
Deep Reinforcement Learning-Based
Optimization for RIS-Based
UAV-NOMA Downlink Networks
(Invited Paper)
Shiyu Jiao*, Ximing Xie and Zhiguo Ding

Department of Electrical and Electronic Engineering, The University of Manchester, Manchester, United Kingdom

This study investigates the application of deep deterministic policy gradient (DDPG) to
reconfigurable intelligent surface (RIS)-based unmanned aerial vehicles (UAV)-assisted
non-orthogonal multiple access (NOMA) downlink networks. The deployment of UAV
equipped with a RIS is important, as the UAV increases the flexibility of the RIS significantly,
especially for the case of users who have no line-of-sight (LoS) path to the base station
(BS). Therefore, the aim of this study is to maximize the sum-rate by jointly optimizing the
power allocation of the BS, the phase shifting of the RIS, and the horizontal position of the
UAV. The formulated problem is non-convex, the DDPG algorithm is utilized to solve it. The
computer simulation results are provided to show the superior performance of the
proposed DDPG-based algorithm.

Keywords: non-orthogonal multiple access, reconfigurable intelligent surface, unmanned aerial vehicles, deep
reinforcement learning, deep deterministic policy gradient

1 INTRODUCTION

Reconfigurable intelligent surfaces (RIS) have been recognized as one of the promising technologies
for sixth-generation (6G) wireless communications (Zhang et al., 2019) since they have shown
excellent features with better spectrum-, energy-, and cost-efficiency (Zhao, 2019). RIS can be viewed
as a low-cost antenna array consisting of a large number of programmable reflecting elements (Wu
and Zhang, 2019). A variety of proven techniques, such as massive multiple-input multiple-output
(massive-MIMO) and cooperative communications, only focus on how the transceiver can adapt to
the channel environment, while RIS have the capability to control the wireless communication
propagation environment (Chen et al., 2019). A typical scenario to apply RIS is when the direct links
from the base station (BS) to users are blocked by buildings or mountains, which means RIS can
create extra propagation paths to guarantee the quality of service (QoS).

Inspired by the superiorities of non-orthogonal multiple access (NOMA) such as high spectrum
efficiency (Ding et al., 2017), this study combines NOMA with the IRS. Ding et al. (2020) have
illustrated the better performance of combining RIS with NOMA than it has with the conventional
orthogonal multiple access (OMA). On the other hand, as another promising 6G technique
(Chowdhury et al., 2020), unmanned aerial vehicles (UAV) have been widely applied in NOMA
systems, such as UAV-MEC-NOMA, UAV-RIS-NOMA, etc. Lu et al. (2022) proposed a scheme that
maximizes the average security computation capacity of a NOMA-based UAV-MEC network when a
flying eavesdropper exists. To the best of our knowledge, most RIS-related works consider fixed RIS
deployment scenarios (Ding et al., 2020; Fang et al., 2020; Zuo et al., 2020). This study introduces
UAV to a RIS-NOMA system, which enhances the flexibility of RIS significantly. Our prior works
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(Jiao et al., 2020) jointly optimized beamforming and phase shift
with pre-optimized UAV position and derived the closed-form of
the optimal beamforming for a 2-user RIS-UAV-NOMA
downlink system. Most RIS-related works consider only fixed
channel environments. However, the time-varying multi-user
scenario is closer to the real wireless communication systems.
Conventional optimization methods, such as convex
optimization, are difficult to solve non-convex joint
optimization problems with highly coupled variables.

To date, artificial intelligence (AI), such as deep learning (DL)
and deep reinforcement learning (DRL)-based methods have
been successfully applied to a variety of wireless
communication problems (Cui et al., 2019; Ding, 2020). On
the other hand, unlike DL which needs a huge number of
training labels, DRL-based methods allow wireless
communication systems to learn by interacting with the
environment. Hence, DRL is more appropriate for this study,
as training labels are very hard to obtain in real-time wireless
communication systems. There are generally two types of
reinforcement learning, one is value-based and the other is
policy-based. Q-learning, as one of the representatives of the
value-based reinforcement learning method, chooses action from
the state-action table by using the ϵ-greedy policy. In terms of
policy-based reinforcement learning, policy gradient (PG) has the
capability to solve problems with continuous action. However,
PG easily convergences to a local optimal. Deep Q Network
(DQN) is proposed by integrating deep neural networks and
Q-learning, which can solve high-dimensional discrete action
problems (Lillicrap et al., 2015). However, DQN cannot
straightforwardly be used in continuous space because it finds

