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Plausibly, the first computerized and automated electrocardiogram (ECG) signal
processing algorithm was published in the literature in 1961, and since then, the
number of algorithms that have been developed to-date for the detection of the QRS-
complexes in ECG signals is countless. Both the digital signal processing and artificial
intelligence-based techniques have been tested rigorously in many applications to achieve
a high accuracy of the detection of the QRS-complexes in ECG signals. However, since the
ECG signals are quasi-periodic in nature, a periodicity analysis-based technique would be
an apt approach for the detection its QRS-complexes. Ramanujan filter bank (RFB)-based
periodicity estimation technique is used in this research for the identification of the QRS-
complexes in ECG signals. An added advantage of the proposed algorithm is that, at the
instant of detection of a QRS-complex the algorithm can efficiently indicate whether it is a
normal or a premature ventricular contraction or an atrial premature contraction QRS-
complex. First, the ECG signal is preprocessed using Butterworth low and highpass filters
followed by amplitude normalization. The normalized signal is then passed through a set of
Ramanujan filters. Filtered signals from all the filters in the bank are then summed up to
obtain a holistic time-domain representation of the ECG signal. Next, a Gaussian-weighted
moving average filter is used to smooth the time-period-estimation data. Finally, the QRS-
complexes are detected from the smoothed data using a peak-detection-based
technique, and the abnormal ones are identified using a period thresholding-based
technique. Performance of the proposed algorithm is tested on nine ECG databases
(totaling a duration of 48.91 days) and is found to be highly competent compared to that of
the state-of-the-art algorithms. To the best of our knowledge, such an RFB-based QRS-
complex detection algorithm is reported here for the first time. The proposed algorithm can
be adapted for the detection of other ECG waves, and also for the processing of other
biomedical signals which exhibit periodic or quasi-periodic nature.
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1 INTRODUCTION

S. K. Yuen discoursed in his Ph.D. thesis (Yuen, 1976) that the
cardiovascular diseases were the leading causes of death in the
U.S. in 1972, and even in 2021 (Centers for Disease Control and
Prevention, 2022) the statistic has not been altered. Perhaps the
scenarios are even more alarming in the other parts of the globe.
Therefore, it could be said undoubtedly that the research and
development in the area of the computerized processing of the
ECG signal and automated detection of cardiovascular diseases
are to be carried out in higher pace, if the situation is to alter. An
electrocardiogram (ECG) signal characterizes the electrical
activity of the heart that arises from the depolarization and
repolarization activities of the cardiac cells. ECG signals are
recorded by means of electrodes that are placed on various
standard locations on the body surface. An ECG signal is
composed of waves such as P, QRS-complex and T waves,
segments such as PR and ST segments and intervals such as
R-to-R and P-to-R intervals, and the presence of any cardiac
disorder is generally reflected in the shapes, patterns and
durations of these waves, segments and intervals, respectively.
Among all other waves and segments of an ECG signal, the QRS-
complexes are the most salient regions as it contains the highest
frequency spectrum and amplitude. Since the publication of the
plausibly-first computerized ECG processing algorithm in 1961
(Pipberger et al., 1961), a multitude of algorithms are proposed in
the literature to-date on the detection of the QRS-complexes in
ECG signals. A methodological review (Berkayaa et al., 2018)
suggests that these QRS-complex detection algorithms could be
broadly categorized into two groups: 1) digital signal processing
(Burguera, 2019; Hossain et al., 2019; Sharma et al., 2019; Zhang
et al., 2020; Jorge et al., 2021; Modak et al., 2021; Morshedlou
et al., 2021; Rahul et al., 2021; Tueche et al., 2021), and 2) artificial
intelligence-based (Mehta and Lingayat, 2008; Merino et al., 2015;
Chandra et al., 2019; Goovaerts et al., 2019; Chen andMaharatna,
2020; Jia et al., 2020; He et al., 2021).

Rahul et al. have proposed an amplitude and interval
threshold-based QRS-complex detection algorithm in (Rahul
et al., 2021). In (Rahul et al., 2021), first, the ECG signal is
denoised using bandpass andmoving average filters. Next, a series
of static and dynamic amplitude-threshold values (7 threshold
values in total) are applied on the denoised ECG signal to identify
the plausible QRS-complexes. Though the run-time of the
algorithm [run-time indicates the amount of time taken by an
algorithm to process a certain amount of data (Cormen et al.,
2009)] is low, the QRS-complex detection performance of the
algorithm is poor compared to that of the state-of-the-art
algorithms (Please see Table 6). A similar type of algorithm is
proposed in (Tueche et al., 2021) by Tueche et al. In (Tueche et al.,
2021), the ECG signal is first denoised, and then the denoised
signal is squared to enhance the QRS-complex regions. Next, all
the peaks of the enhanced signal are detected, and three different
threshold values are applied on those detected peaks to separate
out the real QRS-complexes. The algorithm is primarily
implemented on software platform, and then it is also
implemented on a microcontroller-based system to examine
the likelihood of its success in real-time applications. The

authors have claimed that they have not found any difference
in the results that they obtained on both the software and
hardware platforms. However, here also, as in the case of
(Rahul et al., 2021), the QRS-complex detection performance
of the algorithm (Tueche et al., 2021) is poor. A tunable-Q
wavelet transform (TQWT)-based QRS-complex detection
algorithm is proposed by Sharma et al. in (Sharma et al.,
2019). A QRS-enhanced ECG signal is obtained from a
number of suitably chosen wavelet sub-bands. Then, the
correntropy of the QRS-enhanced signal is calculated. Finally,
a threshold-based peak detection technique is used to identify the
QRS complexes. However, neither the QRS-complex detection
performance nor the runtime of the algorithm could compete
with that of the state-of-the-art algorithms.

