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Introduction: Fundal imaging is the most commonly used non-invasive technique
for early detection of many retinal diseases such as diabetic retinopathy (DR). An
initial step in automatic processing of fundal images for detecting diseases is to
identify and segment the normal landmarks: the optic disc, blood vessels, and
macula. In addition to these structures, other parameters such as exudates that
help in pathological evaluations are also visible in fundal images. Segmenting
features like blood vessels pose multiple challenges because of their fine-grained
structure that must be captured at original resolution and the fact that they are
spread across the entire retina with varying patterns and densities. Exudates appear
as white patches of irregular shapes that occur at multiple locations, and they can be
confused with the optic disc, if features like brightness or color are used for
segmentation.

Methods: Segmentation algorithms solely based on image processing involve
multiple parameters and thresholds that need to be tuned. Another approach is
to use machine learning models with inputs of hand-crafted features to segment the
image. The challenge in this approach is to identify the correct features and then
devise algorithms to extract these features. End-to-end deep neural networks take
raw images with minimal preprocessing, such as resizing and normalization, as
inputs, learn a set of images in the intermediate layers, and then perform the
segmentation in the last layer. These networks tend to have longer training and
prediction times because of the complex architecture which can involve millions of
parameters. This also necessitates huge numbers of training images (2000‒10,000).
For structures like blood vessels and exudates that are spread across the entire
image, one approach used to increase the training data is to generate multiple
patches from a single training image, thus increasing the total number of training
samples. Patch-based time cannot be applied to structures like the optic disc and
fovea that appear only once per image. Also the prediction time is larger because
segmenting a full image involves segmenting multiple patches in the image.

Results and Discussion: Most of the existing research has been focused on
segmenting these structures independently to achieve high performance metrics.
In this work, we propose a multi-tasking, deep learning architecture for segmenting
the optic disc, blood vessels, macula, and exudates simultaneously. Both training and
prediction are performed using the whole image. The objective was to improve the
prediction results on blood vessels and exudates, which are relatively more
challenging, while utilizing segmentation of the optic disc and the macula as
auxiliary tasks. Our experimental results on images from publicly available
datasets show that simultaneous segmentation of all these structures results in a
significant improvement in performance. The proposed approachmakes predictions
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of all four structures in the whole image in a single forward pass. We used modified U-
Net architecture with only convolutional and de-convolutional layers and
comparatively.

KEYWORDS

fundal image segmentation, deep learning, multi-task learning, blood vessels, macula, optic
disc, exudate segmentation

1 Introduction

Fundal imaging, capturing retinal images using specialized
cameras, is the most widely used non-invasive technique for
screening of retinal diseases. These images are used to identify
common eye diseases like diabetic retinopathy (DR) (Hu et al.,
2015) and glaucoma, which are the most common causes for
blindness, but could also be employed as indicators of
cardiovascular diseases. Blood vessels (BVs), the optic disc (OD),
and the macula are the normal landmarks visible in a healthy fundal
image. Certain features of BVs like tortuosity are widely used for early
detection of various cardiovascular diseases (Krestanova et al., 2020).
However, manual identification and demarcation of fine structures
like BVs require domain expertise, besides being prone to manual
errors. Features extracted for the OD like cup-to-disc ratio can be used
to detect glaucoma; hence, automatic detection of major landmarks in
fundal images has become an active research area (Kou et al., 2020;
Guo et al., 2020; Nur and Tjandrasa 2018; Jiang et al., 2018; Joshua
et al., 2020; Dash et al., 2020).

Figure 1 shows a fundal image with normal landmarks like
BVs, the OD, and the macula marked. The OD is the point of exit
of the optic nerves that carry information from the eye to the
brain. It is also the point where all the BVs enter the eye. Since
there are no photosensors (rods and cones) present in the OD, it
represents a blind spot in the retina. The macula is a small region
with many cone cells packed together, and this region is
responsible for sharp vision (Wikipedia, 2022). The center
point of the macula is called the fovea. BVs that carry blood to
the eye are spread across the entire region of the retina and vary in
thickness and density.

Figure 2A, B shows a sample fundal image with exudates and the
corresponding ground-truth features. Exudates are fluids such as pus
that can leak out of BVs. They are indicative of an advanced stage of
DR. Exudates appear as unstructured, scattered, bright patches in the
fundal image.