the action that maximizes the Q-function, which demands an
iterative optimization process at each step. This is hard to realize
when the action is continuous (Lillicrap et al., 2015). However,
the deep deterministic policy gradient (DDPG) is applicable to
the cases with the high-dimension continuous action space since
DDPG outputs actions with a deterministic policy. Considering
that this study aims to optimize a wireless communication
problem with continuous actions, DDPG is applied.

This study investigates the application of the DRL-based
methods to the multi-user RIS-UAV-NOMA downlink system.
The DDPG algorithm is introduced into the DRL framework to
optimize the power allocation of the BS, the phase shifting of the
RIS, and the horizontal position of the UAV simultaneously.
Computer simulation results are provided to demonstrate the
proposed algorithm's robustness and superior performance on
the sum rate.

2 SYSTEM MODEL AND PROBLEM
FORMULATION

Consider an RIS-UAV-NOMA network as shown in Figure 1. It
is assumed that each node is equipped with a single antenna. The
base station (BS) serves K users (denote the users set by K) who
are randomly distributed in a certain area A. Assume that
downlink users’ direct links to the BS are blocked, for
example, by buildings and mountains. Hence, the UAV-
equipped RIS is deployed to create reflection links between the
users and the BS, where the RIS is equipped with N passive phase
shift elements. Assume that the UAV flies at a fixed altitude over

FIGURE 1 | UAV-based RIS-assisted NOMA downlink system.
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area A autonomously, and starts at a fixed charge point. The
channels are assumed as the Rician fading channel because the
UAV-to-ground links are line-of-sight (LoS) (Wang et al., 2019),
and the channel state information (CSI) is assumed to be
known perfectly (that is, CSI estimation errors are not
considered) at the BS and the UAV-equipped RIS, where
the energy consumption and flight duration issues of the
UAV (Sun and Wu, 2013) are neglected. Observe that due to
the used DDPG method, the proposed algorithm is applicable
to the case, where the channels are time-varying between time
slots, but remain constant within one time-slot. Denote the
channel vectors between the BS and the RIS by g ∈ CN×1 and
the channel vectors between the RIS and the kth user by
hrk ∈ CN×1, respectively. The small scale fading and the path
loss are both considered. According to the NOMA principle,
the BS transmits the superposition coding to all users. Hence,
the received signal at each user is given by

yk � hHrkΦg∑K
i�1

ρisi + nk, k � 1, . . . , K, (1)

whereΦ � diag(ejθ1 , ejθ2 , . . . , ejθN ) is the RIS diagonal phase shift
matrix, θn ∈ [0, 2π] is the phase shift of the nth element, ρi ∈ [0, 1]
is the BS transmitted power allocation coefficient and ∑K

i�1ρi � 1,
si is the transmitted signal for the ith user that satisfying
E[s2i ] � 1, and nk is the noise which follows CN (0, σ2). Since
the UAV is deployed, we use v(x, y) to denote the RIS-UAV
horizontal position and hI for its height. The BS is located at the
original point (0,0) and the BS height is hB. uk(xk, yk), k = 1, . . . , K
denotes the horizontal position of the kth user. Hence, the
distance between the BS and the RIS can be derived as dBI ������������������
x2 + y2 + (hB − hI)2

√
and the distance between the RIS and the

kth user is dIuk �
����������������������
(x − xk)2 + (y − yk)2 + h2I

√
. Considering the

path loss, the channel gain for the kth user can be rewritten as:

hk � hH
rkΦg

dBIdIuk( )α, (2)

where the α is the path loss coefficient.
To implement the successive interference cancellation (SIC)

for NOMA users, the channels’ quality should be obtained
first. Assume that the weakest user (who has the worst
channel) is the 1st user and the strongest user (who has
the best channel) is the Kth user. According to the SIC
principle, the jth (1 ≤ j ≤ K) user needs to decode the
signals of all j − 1 weaker users so that the jth user can
remove those signals from the superposed received signal.
Therefore, the signal-to-interference-plus-noise ratio (SINR)
for the jth user to decode the tth (t ≤ j − 1 ≤ K) user’s signal is
as follows:

SINRt→j � |hj|2Pmaxρt∑K
i�t+1|hj|2Pmaxρi + σ2

. (3)

Afterwards, the user j can decode its own signal by
simply treating the signal of all the rest users as
interference. The SINR for the jth user to decode its own
signal is given by

SINRj→j �
|hj|2Pmaxρj∑K

i�j+1|hj|2Pmaxρi + σ2
, (4)

where Pmax is the maximum transmit power. Observe that the
data rate for each user to decode its own signal can be calculated
by Eq. 4 and R = log(1 + SINR). Denote the minimum target data
rate by Rmin. To make sure SIC can be successfully implemented,
the data rate of the jth user decoding the tth user’s signal is
required no smaller than the data rate of the tth user decoding its
own signal, which means Rt→j ≥ Rt→t ≥ Rmin, ∀t < j. The problem
formulation will be described next in detail.

Our aim is to maximize the sum-rate by jointly optimizing the
power allocation ρi at the BS, the phase-shifting Φ of the RIS and
the horizontal position v(x, y) of the UAV. Hence, the
optimization problem can be formulated as follows:

P1( ): max
ρ,Φ,v{ } ∑K

t�1
Rt→t, (5a)

s.t. Rt→t ≥Rmin,∀t ∈ K, (5b)
Rt→j ≥Rt→t ∀t, j ∈ K, t> j, (5c)

∑K
k�1

ρk ≤ 1, (5d)

v x, y( ) ∈ A, (5e)
0≤ θn ≤ 2π, n � 1, . . . , N. (5f )

Constraint (Eq. 5b) is to guarantee the QoS for all users, and
(Eq. 5c) ensures that the SIC processing can be implemented
successfully. Constraint (Eq. 5d) is the BS total transmission
power constraint and (Eq. 5e) is to restrict the UAV to flight
within a certain feasible area. The last constraint (Eq. 5f) is the
angle constraint for each element of the RIS. The problem (P1) is
non-convex and it is hard to find a global optimal solution due to
the coupled variables {ρ, Φ, v}. Hence, in this study, we propose a
robust DRL-based framework to solve the problem (P1).

3 DEEP REINFORCEMENT
LEARNING-BASED OPTIMIZATION

In this section, the DDPG algorithm is first briefly introduced.
Afterward, actions, states, and rewards are defined, respectively.
Finally, we discuss how can the DDPG framework be applied to
solve the formulated problem and what is the working procedure
of DDPG.

3.1 Introduction to Deep Deterministic
Policy Gradient
DDPG is a model-free, off-policy actor-critic algorithm by
applying the deep function approximators. Generally speaking,
similar to DQN, the aim of DDPG is to find an action that
maximizes the output Q value according to the current state.
However, unlike the DQN algorithm can only be used for
discontinuous action scenario, DDPG allows agent learns
policies in a high-dimension, continuous action space (Lillicrap
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et al., 2015). On the other hand, although the policy gradient
method is suitable for continuous action, it is unsatisfactory in the
wireless communication context (Feng et al., 2020) because of its
drawback of slow convergence. Specifically, DDPG has the
following four neural networks that need to be trained.

• An evaluation actor network μ(s|θμ). θμ denotes its
parameters. It outputs actions at by taking state st as its input.

• A target actor network μ′(s|θμ′). This neural network is
parametrized by θμ′. The input is the previous state of st−1,
but the output action is used to update the parameters of the
evaluation critic network.

• An evaluation critic network Q(s, a|θq). θq denotes its
parameters. It inputs the current state st and action at
and outputs the Q value.

• A target critic network Q′(s, a|θq′). This neural network is
parametrized by θq′. The input is previous state st−1 and the
corresponding actions from the target actor network, and
the output is the target Q value.