Processing of the ECG signals using deep learning models has
become one of the most promising areas of research in the last few
years. In their review (Hong et al., 2020), Hong et al. have found
109 published articles, which were focused only on the deep
learning-based ECG processing algorithms, and all those articles
were published after the year 2019. AU-Net and bidirectional long-
short term memory-based QRS-complex detection algorithm is
proposed in (He et al., 2021) byHe et al. In (He et al., 2021), first, an
ECG signal is denoised using a median filter and a wavelet
transformation-based technique. The denoised signal is then
segmented into blocks of length 10 s each. Those blocks are
then fed to the deep learning model to train the classifier.
However, even after rigorous training and testing, the algorithm
is unable to detect the paced QRS-complexes. Moreover, the model
demands high computational-memory, and it require a graphics
processing unit to get implemented. Chen et al. have proposed a
hierarchical clustering-based R-peak detection and discrete wavelet
transform-based T-peak detection algorithm in (Chen and
Maharatna, 2020). In (Chen and Maharatna, 2020), the ECG
signal is first denoised using Butterworth lowpass and highpass
filters to expel the high frequency noises and baseline wonder noise
out, respectively, and the amplitude of the denoised signal is
normalized within [0, 1]. Then the denoised ECG signal is
broken into segments of length 1.2 s each and are processed
sequentially. The amplitudes and slopes of all the ECG samples
in each of the segment are calculated and then they are clustered
into two, namely R-cluster and non-R-cluster. The cluster with a
smaller number of samples is considered as the R-cluster, and those
samples which belong to R-cluster are considered as the R-peaks.
However, a window of length 1.2 s restricts the applicability of the
algorithm on ECG signals where the heart rate varies between 50
and 100 beats/minute.

The objective and aim of this proposed research work are to
design a high-efficient yet fast QRS-complex detection algorithm
overriding the shortcomings of other state-of-the-art algorithms
as mentioned above. The main contribution of this research work
is that the proposed QRS-complex detection algorithm is 1)
highly accurate compared to that of the state-of-the art
algorithms, 2) less complex, 3) noise tolerant 4) fast and 5)
able to identify the premature ventricular contraction and
atrial premature contraction QRS-complexes. The novelty of
the proposed algorithm lies both in its working principle and
performance. It is worth mentioning that a Ramanujan filter
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bank-based QRS-complex detection algorithm exploiting the
time-period estimation of the ECG signal is being proposed
here for the first time, to the best of our knowledge.

The paper is organized as follows. The theoretical background of
Ramanujan filter bank is presented in Section 2. Section 3 describes
the proposed QRS-complex detection algorithm. The performance
of the proposed algorithm is investigated in Section 4. Section 5
compares the performance of the proposed algorithm with that of
other state-of-the-art algorithms. Limitation and the future direction
of the proposed research work are outlined in Section 6. Finally,
discussions and conclusions are drawn in Section 7.

2 RAMANUJAN FILTER BANK

In 1918, the Indian mathematician Srinivasa Ramanujan
introduced a new set of sequences, which is known as

Ramanujan Sums (Ramanujan, 1918). Ramanujan sums (RS)
are real sums defined as the nth powers of the qth primitive
roots of unity. RS is defined as follows.

cq(n) � ∑q
p�1

(p,q)�1

exp(2πj p
q
n) (1)

Where, (p, q) � 1 indicates that p and q are co-prime, i.e., the
greatest common divisor (GCD) is unity, and −∞≤ n≤∞. The
summation is obtained for only those values of p that are coprime
to q, and hence, cq(n) is periodic, i.e., cq(n + q) � cq(n), and the
period is equal to q. The RS can also be alternatively calculated as
given below.

cq(n) � μ( q

GCD(q, n)) ∅(q)
∅( q

GCD(q,n)) (2)

where,∅(q) is the Euler totient function which is a multiplicative
arithmetic function defined for the positive integers and is given
by the number of positive co-prime integers less than or equal to
q. μ (n), which is known as the Mobius function, is also a
multiplicative function and is zero for the positive integers
which are not square-free (Sugavaneswaran et al., 2012). From
Eq. 2 it can be noted that, cq(n) � μ(q); if (q, n) � 1, and
cq(n) � ∅(q); if (q, n) � q. Another way of deriving the values
of cq(n) is using the Euler’s formula; eix � cos x + i sin x. A few
Ramanujan-sequences for one period is shown below,
where q ϵ [1, 6].

c1(n) � 1

c2(n) � 1,−1
c3(n) � 2,−1,−1
c4(n) � 2, 0,−2, 0

c5(n) � 4,−1,−1,−1,−1
c6(n) � 2, 1,−1,−2,−1, 1 (3)

FIGURE 1 | Schematic diagram of the proposed RFB-based QRS-complex detection algorithm.

FIGURE 2 | Original ECG signal (in black), its ECGD100 (in blue) and
ECGD20 (in red) versions. The ECG signal is taken from MITDB: record
#104 m.
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It can be seen from Eq. 3 that the values of cq(n) are integer
numbers despite the presence of the trigonometric function as shown
in Eq. 1. The identification of the periodicity of a signal using RS has
been well studied in (Sugavaneswaran et al., 2012; Chen et al., 2013;
Tenneti and Vaidyanathan, 2015a; Tenneti and Vaidyanathan,
2015b; Vaidyanathan and Tenneti, 2015; Pei and Chang, 2017;
Tenneti, 2018; Yadav et al., 2018; Saatci and Saatci, 2020). It has
also been shown in (Mainardi et al., 2007) that a RS-based technique
could better capture the periodicity of a signal better than that of a
conventional discrete Fourier transform (DFT)-based method even
in the presence of a Gaussian types of noise. The likelihood of
application of RS in the context of biomedical signal processing is also
reported by Mainardi et al. in (Mainardi et al., 2008).

If the RS is regarded as a digital filter having an impulse
response cq(n), then its frequency response in 0≤ω< 2π is as
given below.

c � 2π ∑
1≤p≤ q

(p,q)�1

σ(ω − 2πp
q

) (4)

From Eq. 4 it can be seen that the value of Cq(ejω) is non-zero
only at the co-prime frequencies 2πpi/q where pi is coprime to q;
and zero elsewhere. Let us consider a periodic signal x(n) with
period Pe. Its Fourier transform can be written as below.

X(ejω) � 2π
Pe

∑Pe−1

l�0
X[l]z(ω − 2πl

Pe
) (5)

If the signal x(n) is passed through Ramanujan filter, by
comparing Eqs 4, 5, it can be said that the output of the filter
will be zero if neither of the Dirac functions in these two
expressions coincide. However, for each value of p, such that pq �

l
Pe
for 0≤ l≤Pe, the output of Ramanujan filter could be non-zero.