The segmentation of BVs is the most challenging imaging task
among the four structures considered because BVs are spread across
the entire image with varying patterns and density. They vary in
thickness, being thicker and denser near the OD and finer grained
towards the ends of the branches. Down-sampling of the image as
required by some approaches like neural networks will result in loss of
such fine-grained vessels in the segmented image. Exudates, which are
visible as irregularly shaped white patches in the fundal image, can also
be spread across the entire image. Exudates can also be confused with
the OD, especially those that appear very close to the OD, if features
like brightness, color, and position are used for segmentation. In
contrast, the fovea and OD are present only once per fundal image at a
fixed location. Their shapes are also relatively predictable compared to
exudates and BVs. Because of these characteristics, it is relatively easy
to identify the OD and fovea.

One of the approaches for segmenting these structures is to use
image processing algorithms such as thresholding, edge and shape
detection, and morphological operations. Such algorithms have major
drawbacks, however, such as the necessity of using multiple
parameters that need to be tuned for different types of images with
varying acquisition artifacts and anomalies. This can be resolved by a
data-driven approach where one first identifies some generic features,
such as edges, color, brightness, and location, which are crucial for the
segmentation task, then extracts these features using image processing
algorithms, and lastly applies a machine learning model, such as
clustering or conditional random field to segment the image using
the features. The challenge in this approach is to identify usable
features that can be easily extracted, and that will work across tasks
and across images that vary in resolution, pathology, and acquisition
artifacts, and then to devise an algorithm to extract these features. One
way to achieve this is to employ end-to-end deep neural networks that
take raw images with minimal preprocessing such as resizing and
normalization as input. The algorithm then learns a set of generic
features from the initial layers, more task-specific features towards the
final layers, and performs the segmentation task in the last layer. Such
an effective approach is becoming popular and has been shown to out-
perform both the techniques mentioned earlier.

Since the breakthrough successes of deep learning in solving tasks
in domains like computer vision for classification (Krizhevsky et al.,
2012 Simonyan and Zisserman, 2014), the framework has been
successfully extended to more complex tasks such as semantic
segmentation (Chen et al., 2017; Yu et al., 2018; Wang et al.,
2018). The primary reason for the success of these deep neural
networks is that the features are learned from data in the initial
layers of the network, and the segmentation task is performed on these
learned features in the final layer.

Recently, several deep learning architectures that were successful
in segmentation (Chen et al., 2017) of natural images were tried for
segmenting BVs in retinal images. Many deep learning architectures
have been utilized for segmenting challenging structures such as BVs
(Vengalil et al., 2016; Zhuang, 2018; Jiang et al., 2018; Park et al., 2020;
Exudates Kou et al., 2020; Guo et al., 2020; Nur and Tjandrasa, 2018)
in fundal images, and the results were significantly better than using
conventional image processing techniques. However, one of the main
challenges in using deep neural networks for segmentation is that the
reduction in resolution of the feature map as one goes deeper will
result in loss of fine details like edges, which are crucial for
segmentation tasks. Another major issue in using deep learning
architecture for medical images is limited availability of annotated
training data. Deep learning models for segmentation need a large
number of training images as the models have a huge number of
parameters, typically in the range of 60–100 million (Long et al. 2015).
The number of images required to train a model increases with the
number of training parameters in the model. Our model has fewer
(31 million) parameters compared to other deep learning models
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because it has fewer layers and there is no dense layer (i.e., the encoder
network is fully convolutional, and the decoder network is fully de-
convolutional). Hence, we are able to get good performance, without
overfitting, even with relatively few training images. Many approaches,
like taking multiple training patches from a single image (Vengalil
et al., 2016) and transfer learning (Vengalil et al., 2016), have been
successfully explored, but these methods also tend to have longer
prediction times because of complex neural network architectures and
patch-based training and prediction.