3.2 DDPG Working Procedure
Before the training starts, there are two important mechanisms to
be clarified:

1) Exploration: In order to make the agent obtain better
exploration, randomly generated noise is added to the
output action of the evaluation actor network

μ′ st( ) � μ st; θμ( ) +N , (6)
where N is the Gaussian noise which has the same dimension
with the output action.

2) Experience replay: To avoid the correlation between
different samples being too strong, similar to DQN,
DDPG also uses experience replay. In detail, an
experience replay buffer D with capacity C is created to
store multiple transitions (st, at, rt, st+1), and then these
past experiences will be randomly selected with a fixed
quantity to train the networks. The selected experiences
set is called mini-batch with batch size NB.

In DDPG, the training stage starts when the experience replay
buffer is full. NB transitions (st, at, rt, st+1) are selected as a mini-
batch to train the four neural networks. As mentioned earlier, the
goal of the DDPG algorithm is to find an action that can
maximize the Q value (i.e., the output of Q(st, at|θq) where at
= μ(st|θμ)). Therefore, to train the evaluation actor network the
following objective function needs to be maximized:

J θμ( ) � Q st, at � μ st|θμ( )|θq( ). (7)
To maximize the objective function above, gradient ascent

with chain rule is applied:

∇θμJ �
1
NB

∑NB

t�1
∇aQ st, μ st|θμ( )|θq( )∇θμμ st|θμ( )( ). (8)

It is more complicated for critic network training. First, the
target Q value is obtained by inputting the output of the target
actor network according to state st+1:

yt � rt + λQ′ st+1, μ′ st+1|θμ′( )|θq′( ), (9)
where λ is the discount factor. Second, the Q value calculated by
evaluation critic network is obtained according to st and at,
i.e., Q(st, at|θq). Finally, the evaluation critic network is
updated by minimizing the loss function

L θq( ) � 1
NB

∑NB

t�1
yt − Q st, at|θq( )( )2. (10)

For target actor network and target critic network updating,
DDPG uses soft updating (Lillicrap et al., 2015) to avoid the
unstable and divergence trend that appears in Q-learning.

θ′ ← τθ + 1 − τ( )θ′, (11)
where τ ≪ 1 is the soft updating coefficient. Observe that this
updating strategy means updating the target network’s
parameters by slowly tracking the learned evaluation network.
The framework of DDPG is illustrated in Figure 2.

3.3 The DRL Processing
In the communication system model Figure 1, we define the
time-varying channels as the environment and treat the RIS-UAV
as the agent. The rest of the corresponding elements are defined as
follows.

• State space: The state of the time step t is defined as

st � R t−1( )
1 , . . . , R t−1( )

K , θ t−1( )
1 , . . . , θ t−1( )

N ,[
ρ t−1( )
1 , . . . , ρ t−1( )

k , x t−1( ), y t−1( )], (12)

where {R(t−1)
1 , . . . , R(t−1)

K } are all users’ data rate at time t − 1,
{θ(t−1)1 , . . . , θ(t−1)N } denotes the angle of the RIS phase shift,
{ρ(t−1)1 , . . . , ρ(t−1)k } denotes the power allocation to each user’s
signal and {x(t−1), y(t−1)} represents the UAV’s horizontal position.

• Action space: According to optimization-needed variables,
the action of the time step t is defined as

at � θ t( )
1 , . . . , θ t( )

N , ρ t( )
1 , . . . , ρ t( )

k , x t( ), y t( )[ ]. (13)
At the time step t, the agent inputs the state st to obtain the

corresponding action at according to the current environment.
Then the agent obtains the new phase shiftΦ, power allocation ρi,
i = 1, . . . , k, and horizontal position v.