As (p, q) � 1, Ramanujan filter Cq(ejω) outputs a non-zero value
when Pe is a multiple of q. The passband of Ramanujan filter is
centered around its co-prime frequency. A collection of such
filters for periods ranging from 1 to Pe having impulse response
{cq(n)}; 1≤ q≤N (N is the length of the signal x(n)), is called the
Ramanujan filter bank (RFB) (Tenneti and Vaidyanathan,
2015a), (Vaidyanathan and Tenneti, 2015), and a plot of the
outputs of each of the filters for different values of n is referred as
the time-period plane plot of the signal.

3 THE QRS-COMPLEX DETECTION
ALGORITHM

The proposed RFB-based QRS-complex detection algorithm can
be divided into three major parts: 1) Preprocessing, 2) time-
period analysis using RFB and the 3) identification of the QRS-
complexes. Schematic diagram of the proposed algorithm is
shown in Figure 1.

3.1 Preprocessing
The clinical bandwidth of an ECG signal ranges between 0.5 and
100Hz (Tompkins, 1993). In this research work the original ECG
signal is denoised using two sets of filters. In the first set, a 4th order
zero-phase Butterworth bandpass filter having lower and upper cut-
off frequencies 0.5 and 100Hz, respectively, and a 4th order zero-
phase Butterworth notch filter is used to denoise the original ECG
signal. The bandpass filter suppresses the out-of-band noises, and the
notch filter suppresses the 50/60 Hz powerline interference noise.
This version of the denoised signal is referred as ECGD100 in this
paper. In the second set, a 4th order zero-phase Butterworth lowpass
filter having a cutoff frequency of 20 Hz is used to denoised the
original ECG signal, and this version of the denoised signal is
referred as ECGD20 in this paper. The roll-off rate of a
Butterworth filter (-20dB/decade) is low compared to that of
others such as a Chebyshev filter, but the frequency response of a
Butterworth is flat within the passband. This is the main reason for
what the Butterworth filters have been used in this research work. A
Fourier decomposition-based efficient technique for the removal of
baseline wander, powerline interference and other high frequency
noises from the ECG signals is proposed in (Singhal et al., 2020) and
(Singh et al., 2017). Such a technique could also be used for the
removal of high and low frequency noises from the ECG signal.

Next, the amplitudes of both the ECGD100 and ECGD20 signals
are normalized in between ±1. Undoubtedly, the ECGD20 signal

FIGURE 3 | The rise and fall times of the QRS-complexes of a (A) normal
ECG beat, lead I; record #s0273lrem, PTBDB, (B) myocardial infraction (MI)
ECG beat, lead I; record #s0015lrem, PTBDB and (C) premature ventricular
contraction (PVC) beat, lead V5; record # 104m, MITDB.

TABLE 1 | The coefficients of the RFB (q ϵ [1,3]) after repetition (Rcq � 2).

— — — — — —

cR1(n) 1 1 — — — —

NcR1(n) 0.707 0.707 — — — —

cR2(n) 1 −1 1 −1 — —

NcR2(n) 0.5 −0.5 0.5 −0.5 — —

cR3(n) 2 −1 −1 2 −1 −1

NcR3(n) 0.577 −0.289 −0.289 0.577 −0.289 −0.2887
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contains less clinical information as compared to that of its
ECGD100 counterpart, but it helps better identifying the QRS-
complex regions. Figure 2 shows the example of an original ECG
signal, its ECGD100 and ECGD20 versions.

3.2 Time-Period Analysis Using RFB
In this step, the ECGD20 is fed to the input of the RFB. There are
three parameters that are to be optimized in RFB: 1) the number
of filters (Pe), 2) the number of times the filter coefficients are to
be repeated (Rcq) and 3) the length of the average-filter (Rav)
(Tenneti, 2018), (Tenneti and Vaidyanathan, 2015b). Since, each
of the filter in the bank captures different periodic components
that are present in the input signal, the number of filters that are
to be used are event-dependent. As the goal of this research work
is to detect the QRS-complexes of the ECG signals, the number of
filters that are to be used in the bank depend on the periodic
property of the QRS-complexes. As per the cardio-physiologic
definition (Goldberger, 2006), the width of a QRS-complex could

stretch 120 milliseconds at most, and therefore, the number of the
filters that are to be used has to be calculated based on this clinical
information. However, as shown in Figure 3, a QRS-complex is
not symmetric itself, i.e., the rise and fall times of a QRS-complex
are not identical. Therefore, only the rise-time of a QRS-complex
(~60 milliseconds), i.e., the half of the maximum QRS-duration,
is used in this research work to optimize the number of number
filters that are required to track the periodicity of a QRS-complex
in ECG signal and is calculated as given in Eq. 6.

Pe � int(sampling frequency in Hz × 0.06 seconds) (6)
In the proposed research work it has been found

experimentally, that repeating the coefficients of each of the
Ramanujan filter twice (Rcq � 2), and a length of the average
filter equals to six units (Rav � 6) provides an optimum QRS-
complex detection performance. Next, after repetition, each set of
the coefficients are normalized with their corresponding

FIGURE 4 | (A) ECGD20; record # 104m, MITDB, (B) colour map of its corresponding periodicity-matrix Y .

FIGURE 5 | ECGD20; record # 104m, MITDB, and FNcRq(n) (q ϵ [1,21]).
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Euclidean norm. Eqs 7, 8 summarize the normalization
operation, and Table 1 shows the coefficients of the RFB
(q ϵ [1, 3]) and their corresponding normalized values after

repetition. Two different colours; black and red are used in
Table 1 for better showing the repetition.

NcRq(n) �
cRq(n)
‖v‖ (7)						v						 � 








∑ ∣∣∣∣∣cRq(n)∣∣∣∣∣2√

(8)

where, NcRq(n) is the set of a normalized Ramanujan filter
coefficients, cRq(n) is the set of a Ramanujan filter coefficients
after repetition and v is the Euclidean norm of cRq(n).