Most of the existing research has focused on segmenting different
structures independently. However, in almost all the practical use
cases, the goal is to detect the early development of anomalies, such as
(1) exudates that are indicators of pathologies like diabetic retinopathy, 2)
abnormal cup-to-disc ratios in the OD that can indicate glaucoma, and (3)
anomalies in BV tortuosity which can be indicative of cardiovascular
diseases. When an ophthalmologist analyzes a fundal image, it is

customary to look for all these anomalies. So for any automatic
diagnostic system that can reduce the need for manual intervention by
an ophthalmologist, it is necessary that all these structures be segmented as a
first step. It should be noted that, even if the use case is just to segment only
one single anomaly like exudates, themulti-taskingmodel does not add any
additional overhead as opposed to a model that just predicts exudates. The
segmentation of exudates shows a significant improvement when a multi-
tasking model is used because of the correlation between other structures
and exudates; the remaining outputs can be ignored. In general, segmenting
multiple structures using separate models suffers from the following
problems:

1) It does not take into account the correlation between structures
such as (a) BVs and the OD, where BVs are thicker and denser near
and inside the OD, (b) the OD and macula, where the line connecting
the centroid of the OD andmacula lies approximately along a diameter
of the fundal image, (c) exudates and BVs, in which the appearance of
small exudates starts near the blood vessels as substances leaking out of
BVs, and (d) for the OD and exudates with the possibility of confusing
them with the OD. Exudates in poor quality fundal images can be
avoided if the OD and the exudates are segmented together by a single
model.

2) Segmenting each structure separately using different models will
increase the training and prediction time as a separate DL model
needs to be trained for each structure.

In this work, we propose a multi-tasking, deep learning
architecture for simultaneous segmentation of BVs, the OD, the
macula, and exudates. Our results show that a single network that
predicts multiple structures performs better compared to detecting
each structure independently using different networks, as the single
network can make use of the correlation between multiple tasks. This
correlation is evident from Figure 1, where it is shown that BVs are
thicker and denser near and inside the OD. Thus, the task of
segmentation of the OD can help the segmentation of BVs, and vice
versa. Similarly, the relative positions of the OD and the macula can help to
improve the segmentation performance of each of these structures. We
performed experiments on BV segmentation using data from four publicly
available and well-evaluated datasets: DRIVE, HRF (Budai et al., 2013),
CHASE_DB, and IDRiD (Porwal, 2018). Since the numbers of images in
these datasets are relatively small (40, 45, and 28, respectively), we used data
augmentation techniques such as horizontal flip, vertical flip, rotation,

FIGURE 2
Sample fundal image with exudates (A) and corresponding ground-truth image for exudates (B).

FIGURE 1
Sample fundal image showing normal landmarks, BVs, the OD, and
the macula.
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elastic transformation, grid distortion, and optical distortion to increase the
number of training images by a factor of 4–6. For segmentation of the
macula, we used the IDRiD localization dataset, which contains 413 training
and 103 testing images. The IDRiD dataset for exudate segmentation
contained a total of 81 images, out of which 54 images were used for
training and 27 for testing. Themajor contribution of this work is to propose
a multi-tasking model for simultaneous segmentation of BVs, the OD, the
macula, and exudates. The proposed multi-tasking model resulted in a 15%
improvement in F1 score for exudates, besides being 12 times faster.

2 Related work

2.1 Blood vessel segmentation

Existing techniques for fundal image segmentation mainly fall
into two categories: (1) traditional image processing techniques
and (2) deep learning techniques. Examples of techniques for
image processing include filtering (Zhang et al., 2010; Yavuz
and Köse, 2011; Aslan, 2018) and morphological separation
(Hassan et al., 2015; Singh et al., 2014). Image processing
methods have the advantage that domain knowledge can be
easily incorporated through hand-crafted features; however,
they are not easily generalizable across diverse datasets.
Furthermore, these algorithms are based on many customized
parameters that may vary from dataset to dataset. Generalization
becomes challenging since there could be hardware differences,
change in acquisition conditions, different pathologies, etc.

Several types of deep learning architecture that had been successful
in segmentation (Chen et al., 2017) of natural images were tried for
segmenting BVs in retinal images, and the results were significantly
better than using conventional image processing techniques. Vengalil
et al. (2016) used a popular segmentation model, deeplab (Chen et al.,
2017), which was pre-trained on natural images for semantic segmentation,
to segment BVs at the pixel level. Jiang et al. (2018) proposed a pre-trained
fully convolutional network for segmenting BVs and reported accuracy of
cross-dataset testing on four different datasets. In M-GAN, proposed by
Park et al. (2020), a multi-kernel pooling block added between stacked
convolutional layers supported scale-invariance, which is a highly desirable
feature for BV segmentation.

