on MAPS

Hawthorne et al. (2019) (DNN) > 84.91 Trained on MAPS with augmentation

Hawthorne et al. (2019) (DNN) > 90.15 “OaF”, “OaF+TD”/Trained on MAESTRO
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with a (very conservative) lower bound of ∑5
k�0(88k ) ≈ 41.6 · 106,

where we assume that the degree of polyphony is restricted to a

maximum of 5 notes (two or three fingers playing per hand, no

pedal). If we go on and assume that each individual chord is

recorded for about half a second, this would amount to roughly

5,780 h of extra training data for this rather simplistic scenario alone.

5 Additional insights

In this section, we report on some additional experiments

and investigations that should give some further insights into the

workings and potential of the proposed method.

5.1 Model transparency

The following example attempts to demonstrate the benefits

of the innate transparency of our modified DDS model. The

modular nature inherited from the NMF decomposition

structure, along with the explicit-likelihood multi-source

dictionary model with source conditioning, enables its

practitioner to relatively straightforwardly trace an error on

the output of the system towards its source.

The example presented in Figure 4 shows decompositions of

a 1-second-long snippet from the MAPS/RAND samples that

was deliberately chosen to showcase the statistically least

common situation—one in which the DDS model significantly

underperforms its NMF baseline. In particular, the AUC-PR of

the DDS decomposition shown in the upper half of the figure

evaluates to only 40.51, as opposed to the NMF decomposition

shown in the lower half, which scores 85.14. This corresponds to

the biggest DDS underperformance of the NMF baseline that can

be found among our MAPS/RAND decompositions. We use this

example to show how simple it is to spot “what went wrong”.

As per the caption of Figure 4 describing its individual

components, the evaluation against ground truth in Heval is

computed from the Hscore matrix after thresholding with

FIGURE 4
In this figure, we juxtapose the components of interest to inference of frame-level transcription of short spectrogram snippet of 32 frames, by
two decompositionmethods. The top row showsDDS, the bottomNMF. The columns, introduced from left to the right, have the following contents:
1) Heval is the evaluation matrix based on oracle threshold (threshold computed using ground truth labels, such that highest potential F-score is
reached) computed by thresholding Hscore; 2) Hscore contains source-aggregated activity of H, after re-scaling by the norms of W, related to
ground truth through color (green for correctly attributed activity, purple for mis-attributed activity); 3–4) subsets of the activation matrixHMOFP and
of the dictionary WMOFP showing the active components (the ones with total activity above 0.05) of the Most Offending False Positive (MOFP)
note—found as a note with the highest total mis-attribution of activity (purple color in Hscore summed across time frames), ordered by total spectral
energy of the component (calculated as sum across frequency components), ordered from highest to lowest in terms of total spectral energy, for
better clarity; 5) part of the approximation Ŝ generated by the sub selected components of the MOFP note—as illustrated by the red framing in
Figure 2A; 6) full approximation of the snippet Ŝ; and finally 7) reconstruction error.
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oracle thresholds (see Section 4.1.6). The subset of DDS

dictionary entries detailing only the “most active” (see figure

caption) components of the note which was responsible for the

“most offending false positive” (see figure caption) — shown in

the matrixWMOFP along with its activationsHMOFP and resulting

part of approximation ŜMOFP — reveals the issue. Specifically, the

two dictionary components indexed by 0 and 3 contain spectral

activity in between the true harmonic partials of the source in

question, which is clearly misplaced, as highlighted by red

colored bounding boxes in the figure. A practitioner of the

DDS method can take this insight and use it, for example, to

elaborate an investigation into the behavior of their source

model, or alternatively, into the current balance between the

likelihood constraint term and the reconstruction error term, in

the objective of the optimization.

This can be related to the example of note comprehension as

a concept, examined by (Kelz andWidmer, 2019) in an invertible

transcription neural network (cf. Figure 7 in (Kelz and Widmer,

2019)). As opposed to the end-to-end approach of (Kelz and

Widmer, 2019), the linear mixing assumption of our model

allows us to use transcription errors to automatically identify

possible failures of our note model in grasping how a particular

note should look like.

5.2 Conditioning the sampling and search

When it comes to conditioning our generative model on

the class labels of samples (to express the differentiable

dictionary in our DDS formulation), we simply fix the

semantic dimensions to 1-hot vectors according to the

class labels, and keep them fixed as we “search” the

dictionary. We take the testing samples of isolated notes

from the Disklavier instrument (unseen during training),

and inspect how closely they land around their intended

binary coordinates, in the semantic part of the latent space,

after projection through our multi-source model.