• Reward: Because the objective is to maximize downlink
users’ sum-rate, intuitively we use the sum-rate as the
reward, which is consistent with the aim of DDPG to
maximize the cumulated reward.

rt � R t( )
sum � ∑K

k�1
R t( )
k , k � 1, . . . , K. (14)
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3.4 Processing to Satisfy Constraints
To satisfy the constraints of the problem (P1), the following
manipulations are carried out: To guarantee QoS constraint (Eq.
5b), the data rate R(t)

k of each user is to be calculated at each step t
to check if it can achieve the minimum target rate. If all the
calculated rates satisfy the constraint (Eq. 5b), this experience is
to be stored into the replay buffer directly. In contrast, a
punishment mechanism will be carried out (e.g., set rt = 0) for
those experiences that are not satisfactory (Eq. 5b) to avoid the
agent taking bad actions. In order to ensure the SIC is successfully

implemented (i.e., the constraint (Eq. 5c)), conventional
optimization methods, such as convex optimization, have to
do a large amount of mathematical processing. However, in
the proposed algorithm, the constraint (Eq. 5c) can always be
satisfied if the channel quality-dependent decoding order is re-
decided after the action at is outputted at each step t (see Remark
1 and Proposition 1). Observe that, as aforementioned, the perfect
CSI can be obtained by the BS and UAV.

Remark 1. Observe that channel vectors are randomly
generated at the beginning of each episode. Hence the generated
channels are fixed within one episode. However, recall the Eq. 2,
the total channel is changing because of the different output phase
shifts from the actor network at each step.

Proposition 1. The SIC constraint (Eq. 5c) will always be
satisfied if the decoding order is decided by the current channels.

Proof. Recall Eq. 3, its numerator and denominator are
divided by |hj|

2 simultaneously (where the case for the weaker
tth user shown in (Eq. 4) can be obtained similarly), then we have

SINRt→j � Pmaxρt∑K
i�t+1Pmaxρi + σ2

|hj|2
, (15)

SINRt→t � Pmaxρt∑K
i�t+1Pmaxρi + σ2

|ht|2
. (16)

Under the given |hj|≥|ht|, we have SINRt→j ≥ SINRt→t that
satisfies the SIC constraint. □

Therefore, the problem (P1) becomes:

P2( ): max
ρ,Φ,v{ } ∑K

t�1
Rt→t (17a)

s.t. Rt→t ≥Rmin, ∀t ∈ K, (17b)
5d( ) − 5f( ). (17c)

FIGURE 2 | Framework of DDPG.

FIGURE 3 | DNN framework for the actor network and critic network.
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For the constraint (Eq. 5d), We found that the output of
the neural network is very likely to have negative values.
To solve this, some functions (for example, exponential
function) can be used to map the output values to the
feasible range, and this trick is also valid for constraints
(Eq. 5e) and (Eq. 5f). Based on all the aforementioned
discussions, Algorithm 1 is summarized to show the proposed
algorithm in detail.

Algorithm 1. Proposed DDPG-based algorithm.

4 SIMULATION RESULTS

4.1 Channel Environment and Hyper
Parameters
In this section, we carry out the proposed DDPG-based
algorithm and present the results to analyze its performance.
As Figure 1 shown, the BS is deployed at the origin point (0,0),
the RIS-UAV starts at the point (50,0), and users are randomly
distributed in the area A which is (45,45), (55,45), (55,55), and
(45,55). In each episode, users’ positions are assumed fixed. As
assumed previously, the channels between the BS and the RIS,
and the channels between the RIS and users are all LoS. The
Rician fading channel is used according to the following
equation:

G � �H

������
Ω

Ω + IN

√
+HR

������
1

Ω + IM

√
, (18)

where �H represents the deterministic component, HR denotes
the Rayleigh fading component and Ω is the Rician K-factor.
In our simulations, we set Ω = 10. For the large scale fading,
the path loss coefficient is α = 2. According to the channel
assumption in Section I, the channels are randomly generated
for each episode, but they are fixed within each episode. On the
other hand, the altitude of the BS is hB = 20 and the RIS-UAV is
deployed at hU = 30. For other parameters, we set noise power as
σ2 = −60dB.

4.2 Deep Neural Network Structure and
Parameters
The whole framework for DDPG is shown as Figure 2 where the
actor and critic use different structures, respectively. The depth of
the neural network and the number of neurons (that is, the
dimension of each layer) affect the learning efficiency and
effect. In our experiments, for the actor network, we use two
layers fully connected network (that is, two-layered DNN) for both
of actor evaluation network and actor target network (see Figure 3
left). The dimensions of the input layer and the output layer are
determined by the dimensions of state and action. Hence, the
dimension of the input layer is set as N + 2(K + 1) and the

FIGURE 4 | Number of episodes versus accumulated reward for
different numbers of RIS elements Pt = 10dB, K = 4.