One of the main challenges in using deep neural networks for
segmentation tasks is that the reduction in resolution of the feature
map as one goes deeper will result in loss of fine details like edges,
which are crucial for segmentation tasks. In order to circumvent this,
the U-Net (Ronneberger et al., 2015) model was introduced
specifically for medical image segmentation because it has multiple
skip connections. In their recent work, Joshua et al. (2020) used a
modified version of U-Net for segmenting BVs in retinal images and
reported high levels of accuracy. Laddernet, introduced by Zhuang et al.,
Zhuang et al. (2018), is a sequence of multiple U-Nets cascaded together.

2.2 Exudate segmentation

Like BV segmentation, studies on exudate segmentation were
also performed using both traditional image processing and deep

FIGURE 3
Architecture of the proposed multi-tasking U-Net model.
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learning techniques. Existing works on exudate segmentation using
deep learning approaches include Perdomo et al. (2017), Tan et al.
(2017), Feng et al. (2017), and Zheng et al. (2018). The work
reported in Perdomo et al. (2017) and Kou et al. (2020) used a
convolutional neural network, LeNet (LeCun et al., 1989), to
classify patches extracted from fundal images into classes of
“with exudates” or “without exudates.” They extracted patches
of the size of 48 × 48; hence, the network did not provide pixel-
wise segmentation. The work reported in Kou et al. (2020)
proposed a deep learning approach, called enhanced residual
U-Net (ERU-Net). Their proposed model had three U-paths
each with three up-sampling paths and one down-sampling
path. This structure enhanced the feature-fusion capability of
the networks to capture more details about the fundal image.
The proposed model also made use of residual blocks.

3 Proposed method

3.1 CNN architecture

A modified version of the U-Net architecture proposed by
Ronneberger et al. (2015), shown in Figure 3, was used for
segmenting various structures. The modifications are as follows:

1) Our proposed network retained the original dimensions of the
input image, whereas the original U-Net described in Ronneberger

et al. (2015) reduced the original input size from 572 × 572 to
388 × 388.

2) We used de-convolutional layers with a stride of two for up-
sampling as opposed to the up-sampling of layers used in the
original U-Net architecture. Our method has the advantage that
the network also learns the interpolation weights using a de-
convolutional layer.

3) We added batch normalization after each convolutional layer in
order to stabilize the training process as well as for faster training.

The encoder and decoder consist of four stages each. Each stage of
the encoder comprises two convolution layers, each followed by batch
normalization and an ReLU activation function. A max-pooling layer
with a stride of two was added at the end of each stage of the encoder,
which down-samples the image by a factor of two. Each decoder layer
up-samples the image by a factor of two using a de-convolution layer
followed by a convolution layer. A sigmoid function was used in the
final output channel with two filters instead of the Softmax activation
function because the BV and OD features were not mutually exclusive.
These features shared common connections in the fundal image, and
hence, their simultaneous segmentation also yielded the best results.

For multi-tasking experiments, the auxiliary task chosen was OD
segmentation. We also evaluated models with different dimensions of
latent representation and different numbers of channels in the
bottleneck layer and reported the results for all combinations. For
latent representation dimension, we experimented with different
values 16 × 16, 32 × 32, 64 × 64, and 128 × 128. For the number
of channels, experiments were carried out at 384, 512, 768, 1024,
and 1280.

3.2 Datasets

We used the DRIVE, HRF (Budai et al., 2013), CHASE_DB, and
IDRiD (Porwal, 2018) datasets. The DRIVE dataset contains
20 training images and 20 testing images with a resolution of 565 ×
584 pixels. The dataset also provided ground-truth images for BV

TABLE 1 Comparison of results with and without multi-tasking. For all tasks
except the optic disc, multi-tasking was done with the OD as an auxiliary task. For
the OD, multi-tasking was done in combination with blood vessels.

Dataset Individual Multi-tasking

Dice (%) JI (%) Dice (%) JI (%)

Blood vessels DRIVE 77.00 62.78 80.31 67.35

HRF 78.11 64.29 81.66 69.04

CHASE_DB 74.34 59.21 80.45 67.32

Optic disc DRIVE 76.24 66.15 78.63 69.85

IDRiD 85.73 64.65 94.51 89.98

Macula IDRiD 68.13 60.16 70.52 61.77

Exudates IDRiD 50.34 34.56 61.37 46.33

TABLE 2 Results of various multi-tasking experiments run on segmentation of
exudates. Best results (shown in bold) were achieved when the model was
trained with multi-tasking loss for a combination of exudates, the OD, and BVs.