Now, the ECGD20 signal is separately convoluted with each set
of NcRq(n). The convoluted data is denoted as ConECGq

D20. This
step filters the ECGD20 signal using the Ramanujan filter
coefficients and tries to capture the periodicity of the QRS-
complexes. Then, each of the ConECGq

D20 is again convoluted
with the output of the average-filter. The average filter provides a
smoothed version of the filtered data (ConECGq

D20). The steps,
which are followed in performing the convolution operations are
shown below.

for q =1 to Pe

Y(i)← ECGD20 pNcRq(n)
Fav ← ones((i× Rav), 1)

FIGURE 6 | ECGD20 in blue; record # 104m, MITDB, its TPR in green,
and TPRNS in red.

FIGURE 7 | (A) Normal sinus rhythm; record #122m, MITDB, (B) the 4th QRS-complex is an APC beat; record #113m, MITDB and (C) the 5th QRS-complex is a
PVC beats; record #119m, MITDB. The ECGD100 signals, their corresponding TPRNS, and the R-peaks in each of the three sub-figures are shown in black, red, and blue
colours, respectively. The X and Y axes of all the three sub-figures are the number of samples and normalized amplitude, respectively.
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‖Fav‖ �












∑Rav

j�1 |Fav(j)|2
√

NFav ← Fav/‖Fav‖
FNcRq(n) ← Y(i) p NFav

Y(i) ← FNcRq(n)
end

where, the command ‘ones((i× Rav), 1)’ creates a vector of
length i × Rav, and it contains 1. Fav is the Euclidean norm of
Fav. FNcRq(n) denotes the convoluted ECGD20 signal using the
coefficients of the qth Ramanujan filter. Y(i) is a matrix of
dimension Pe × N, where N is the length of ECGD20. Y is
called the periodicity-matrix (Tenneti and Vaidyanathan,
2015b). For an example, if the sampling rate of the ECG
signal is 360 Hz, then, the matrix Y would have 21 rows.
Therefore, following Eq. 6, 1) the 21st row of the matrix Y
would represents the periodicity of that ECG event which
completes a period in 0.06 s, 2) the 20th row of the matrix Y
would represents the periodicity of that ECG event which
completes a period in ~0.055 s, and likewise 3) the 1st row of
the matrix Y would represents the periodicity of that ECG
event which completes a period in ~0.003 s. Figure 4 shows an
ECGD20 signal and the colour map of its corresponding
periodicity-matrix. From this figure it can be seen that the
RFB is not only able to capture the periodicity of the QRS-
complexes, but it also shows a distinct periodic property for an
abnormal QRS-complex. Figure 5 shows an ECGD20 signal
and its corresponding filtered outputs from the different
filters in the bank.

Next the outputs of all the Ramanujan filters are summed up so
as to obtain a holistic time-period representation (TPR) of the
ECGD20 signal. Next, the TPR data is smoothed using a Gaussian-
weighted moving average filer, and then the amplitude of the
smoothed data is normalized to ± 1. The normalized smoothed
data is denoted as TPRNS. Figure 6 shows the example of an
ECGD20 signal, its corresponding TPR and TPRNS.

3.3 Identification of the QRS-Complexes
Now, all the peaks of the TPRNS data are detected and are
mapped on to the ECGD100 signal. The peaks on the TPRNS

data indicate the probable R-peaks. As per the cardio-
physiologic definition (Goldberger, 2006), the width of a
QRS-complex could stretch 120 milliseconds at most. Then,
the absolute-maximum amplitude is searched around each of
the probable-peaks within a window of length ± 60
milliseconds to locate the true R-peaks. Since, the
ECGD100 signal contains the necessary clinical
information, the true R-peaks are detected on the
ECGD100 signal. Next, the Q and S peaks are detected
using the algorithm, which is used in (Mukhopadhyay and
Krishnan, 2020). If it is found that the polarity of the
detected R-peak is positive, then the index of the
minimum amplitude within a fixed time-window t1 to t2 is
considered as the Q-peak, and the index of the
minimum amplitude within a fixed time-window t2 and t3
is considered as the S-peak. Instead of a minimum
amplitude, the index of the maximum amplitude is
searched for detecting both the Q and S-peaks, if the
polarity of the detected R-peak is found negative. Here, t1
= index of the R-peak—60 milliseconds, t2 = index of the
R-peak, and t3 = index of the R-peak + 60 milliseconds. As
mentioned above, the duration of a QRS-complex could be
120 milliseconds at most (Goldberger, 2006), and this is the
reason for which a half of the maximum QRS-duration (~60
milliseconds) is used as the length of the window to look for
the Q and S-peaks.

A close observation and analysis, which are listed below,
reveal that the TPRNS data exhibits distinctly disparate
patterns for a normal, premature ventricular
contraction (PVC) and premature atrial contraction (APC)
types of QRS-complexes. Figure 7 exemplifies these
observations.

Observation #1: From Figure 7A, it can be seen that the
amplitudes of the peaks and the valleys of the TPRNS do not
differ much for a normal sinus rhythm.
Observation #2: Figure 7B shows that the amplitudes of the
peaks of the TPRNS of the APC beats (the 4th QRS-
complex) do not differ much compared to that of the

TABLE 2 | Details of the collected ECG signals.

Database No. of
leads
used

No. of
ECG
data
files

Sampling
frequency

in Hz

Duration
of

ECG in
each lead

Total
duration

in minutes

European ST-T Database (edb) (Physionet, 2022) 2 89 250 60 min 10,680
Fantasia database (fantasia) (Physionet, 2022) 1 37 250 60 min 2,220
Dreamer (Katsigiannis and Ramzan, 2018) 2 828 256 1 min 1,656
The PhysioNet Computing in Cardiology Challenge 2017 (PCCC) (AF Classification from a
Short Single Lead ECG Recording, 2022)

1 8,528 300 Not fixed 4,619

MIT-BIH Arrhythmia database (MITDB) (Physionet, 2022) 1 48 360 30 min 1,440
MIT-BIH Noise Stress Test Database (NSTDB) (Physionet, 2022) 1 12 360 30 min 360
The China Physiological Signal Challenge 2018 (CPSC) (Liu et al., 2018) 12 6,877 500 Not fixed 21,935
Chapman University and Shaoxing People’s Hospital database (CUSPH) (Zheng et al.,
2020)

12 10,647 500 10 s 21,294

PTB Diagnostic ECG database (PTBDB) (Physionet, 2022) 12 519 1,000 1 min 6,228
Total 48.91 days
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normal QRS-complexes. However, amplitudes of the
valleys of the TPRNS of the APC beats significantly
differ from that of the normal QRS-complexes.
Observation #3: Figure 7C shows that the amplitudes of
both the peaks and the valleys of the TPRNS of the PVC
beats (the 5th QRS-complex) differs
significantly compared to that of the normal QRS-
complexes.