FIGURE 5 | Number of episodes versus accumulated reward for
different numbers of users Pt = 10dB, N = 64.
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dimension of the output layer is set as N + K + 2. On the other
hand, the first layer uses the ReLU function as the activation
function while the output layer uses tan(·) function to gain enough
gradient, and the batch normalization is applied between two
hidden layers. For the critic network, similarly, a two-layer fully
connected network is used. However, the structure becomes the
following: input the state data to one layer and input the action
state to another layer, then add these two layers’ output together
and follow the ReLU function as the input of the output layer (see
Figure 3 right). As the setting of the Actor, there is a batch
normalization layer behind the first hidden layer as well. The
hyper-parameters are set as follows: learning rate for training
evaluation network β = 0.001, discount factor λ = 0.95, learning
rate for soft update τ = 0.005, experience replay buffer size
C � 50000, number of episodes J = 1000, number of steps for
each episode T = 500, size if sampled mini-Batch NB = 16. In
addition, the added noise in Eq. 6 for exploration is set as complex
Gaussian noise with zero mean and 0.1 variance.

4.3 Simulation Results
In Figure 4 and Figure 5, the number of episodes versus accumulated
reward is shown, respectively, under different RIS and user setups,
where their first 100 episodes are the random data collection stage.
The number of neurons for each hidden layer is 300. Figure 4
illustrates that the more RIS elements are used, the higher the
accumulated reward can be obtained. In addition, comparing these
three cases, the RIS = 4 case converges before 200 episodes, the RIS =
16 case converges before 400 episodes, and the RIS = 64 cases
converges at around 800 episodes. For the same DDPG
framework training, the fewer the number of RIS elements, the
faster the convergence. Hence, increasing the number of neurons
can improve the convergence speed, but more neurons lead to more
calculations. Therefore, it is crucial that build a neural network
depending on the actual situation. Figure 5 reveals what will
happen when a BS serves a different number of users. It is clear

that these five scenarios start at different levels at the random
initialization stage, but converge at the same level after around 800
episodes. In consequence, in this systemwhen the transmit power and
the number of RIS elements are fixed, increasing the number of users
does not guarantee the sum rate improvement, as the degrees of
freedom available for resource allocation are limited in a downlink
system(Sun et al., 2018).Hence, it is important to consider the tradeoff
between the number of users and the data rate when designing the
system. On the other hand, no matter how many RIS elements or
users there are, the proposed algorithm is convergent and stable (In
other words, it is robust to the number of RIS elements and users).

Figure 6 illustrates the sum rate versus maximum transmitted
power Pt. Consider two cases of system parameters setup, one is
RIS elements N = 50 and the other one is N = 100. As can be seen,
the proposed algorithm outperforms the random case significantly
for all considered power transmissions, even the optimized case for
N = 50 is much better than the random case for N = 100.

To further demonstrate the proposed algorithm’s performance,
we carried out the algorithm for scenarios of a different number of
RIS elements, as shown in Figure 7. It can be seen that the sum-rate
increases with the increase of RIS elements quantity. Therefore,
increasing RIS elements is a good way to enhance the sum rate.
Nevertheless, the more RIS elements are equipped the larger the
size of the training data is, which will need more neurons and
increase the training duration. Too much training data and too
many neurons will cause higher calculation complexities and make
non-negligible output latency. Hence, the tradeoff between sum
rate and complexity has to be considered in practical construction.

5 CONCLUSION

This study investigated the sum rate maximizing problem in a RIS-
UAV-NOMA downlink network. Power allocation of the BS, the RIS
phase shift, and the UAV position are jointly optimized by applying
the proposed DDPG-based algorithm efficiently. Rearranging the

FIGURE 6 | Transmit power versus sum rate K = 4. FIGURE 7 | Number of RIS elements versus sum rate, K = 4.
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decoding order according to the current channel environment in
each step is an efficient way to guarantee SIC implementation
successfully. Computer simulations have shown that the proposed
algorithm can be applied in the time-varying channel environment
to enhance the sum-rate performance significantly, as well as is
robust to the number of RIS elements and users.
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