Experiments run Dice (%) AUC

Exudates alone 50.34 0.8402

Exudates and OD 53.32 0.8078

Exudates and BV 61.37 0.8365

Exudates, OD, and BV 65.00 0.9993

FIGURE 4
ROC-AUC curves for different experiments on exudate
segmentation.
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FIGURE 5
Comparison of blood vessel segmentation results for HRF, DRIVE, and CHASE_DB datasets (from top to bottom row) with andwithoutmulti-tasking. The
green pixels in the predicted image correspond to true positives, blue pixels correspond to false positives, and red pixels correspond to false negatives. An
increase in F1 score of 4.67%, 3.31%, and 5.83% was observed in HRF, DRIVE, and CHASE_DB, respectively. The columns from left to right show original image
(A), Ground Truth (B), Prediction with model trained only for BV segmentation (C) and Prediction using model trained with OD and BV segmentation (D).

FIGURE 6
Comparison of optic disc segmentation results for the IDRiD dataset with and without multi-tasking. The green pixels in the predicted image correspond
to true positives, blue pixels correspond to false positives, and red pixels correspond to false negatives. An increase in F1 score of 9% was observed. The
columns from left to right show original image (A), Ground Truth (B), Prediction with model trained only for OD segmentation (C) and Prediction using model
trained with OD and BV segmentation (D).
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segmentation annotated by a human expert. As the DRIVE and CHASE_
DB datasets did not have OD annotations, we annotated the OD in each
image ourselves. The HRF dataset contains 15 high-resolution fundal
images along with ground-truth annotation for BV segmentation.

The IDRiD (Porwal, 2018) localization dataset, which contains
413 training images and 103 test images along with fovea ground-

truth, was used for macula localization. For segmentation of
exudates, we used the IDRiD segmentation dataset which
contains a total of 81 images. The OD ground-truths were
available as part of the dataset, but the BV ground-truths were
not available. For training exudates in the multi-tasking mode, we
first predicted BV segmentation on these images using the model

FIGURE 7
Comparison of macula segmentation results for the IDRiD dataset with andwithout multi-tasking. The green pixels in the predicted image correspond to
true positives, blue pixels correspond to false positives, and red pixels correspond to false negatives. An increase in F1 score of 58% was observed for
this image.The columns from left to right show original image (A), Ground Truth (B), Prediction with model trained only for Fovea segmentation
(C) and Prediction using model trained with Fovea and BV segmentation (D).

FIGURE 8
Comparison of exudates segmentation results for the IDRiD dataset with and without multi-tasking. The green pixels in the predicted image correspond
to true positives, blue pixels correspond to false positives, and red pixels correspond to false negatives. An increase in F1 score of 15% was observed. The
columns from left to right show original image (A), Ground Truth (B), Prediction with model trained only for Exudates segmentation (C) and Prediction using
model trained with Exudates and BV segmentation (D).

FIGURE 9
Plot of dice score vs dimension of the feature map in the bottleneck layer for blood vessel segmentation from the DRIVE, CHASE_DB, and HRF datasets
(from left to right).
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trained on images taken from HRF, DRIVE, and CHASE_DB
datasets. These predictions were used as BV ground-truth for
multi-tasking training. Data augmentation by horizontal and
vertical flipping and grid and elastic distortion was provided
by the library, Albumentations (Buslaev et al., 2020), and used
to increase the number of training samples by a factor of 4. No
preprocessing, other than resizing the images to 512 × 512, was
performed on the original images.

3.3 Experiments

We used full images, as opposed to image patches, for training
the network because a full image will show more context and hence
should be more effective for predicting structures like the OD and
macula. We performed multiple experiments, for individual and
simultaneous prediction of BVs, the OD, the macula, and
exudates. First, we performed BV segmentations on the

FIGURE 10
Plot of dice score vs number of channels in the bottleneck layer for blood vessel segmentation from the DRIVE, CHASE_DB, and HRF datasets (from left
to right).

FIGURE 11
BV segmentation results on the IDRiD dataset using the model trained with images selected from DRIVE, HRF, and CHASE_DB.

Frontiers in Signal Processing frontiersin.org08

Vengalil et al. 10.3389/frsip.2022.936875

https://www.frontiersin.org/journals/signal-processing
https://www.frontiersin.org
https://doi.org/10.3389/frsip.2022.936875


individual datasets with the proposed U-Net architecture to
achieve the best possible results. To further improve the BV
results, we utilized simultaneous segmentation of BVs and the
OD. In addition to these experiments, we also modified the U-Net
architecture to determine the best suitable parameters for both
BVs and the OD.