TABLE 3 | Performance of proposed RFB-based QRS-complex detection algorithm on MITDB.

Record
#

Total
no.

of QRS

TP FN FP Se
(%)

+P
(%)

AccD

(%)
F1
(%)

TPro

in
seconds

100 2,273 2,273 0 0 100 100 100 100 0.33
101 1866 1864 1 1 99.95 99.95 99.89 99.95 0.33
102 2,187 2,187 0 0 100 100 100 100 0.40
103 2084 2084 0 0 100 100 100 100 0.33
104 2,229 2,229 0 0 100 100 100 100 0.33
105 2,572 2,567 5 5 99.81 99.81 99.81 99.81 0.32
106 2027 2027 0 0 100 100 100 100 0.32
107 2,135 2,135 0 0 100 100 100 100 0.34
108 1763 1763 0 4 100 99.77 100 99.89 0.35
109 2,532 2,532 0 0 100 100 100 100 0.34
111 2,124 2,124 0 0 100 100 100 100 0.37
112 2,539 2,539 0 0 100 100 100 100 0.32
113 1794 1794 0 0 100 100 100 100 0.33
114 1875 1874 0 1 100 99.95 99.95 99.97 0.32
115 1953 1953 0 0 100 100 100 100 0.32
116 2,412 2,407 6 0 99.75 100 99.79 99.88 0.31
117 1,535 1,535 0 0 100 100 100 100 0.33
118 2,278 2,278 0 0 100 100 100 100 0.31
119 1987 1987 0 0 100 100 100 100 0.32
121 1864 1864 0 0 100 100 100 100 0.31
122 2,476 2,476 0 0 100 100 100 100 0.31
123 1,519 1,519 0 0 100 100 100 100 0.31
124 1,619 1,619 0 0 100 100 100 100 0.33
200 2,599 2,598 1 0 99.96 100 99.9 99.98 0.32
201 1978 1976 3 0 99.85 100 99.90 99.92 0.32
202 2,135 2,134 1 0 99.95 100 99.95 99.98 0.33
203 2,959 2,932 27 9 99.09 99.69 99.09 99.39 0.33
205 2,656 2,654 2 0 99.92 100 99.92 99.96 0.33
207 1862 1860 2 4 99.89 99.79 99.89 99.84 0.31
208 2,948 2,945 3 1 99.90 99.97 99.90 99.93 0.35
209 3,005 3,005 0 0 100 100 100 100 0.32
210 2,651 2,651 0 4 100 99.85 100 99.92 0.32
212 2,748 2,748 0 0 100 100 100 100 0.34
213 3,248 3,242 6 0 99.82 100 99.82 99.91 0.32
214 2,262 2,259 3 0 99.87 100 99.87 99.93 0.31
215 3,362 3,362 0 0 100 100 100 100 0.32
217 2,206 2,206 0 0 100 100 100 100 0.32
219 2,154 2,154 0 0 100 100 100 100 0.32
220 2047 2047 0 0 100 100 100 100 0.31
221 2,427 2,427 0 0 100 100 100 100 0.32
222 2,488 2,488 0 11 100 99.56 100 99.78 0.33
223 2,605 2,605 0 0 100 100 100 100 0.37
228 2056 2053 4 8 99.81 99.61 99.85 99.71 0.32
230 2,256 2,256 0 0 100 100 100 100 0.32
231 1,571 1,571 0 0 100 100 100 100 0.31
232 1781 1781 0 3 100 99.83 100 99.92 0.33
233 3,074 3,065 9 0 99.71 100 99.71 99.85 0.32
234 2,753 2,753 0 0 100 100 100 100 0.32

Total Average
— 109,474 109,402 73 51 99.94 99.95 99.94 99.95 0.33

TABLE 4 | Performance of the proposed algorithm in segregating the normal, APC
and PVC beats on MITDB.

Predicted normal Predicted APC Predicted PVC

Actual Normal 100,045 68 37
Actual APC 5 2,503 34
Actual PVC 22 127 6,854

The bold values in Table 4 only indicate the diagonal elements of the table.
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TABLE 5 | Performance of the proposed algorithm on other ECG datasets.

Database Total
number
of QRS-

complexes

Total
FN

Total
FP

Mean
Se (%)

Mean
+P(%)

Mean
AccD (%)

Mean
F1 (%)

Mean
TPro

in seconds

edb 858,529 228 736 99.97 99.999 99.97 99.94 0.42
Fantasia 283,747 3 22 99.999 99.999 99.99 99.996 0.43
Dreamer 128,181 2 16 99.999 99.99 99.998 99.99 0.01
PCCC 2017 575,488 152 84 99.97 99.99 99.97 99.98 0.01
NSTDB 25,596 822 2,722 96.79 90.10 96.79 93.32 0.32
CPSC 1,237,860 61 58 99.995 99.995 99.995 99.995 0.01
CUSPH 2,683,044 28 47 99.999 99.998 99.999 99.999 0.01
PTBDB 795,372 17 554 99.998 99.93 99.998 99.96 0.16

FIGURE 8 | (A) Detected QRS-complexes and APC beats; record #113m, MITDB, (B) detected QRS-complexes and PVC beats; record #228m, MITDB.

FIGURE 9 | (A) Detected QRS-complexes; record #108m, MITDB, (B) detected QRS-complexes and PVC beats; record #208m, MITDB.
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Following these observations, the APC and PVC beats are
segregated using the following steps.