By using the conditioning mechanism described in Section

3.4.2 for dictionary adaptation, we are practically making the

following set of assumptions:

1. The training procedure succeeded in concentrating the class

information in zs by tightening the lower bound on the

minimized mutual information I(y; zn) sufficiently: and

2. The training procedure succeeded in minimizing the semantic

error term sMSE all the way to zero

As a result, we expect the model to generalize to unseen

sources in a way that any novelty in intra-class feature

variance—such as a previously unseen timbre—will be

mostly captured by novel variance in the nuisance

dimensions of the model’s latent space Z. However,

considering the nature of the learning algorithm applied

and the function class used to do the approximation, some

margin for generalization error necessarily needs to be

considered.

In particular, since the model architecture used to express the

bijective mapping Fθ between the data spaceX and latent spaceZ is a

normalizing flow, the function it learns is an instance of a

diffeomorphism—a smooth map between two smooth

manifolds—with all dimensions of the two spaces mutually

interacting through the map. As a result, even in the case of highly

successful learning with our modified iCE objective (Eq. 4), some

amount of intra-class data variance should still be expected to be

“leftover”mapped onto the semantic dimensions zs, possibly within a

small neighborhood of the exact 1-hot semantic code of the given class.

In the following, we inspect the behavior of the conditional

density model that was used for all of the DDS experiments

reported throughout this manuscript. We used this model Fθ, to

project all samples from the held-out test set of all notes in the

modeled range (C2-C7), onto the latent space Z, and report on

values of semantic dimensions zs to see how much they deviate

from their 1-hot binary labels y ∈ {0,1}K. The results are shown in

Figure 5 as a histogram with the counts on a logarithmic scale.

Keeping in mind the logarithmic scale of the vertical axis, the

slight difference in shapes of the two ‘bells’ indicates higher relative

rates of larger deviations from 1s, than those from 0s. We

hypothesize that the flexibility of dictionary search could be

additionally increased simply by allowing a certain bounded

amount of deviation from the ground truth 1-hot code, within

the semantic dimensions zs. However, in order to devise an

approach that would allow the DDS method to capitalize on

such increased flexibility without impairing its performance by

introducing more potential for finding degenerate solutions, it will

be necessary to further study the dynamics of such a trainedmodel.

6 Conclusion

We proposed a modification of a recent audio

decomposition method (DDS), in order to allow its

application to the task of framewise polyphonic piano

transcription, and introduced a way to constrain its

flexibility at the time of decomposition. We compared its

transcription performance to an overcomplete variant of

NMF under almost equal conditions, with NMF being

slightly favored in terms of available training data. The

experiments were designed to evaluate the raw performance

potential of the method, without introducing specialized

constraints that boost performance by leveraging task

domain knowledge. Our experimental results show the

potential of DDS for polyphonic transcription. The method

manages to successfully integrate the high modeling capacity of

deep generative models into the NMF framework, without

sacrificing explainability. We also demonstrated the

mechanism of interpretability, by which the prediction errors
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made by the DDS model can be subjected to scrutiny.

Additionally, we showed that existing frame-wise piano

transcription systems based on deep end-to-end neural

networks strongly suffer from corpus bias–a bias towards the

note combinations encountered the most in the training corpus.

Thus, we hope to have demonstrated how deep, high capacity

non-linear models can be applied to frame-wise polyphonic

piano transcription, without introducing corpus bias.

Obviously, this is only a starting point, and the DDSmethod is

still limited in several respects. The upper bound on its

performance is conceptually given by the discrepancy between

the linear mixing assumption and the non-linearity of magnitude

spectra feature space. To some extent, this can be potentially

improved through the use of increased spectral resolutions,

which reduces the amount of problematic feature overlap

stemming from the aforementioned discrepancy. Higher

spectral resolution, however, comes with increase in

computational cost, and is further limited by the capacity of the

dictionary model to correctly capture the feature space arising

from those spectral resolutions. This could be addressed by further

improving computational efficiency and modeling capacity of the

used sourcemodel. In any case, the variant evaluated in this work is

a “bare” one. Whether at the level of dictionary modeling,

regularizing decomposition objectives, or sophisticated post-

processing techniques, plenty of avenues to boost its

transcription performance remain open for future exploration.
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FIGURE 5
Histograms of scalar values found in the semantic dimensions zs inferred by our multi-source model Fθ from the set of testing samples of
isolated notes x coming from ISOL subset of MAPS. The multiple orders of magnitude difference between the total counts of zeros and ones, as
indicated in the figure title, stems from the nature of 1-hot labeling. The blue histogram shows counts of numbers that should be “landing on” 0s,
according to the labeling, while the orange one shows counts for the 1s, as indicated in the legend. The logarithmic scale of the histogram
counts allows for direct comparison of relative rates of displacements for the two types of indicative dimensions, despite the large discrepancy in
total counts.
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