Another experiment we carried out was to train a model for BV
segmentation using a training set containing images from HRF,
DRIVE, and CHASE datasets. We evaluated the performance of
this trained model on a held-out validation dataset comprised of
images from HRF, DRIVE, and CHASE_DB and a test dataset
containing images from IDRiD dataset. Using the IDRiD dataset,
we evaluated the model qualitatively as no ground-truth was
available for this dataset. To determine the generalizability of
the trained model, we also reported the results for all tasks
across the dataset. The BV data obtained from the IDRiD
dataset were further utilized to improve the segmentation results
for the OD, macula, and exudates.

3.4 Loss function and training

A sigmoid activation function was used at the output layer. The
model was trained with dice loss and with a combination of dice loss
and binary cross entropy loss. In most of our experiments, we noticed
that a combination of the two losses gave a better F1 score. For
predicting the structures separately, four separate networks with the
same architecture were trained independently, one for each of the
structures, BVs, the OD, the macula and exudates.

In the multi-tasking model, we trained three separate networks,
each with two output channels, for predicting the following three
combinations:

1) BV and OD
2) Macula and OD
3) Exudates and OD
4) BV and macula
5) BV and exudates
6) Exudates, BV, and OD
7) Macula, BV, and OD

The network was trained for 60 epochs in all cases.

4 Results and discussion

We used multiple metrics, accuracy, dice score, ROC-AUC, and
Jaccard index (intersection over union) for evaluating model
performance. The definition and mathematical expression of each
of these metrics is given below.

True positive (TP): The number of positive pixels in the image
which the model also correctly predicted as positive.

True negative (TN): The number of negative pixels which the
model correctly predicted as negative.

False positive (FP): The number of negative pixels in the image
which the model predicted incorrectly as positive.

False Negative (FN): The number of pixels which are actually
positive that the model predicted as negative.

Accuracy (ACC): It is the ratio of the total number of
correctly predicted positive and negative pixels (sum of true
positives and true negatives) to the total number of pixels in the image.

FIGURE 12
ROC curve for BVs, OD, andmacula structures and the pathological
indicator, exudates. BV results are on the DRIVE test dataset. OD, macula
(FOV), and exudates (EX) are on the IDRiD dataset.

TABLE 3 Comparison of our method for segmentation of exudate images with other up-to-date approaches on the IDRiD dataset. As our predictions are for whole
images, our prediction times are much faster (about 12 times) compared to other state-of-the-art techniques on the IDRiD dataset. Best results are shown in bold.

Author/year Approach Performance metrics

Method SUP/UNSUP Patch-wise/whole image AUC ACC (%) Prediction time (sec)

Kaur and Kaur (2022) U-Net with inceptionV3 SUP — — 99.83 —

Hamad et al. (2020) FCM clustering UNSUP Patch-wise (256 × 256) — 99.2 30

Kou et al. (2020) ERU-Net SUP Patch-wise 0.9801 98.00 37.3

Guo et al. (2020) Deeplab-V2 with bin loss SUP Patch-wise (51 × 51) 0.9162 99 —

Nur and Tjandrasa (2018) Saliency based UNSUP Patch-wise (32 × 32) — 99.33 —

Our approach Modified U-Net multi-tasking SUP Whole image 0.9993 99.42 2–3

Abbreviations: FCN, fully convolutional network; ACC, accuracy; SUP, supervised; UNSUP, unsupervised.

Frontiers in Signal Processing frontiersin.org09

Vengalil et al. 10.3389/frsip.2022.936875

https://www.frontiersin.org/journals/signal-processing
https://www.frontiersin.org
https://doi.org/10.3389/frsip.2022.936875


Accuracy � TP + TN

TP + TN + FP + FN
(1)

Dice score: It is the ratio of two times overlap (intersection of
predicted and actual positive pixels) to that of the sum of the number
of positively labeled pixels in the ground-truth and the number of
pixels which the model predicted as positive.

Dice � 2TP
2TP + FP + FN

(2)

Jaccard Index (JI): Also known as the intersection-over-union
(IoU), Jaccard Index is the ratio of the intersection of predicted and
ground-truth pixels (which is the same as TP) to the union of
prediction and ground-truth.