Step #1: Detect the valleys of the TPRNS (peaks of the TPRNS

are already detected during the detection of the QRS-
complexes)

Step #2: x ← amplitude of the ith peak of TPRNS, y ←
amplitude of the i − 1th peak of TPRNS, z ←
amplitude of the ith valley of TPRNS, w ←
amplitude of the i − 1th valley of TPRNS

Step #3: if ((x − y)≥ th and (z − w)≥ th
the ith QRS-complex ← PVC-beat

elseif ((x − y)≤ th and (z − w)≥ th
the ith QRS-complex ← APC-beat

else
the ith QRS-complex ← normal QRS-complex

end

After testing the proposed algorithm on a large number of
ECG data of various pathological and arrhythmic classes, the
value of th is set to 0.2.

4 PERFORMANCE EVALUATION

The ECG signals are collected from nine publicly available datasets,
totaling a duration of 48.91 days, and are used as the performance
evaluation testbed of the proposed algorithm. The details of these
collected ECG signals are given in Table 2. The algorithm is
implemented and tested on MATLAB platform with a computer
having 64-bit Windows 10 operating system, 12 GB RAM and Intel
Core i7 10510U central processing unit (CPU) 2.30 GHz. Five
statistical metrices: sensitivity (Se), positive predictivity (+P),
detection accuracy (AccD), processing time (Tpro) and F1 score
(F1) are used to assess the performance of the algorithm. These
metrices are numerically expressed in Eqs 9–13.

Se (%) � TP

TP + FN
× 100 (9)

+P (%) � TP

TP + FP
× 100 (10)

AccD (%) � TP

Total no. of QRS complexes
× 100 (11)

TPro � Time taken to process the ECG signal in seconds (12)
F1(%) � 2 × TP

(2 × TP) + FP + FN
× 100 (13)

where, TP is the total number of QRS-complexes, which the
proposed algorithm has detected correctly. FN is the total
number of QRS-complexes, which the algorithm has failed to
detect, and FP is the total number of detections, which are not
the real QRS-complexes, nevertheless, the proposed algorithm has
detected those as the real QRS-complexes. In the context of the
present research work, i.e., the QRS-complex detection, the sensitivity

FIGURE 10 | (A) Detected QRS-complexes and PVC beats; record #e0107m, edb, (B) detected QRS-complexes; record #A0001m, CPSC, (C) detected QRS-
complexes; record #s0301lrem, PTBDB.

FIGURE 11 | Run-time of the proposed algorithm as a function of the
number of samples and sampling rates.
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(Se) is a measure of probability that an algorithm efficiently detects
the true QRS-complexes among a given set of true QRS-complexes,
and the positive predictivity (+P) is a measure of probability that an
algorithm efficiently detects only the true QRS-complexes among a
given set of true and false QRS-complexes (Trevethan, 2017). The
close the values of Se and +P, AccD and F1 to 100%, and the lower
the values of FN, FP and TPro, the better the performance of the
algorithm. Now, the performance of proposed RFB-based QRS-
complex detection algorithm on MITDB is shown in Table 3, and
the performance of the proposed algorithm in segregating the
normal, APC and PVC beats on MITDB is shown in Table 4 in
the form of a confusion matrix. The performance of the proposed
algorithm is also tested on eight other datasets, and the results are
shown in Table 5.

The proposed algorithm fails to detect a QRS-complex when its
amplitude is too small compared to other such as a few of the QRS-
complexes following a large motion artefact noise. On the other
hand, the algorithm detects a non-QRS-complex as a QRS-complex
when its amplitude is high, and the periodicity matches with that of
a QRS-complex. From Table 3 it can be seen that the algorithm is
unable to detect 27 QRS-complexes of the file number #203m of
MITDB. The reasons behind this are the presence of: 1) QRS-
complexes of different morphologies, and 2) intense motion artifact
noise. The ECG record #203 m ofMITDB contains QRS-complexes
of five different morphologies (normal, aberrated APC, PVC, fusion

PVC) and of five different rhythms (normal sinus rhythm, atrial
flutter, atrial fibrillation, ventricular trigeminy and ventricular
tachycardia) (MIT-BIH Arrhythmia Database Directory, 2022).
Such a combination intricates the task of interpretation of an
ECG signal even for the cardiologists. On the other hand, the
proposed algorithm detects 11 non-QRS-complexes in the ECG
record #222. In this ECG record the QRS-complexes are annotated
as atrial flutter. A few of those atrial flutters are detected as QRS-
complexes. Figures 8–10 show the detected QRS-complexes, APC
and PVC beats of the ECG signals of different databases. These
figures portray the efficiency of the proposed algorithm in detection
the QRS-complexes of different morphologies even in the presence
of motion artifact noise.

Run-time of an algorithm is a function of the size of the input data
file, and it is an important figure ofmerit. Run-time is used tomeasure
the time complexity of an algorithm. Run-time of the proposed
algorithm as a function of the length of the signal at different
sampling rates are evaluated and shown in Figure 11. From this
figure it is to be noted that the time complexity of the proposed
algorithm varies almost linearly with the length of the signal and
sampling rate. The proposed algorithm is primarily implemented on
software platform, and hence, the space complexity and the power
requirement are not considered in this research. However, the run-
time of proposed algorithm can further be reduced by efficient code-
optimization and implementation.

TABLE 6 | Performance comparison of the proposed algorithm with a few other recently developed algorithms on MITDB.

Algorithms Total
number
of beats

FN FP FN + FP Se
(%)

+P
(%)

F1
(%)

Mean
TPro

in
seconds

CPU specification Superiority
of the
CPU

U-Net and LSTM (He et al., 2021) — — — — 99.06 99.22 — 1.8 CPU 3.5 GHz, and NVIDIA Quadro
k6000 GPU, 64 GB of memory

↟

Box-scoring (Hou et al., 2018) 110,008 748 610 1,358 99.32 99.45 99.38 — Intel Core i7-6700, 3.4 GHz ↟
Envelope-detection (Burguera, 2019) 109,985 — — — 99.57 99.37 — 1.77 Intel Core i7, 3.1 GHz ↟
Pan and Tompkins (Pan and Tompkins,
1985)

109,809 277 507 784 99.75 99.54 99.64 — — —

Amplitude difference (Pandit et al.,
2017)

109,432 389 369 758 99.65 99.66 99.65 — 2.5 GHz CNC

Embedded algorithm (Tueche et al.,
2021)

108,791 398 324 722 99.65 99.69 99.67 0.31 Intel Core i7-5500, 2.4 GHz ↟

Dynamic thresholding (Rahul et al.,
2021)

109,494 193 155 384 99.82 99.85 99.84 2.35 Intel Core i7- 7700, 3.60 GHz ↟

Deterministic automata (Hamdi et al.,
2018)

73,562 284 92 376 99.74 99.86 99.74 0.92 Intel Core i7-2,600, 3.40 GHz ↟

Time and amplitude threshold (Modak
et al., 2021)

109,494 200 136 336 99.82 99.88 99.85 3.5 Intel Core i7 CPU, 2.6 GHz ↟

Wavelet (Sharma et al., 2019) 109,494 183 131 314 99.89 99.83 99.86 69.55 Intel Core i7, 2.5 GHz ↟
Adaptive weighting (Sharma and
Sharma, 2017)

109,494 113 136 249 99.90 99.88 99.89 1.25 Intel Core i3 2.50 GHz ↓

Energy (Yazdani et al., 2018) 110,070 103 134 237 99.91 99.88 99.89 — — —

CNN (Chandra et al., 2019) 109,494 172 64 236 99.84 99.95 99.89 — Intel Core i7, 3.40 GHz ↟
Interval and trigonometric threshold
(Mukhopadhyay and Krishnan, 2020)

109,497 74 126 200 99.94 99.88 99.91 2.43 Intel Xeon E3-1,225 v3, 3.2 GHz ↓

Hierarchical Clustering (Chen and
Maharatna, 2020)

109,494 124 63 187 99.89 99.94 99.91 — — —

Proposed 109,474 73 51 124 99.94 99.95 99.95 0.33 Intel Core i7 10510U CPU
2.30 GHz

↟

↟→superior, ↓→inferior compared to that of the CPU, which is used in this research work, CNC→ cannot be compared.
The bold values in Table 6 indicate the best results in the respective columns.
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5 PERFORMANCE COMPARISON

The performance of the proposed RFB-based QRS-complex
detection algorithm on MITDB is compared with that of state-of-
the-algorithms in Table 6. The numerical results of the other
algorithms are collected from the respective articles.

Before going into a detail comparison, it is good to mention that
the performance of all the algorithms, which are included in Table 6,
are remarkably high. The Se(%),+P(%) andF1 score (except in (He
et al., 2021) and (Burguera, 2019)) of all the algorithms are above
99%. However, there are a few more statistical parameters or figures-
of-merit, which are also to be taken into consideration such as FN,
FP and the run-time TPro. Undoubtedly, the value of TPro depends

on the configuration of the system the algorithm is being tested on,
and therefore, two additional columns, namely, the CPU specification
and the superiority of the CPU, have been included inTable 6 so as to
justify the comparison.

The Se values of (Mukhopadhyay and Krishnan, 2020) and the
proposed algorithm are identical, but the +P and F1 score values of
the proposed algorithm are better than that of (Mukhopadhyay and
Krishnan, 2020). A direct comparison of TPro between the proposed
one and (Mukhopadhyay and Krishnan, 2020) is not possible as the
system-configurations are different. In order to make a fair
comparison, the algorithm which is proposed in (Mukhopadhyay
and Krishnan, 2020) is run on the same CPU, which is used in this
research. It has been found that the mean TPro of (Mukhopadhyay

TABLE 7 | Performance comparison of the proposed algorithm with a few other recently developed algorithms on non-MITDB ECG databases.

Algorithms Total
number
of beats

Total
FN

Total
FP

Mean
Se

GPU,
64 GB
of

memory

Mean
+P(%)

Mean
F1 (%)

Mean
TPro

in
seconds

CPU specification Superiority
of CPU

Dataset:
edb

Wavelet (Mourad and Fethi, 2016) 788,772 2,760 1,258 99.65 99.84 99.75 177 Intel Core 2 Duo ↓
Adaptive thresholding (Yakut and
Bolat, 2018)

790,565 3,051 1,371 99.61 99.83 99.72 22 Intel Core i5-3230,
2.60 GHz

↓

Interval and trigonometric threshold
(Mukhopadhyay and Krishnan,
2020)

858,529 382 1,271 99.96 99.85 99.90 9.65 Intel Xeon E3-1,225
v3, 3.20 GHz

↓

Proposed 858,529 228 736 99.97 99.999 99.94 0.42 Intel Core i7 10510U
CPU 2.30 GHz

↟

Dataset:
Fantasia

Adaptive thresholding (Yakut and
Bolat, 2018)

283,747 166 58 99.94 99.98 99.96 25.5 Intel Core i5-3230,
2.60 GHz

↓

Kurtosis (Sharma and Sunkaria,
2016)

160,844 152 148 99.90 99.91 99.91 — — —

Interval and trigonometric threshold
(Mukhopadhyay and Krishnan,
2020)

155,792 1 197 99.999 99.87 99.94 7.15 Intel Xeon E3-1,225
v3, 3.20 GHz

↓

Time and amplitude threshold
(Modak et al., 2021)

285,308 224 284 99.92 99.90 99.91 - Intel Core i7 CPU,
2.6 GHz

↟

Proposed 283,747 3 22 99.999 99.999 99.996 0.43 Intel Core i7 10510U
CPU 2.30 GHz

↟

Dataset:
NSTDB

Adaptive thresholding (Yakut and
Bolat, 2018)

25,590 1,633 1,389 93.62 94.52 99.07 15.39 Intel Core i5-3230,
2.60 GHz

↓

Sixth power (Dohare et al., 2014) 25,590 - - 88.20 89.19 — — Intel Core 2 Duo
2.67 GHz

↓

Interval and trigonometric threshold
(Mukhopadhyay and Krishnan,
2020)

25,596 1,293 3,894 94.96 87.23 90.34 2.43 Intel Xeon E3-1,225
v3, 3.20 GHz

↓

Proposed 25,596 822 2,722 96.79 90.10 93.32 0.32 Intel Core i7 10510U
CPU 2.30 GHz