Jaccard � TP

TP + FP + FN
(3)

True positive rate (TPR): Also known as the sensitivity or recall,
true positive rate is the ratio of the number of true positives to the total
number of positive samples.

TPR � TP

TP + FN
(4)

False positive rate (FPR): It is the ratio of the number of false
positives to the total number of negative pixels.

FPR � FP

TN + FP
(5)

ROC-AUC: The receiver operating characteristic (ROC) is a plot
of true positive rate vs false positive rate computed at various
thresholds. The area under the ROC curve (AUC) is a measure of

a model’s ability to discriminate between positive and negative
samples, and this metric is independent of the threshold. In
addition to the above metrics, we also compared our approach
with other up-to-date approaches with inclusion of prediction time.

For comparison of multi-tasking segmentation with segmentation
of individual structures, experiments on individual prediction were
performed. In that case, the network had one output channel
corresponding to the segmentation map. The network outputs a
binary image, of the same resolution as the input, which indicates
pixel by pixel segmentation. For multi-tasking models, additional
channels for predicting additional structures in combination with
another structure were added at the output layer.

Table 1 compares the segmentation performance of various
structures when the model was trained with and without multi-
tasking. The table provides a comparison of results when the
model was trained in the multi-tasking mode with two different
tasks vs the results with an individual task. In all these cases, the
OD was added as an auxiliary task along with the main tasks like BVs,
the macula, and exudates. The row for the OD shows comparison of
segmentation performance of the OD when trained with the OD alone
vs results of multi-tasking loss with BVs. As evident from the table,
dice score for segmentation of exudates resulted in an improvement of
10% when the model was trained in combination with the OD. A
similar trend was observed in BV and OD segmentation with an
improved dice score of about 4% (for HRF) and 6% (for CHASE_DB).
For the macula, the segmentation results decreased by 2% upon
addition of the OD as an additional task during training. This
happened because the macula and optic disc were mutually
exclusive as they appear at different locations in the image. In all
our simultaneous segmentation experiments, we used the sigmoid

FIGURE 13
Comparison of the proposed approach for segmentation of exudates with results of Guo et al. (2020). Each column from the left shows the original
image, the ground-truth segmentation results of Guo et al. (2020), and the segmentation results of our proposed approach. The color code is the same as in
Guo et al. (2020): red, true positive; green, false positive; blue, false negative.
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function as an output activation function for multi-label prediction,
which was not true in this case. However, when trained with BVs, and
the macula and OD together, we observed a 3% increase in the score
for the macula.

For exudates, we carried out multiple experiments (Table 2). As
shown in the table, whenmulti-tasking was done with three tasks (OD,
exudate, and BV segmentation), the score for exudates segmentation
increased by 15% to a value of 65%. Also, the AUC improved from
0.8402, when trained individually, to 0.9993 when trained in
combination with BV and OD. Figure 4 shows the ROC-AUC
curve for all four exudate segmentation experiments.

Figure 5 shows a sample of BV segmentation results with and
without multi-tasking for the HRF, DRIVE, and CHASE_DB datasets.
The increase in dice score was due to a lower number of false negatives
(red pixels) in the prediction (resulting in higher precision). Similarly,
Figures 6–8 shows a comparison of segmentation results for the OD,
the macula, and exudates, respectively.

The improved performance with multi-tasking is a consequence of
the direct correlation between the two predicted structures. When

trained together, the network is able to learn new hidden layer features
that can contribute to the prediction of both structures. When trained
individually, the OD can easily be confused as exudates as both appear
as white patches. In simultaneous segmentation, the network
learns to discriminate the OD from the exudates, using some
other features like shape for example, which improves the
segmentation results for both.

Figure 9 shows a plot of validation dice score vs feature map
dimension, and Figure 10 shows dice score as a function of number of
channels in the bottleneck layer. As evident from the graphs, the best
results were obtained when the feature map dimension was 64 × 64
and the number of channels was 1024.

Figure 11 shows the results of BV segmentation on the IDRiD
dataset using the model trained with images from DRIVE, HRF, and
CHASE_DB datasets. These segmentation results were used as BV
ground-truth of IDRiD images while training for exudates in the
multi-tasking mode.

Figure 12 shows the receiver operating characteristics (ROC)
curves of the best results from the three structures, BV, OD, and

TABLE 4 Comparison of BV segmentation results of our approach with other up-to-date approaches.