↟

Dataset:
PTBDB

Interval and trigonometric threshold
(Mukhopadhyay and Krishnan,
2020)

795,372 32 954 99.996 99.88 99.94 0.06 Intel Xeon E3-1,225
v3, 3.20 GHz

↓

Proposed 795,372 17 554 99.998 99.93 99.96 0.16 Intel Core i7 10510U
CPU 2.30 GHz

↟

Dataset:
Dreamer

Interval and trigonometric threshold
(Mukhopadhyay and Krishnan,
2020)

128,181 2 37 99.998 99.97 99.98 0.02 Intel Xeon E3-1,225
v3, 3.20 GHz

↓

Proposed 128,181 2 16 99.999 99.99 99.99 0.01 Intel Core i7 10510U
CPU 2.30 GHz

↟
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andKrishnan, 2020) onMITDB is 0.72 s, when run on the sameCPU
which is used in this research. It suggests that the proposed
algorithm is about 2.18 times faster than (Mukhopadhyay and
Krishnan, 2020).

As the number of FP detection of the proposed algorithm and
(Chandra et al., 2019) are low; 51 and 64, respectively, the +P values
of both the algorithms are identical (99.95%). However, the number
of FN detection of (Chandra et al., 2019) is about 2.36 times high
than that of the proposed one. The run-time of the algorithm is not
mentioned.

The number of FN and FP detections of the tunable-Q
wavelet transform-based technique (Sharma et al., 2019) are
about 2.51 and 2.57 times, respectively, higher than that of the
proposed algorithm. Even though, both the proposed algorithm
and (Sharma et al., 2019) are implemented on Intel Core i7
processors, the proposed algorithm is about 210.76 times faster
than that of (Sharma et al., 2019).

The number of FN and FP detections of the U-Net and
LSTM-based QRS-complex detection algorithm are not
mentioned in (He et al., 2021). The algorithm (He et al., 2021)
is implemented on GPU-based system as it requires an intense
training operation. Nonetheless, the proposed algorithm is about
5.45 times faster than that of (He et al., 2021).

In Table 6, seven metrics (FN, FP, FN + FP, Se, +P, F1 and
TPro) are considered to compare the performance of the proposed
RFB-based QRS-complex detection technique with that of the
others on MITDB. It can be seen from Table 6 that the proposed
algorithm: 1) solely holds the best results for four metrics
(FN, FP, FN + FP and F1), and 2) jointly holds the best
results for two metrics (Se and +P).

Now, the QRS-complex detection performance of the
proposed RFB-based algorithm on other ECG databases is
summarized and compared with a few recently developed
algorithms in Table 7. It can be seen that the proposed
algorithm performs equally well on other ECG datasets.

6 LIMITATION AND FUTURE DIRECTION

It has been observed that sometimes the proposed algorithm
fails to detect a few of the QRS-complexes following a large
motion artefact noise when the amplitude of the noise is found
to be around 10 times or more than that of the QRS amplitude.
However, this limitation could be overcome by clipping the
amplitude of such noises to a suitable level at the
preprocessing stage. From Figure 9B it can also be seen
that some of the noise-peaks of very low amplitude values
have been wrongly detected by the algorithm as R-peaks. A
suitably chosen threshold value could be applied on the
TPRNS data at the time of detection of the QRS-complexes
in order to eliminate these noise-peaks. In our future research
we will explore the likelihood of detection of other arrhythmic
QRS-complexes using their periodic and aperiodic traits. We
will also extend the research work in 1) detecting the p and T
waves using their corresponding time-period representations,
and 2) processing other periodic/quasi-periodic biomedical
signals such as photoplethysmogram, in our future research.

7 CONCLUSION AND DISCUSSION

A robust, reliable, fast and high-performance QRS-complex
detection algorithm is proposed in this paper. It is worth
mentioning that Ramanujan filter bank (RFB) is used in this
research work for the detection of the QRS-complexes in ECG
signals for the first time, to the best of our knowledge. The
advantages of using RFB in detecting the QRS-complexes are
multifold. First, the number of required filters in the bank and
hence the filter-coefficients depends on the periodic property
of the QRS-complexes. Since the periodic property of the
QRS-complexes are well defined in the domain of cardio
physiology, the required number of filters can easily be
derived from the domain knowledge. In this research work
it has been found that 1) the number of filters, which is equal
to the sampling frequency times the half of the QRS duration;
as defined in Eq. 6, and 2) the length of the average filter of
unit 6; as described in Section 3.2, best suit in detecting the
QRS-complexes in ECG signals. Therefore, the task of
normalization of the sampling frequency, which is a prime
prerequisite in many of the QRS-complex detection
algorithms, could be avoided. Second, as described in
Section 3.2, the main mathematical computation that is
required to perform is the linear convolution operation
only, and therefore the use of a mathematically as well as
computationally intricated transformation technique could be
avoided. Third, the runtime of the proposed algorithm is
incredibly low. Fourth, the effect of the motion artifact
types of noises on RFB is extremely low. Many of the QRS-
complex detection algorithms detects the high amplitude
motion artifact types of noises as the plausible QRS-
complexes. This is because of the fact that both the
frequency spectra and amplitude of the motion artifact
noise and QRS-complex overlap. However, a motion
artifact noise is not periodic in nature, and its periodic
property does not match with that of the QRS-complexes.
This is the main reason for what the false positive detection
rate of the proposed algorithm low.

As per the cardio physiologic definition, the heights,
frequencies, widths and also the periodicities of different
arrhythmic QRS-complexes are different. Figures 7–10 manifest
and corroborate this notion. A time-period representation clearly
portrays and segregates a normal, premature ventricular
contraction and atrial premature contraction QRS-complexes
with their corresponding unique periodic patterns. In this
research work, alongside detecting the normal QRS-complexes,
two types of arrhythmic QRS-complexes (premature ventricular
contraction and atrial premature contraction) are identified using a
period-thresholding-based technique, and this has been done
without the intervention of any ad hoc arrhythmic QRS-
complex detection technique.
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