Author/year Approach Patch-wise/whole image Dataset Performance metrics

Dice AUC ACC

Xu et al. (2021) Residual attention with ASPP and Deep Supervision Patch-wise (64 × 64) DRIVE — 0.97 95.9

Liu (2021) Hand-crafted features with MLP Whole image DRIVE — — 95.82

Jiang et al. (2018) FCNN Patch-wise (50 × 50) DRIVE — 0.98 —

Transfer learning HRF 0.97

CHASE_DB 0.98

Joshua et al. (2020) U-Net Whole image DRIVE 87.62 — —

HRF 85.11

CHASE_DB 85.69

Park et al. (2020) M-GAN Path-wise (48 × 48) DRIVE 83.24 — —

HRF 79.92

CHASE_DB 81.10

Sun et al. (2021) Data Whole image DRIVE 82.09 — —

Augmentation CHASE_DB 75.65

Adapa et al. (2020) Zernike Moment Whole image DRIVE — — 94.5

Dash et al. (2020) Preprocessing: Whole image DRIVE — — 95.2

CLACHE CHASE_DB 95

Gabor

Hessian

Segmentation: k-means

Postprocessing:

Morphological cleaning

Our approach Multi-tasking using U-Net Whole image DRIVE 80.31 0.98 95.89

HRF 81.66

CHASE_DB 80.45
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macula, and for the pathological indicator, exudates. The BV
segmentation results are on DRIVE test images, while the OD,
macula, and exudates results are on the IDRiD dataset. As evident
in the figure, the ROC curve for exudates is encouraging as an
indicator for early detection of many retinal diseases like DR. It is
worth noting that these improved results were achieved as a
consequence of multi-tasking with BV and OD images.

Table 3 compares our results for the segmentation of exudates with
state-of-the-art techniques. The AUC of our segmentation results is
better than the latest DL methods (Kou et al., 2020); and, more
significantly, our prediction time is significantly better than that of
the latest DL approaches. This time saving is accomplished by doing
whole image segmentation in a single forward pass, whereas many DL
approaches used patch-wise training. The patch method requires
longer times for prediction of a single image as the network needs
to run the prediction on each patch and all the predictions needs to be
combined together to get the overall segmentation results for the
image. We believe that the AUC can be further improved by adding
more data augmentation techniques and also by including more
images in the original training set. Our improvement in AUCs is
attributed to multi-tasking, which results in faster learning of more
generalized features. Another major advantage of our approach is that
we achieved segmentation of two different additional structures, BVs
and the OD, along with exudates. Nur and Tjandrasa (2018) obtained
an accuracy of 99.33% by removing the OD first and then obtaining
the salient regions using intensity thresholding. The challenge to their
method was that the threshold varied from dataset to dataset and the
accuracy depended on the OD removal step.

Figure 13 shows the comparison of exudate segmentation results
of the proposed approach with the approach mentioned in Guo et al.
(2020) for some sample images. Even though we got better accuracy
(99.42) and AUC (0.9993) when averaged over all test images, our
model failed to capture very small exudates, as shown in the second
row of Figure 13. This happened because such fine exudates were
removed when the image was resized from the original size of 4288 ×
2848 to 768 × 512.

Table 4 shows a comparison of our BV segmentation results with
the state-of-the-art techniques. As evident from the table, accuracy
(95.89%) of our approach on the DRIVE dataset is better than other
recently reported approaches, and AUC is close to being ideal. Dice
scores on all three datasets are lower than patch-based state-of-the-art
techniques. However, since we train on whole images, both training
and prediction time is about 20 times faster than patch-based deep
learning approaches.

Abbreviations: AUC, area under the curve; ACC, accuracy

5 Conclusions

In this work, we illustrated the efficacy of a modified multi-tasking
U-Net method for segmenting fundal images of blood vessels, the optic
disc, the macula, and exudates. The proposed approach resulted in a
peak increase of 15% in dice score for the segmentation of exudates

compared to individual segmentation results with the same
architecture. Using the proposed approach, we were able to achieve
a high level of accuracy of 95.89% on DRIVE test images which is 0.7%
greater than some recently reported results. With our proposed
method, the image prediction times were some 12 times faster than
most other deep learning methods. In addition to this increased
prediction speed, the AUC for exudates was improved from
0.9801% to 0.9993% and the accuracy from 99.33% to 99.42% on
the IDRiD test dataset.
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