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Clinical assessments of movement disorders currently rely on the

administration of rating scales, which, while clinimetrically validated and

reliable, depend on clinicians’ subjective analyses, resulting in interrater

differences. Intraoperative microelectrode recording for deep brain

stimulation targeting similarly relies on clinicians’ subjective evaluations of

movement-related neural activity. Digital motion tracking can improve the

diagnosis, assessment, and treatment of movement disorders by generating

objective, standardized measures of patients’ kinematics. Motion tracking with

concurrent neural recording also enables motor neuroscience studies to

elucidate the neurophysiology underlying movements. Despite these

promises, motion tracking has seen limited adoption in clinical settings due

to the drawbacks of conventional motion tracking systems and practical

limitations associated with clinical settings. However, recent advances in

deep learning based computer vision algorithms have made accurate, robust

markerless motion tracking viable in any setting where digital video can be

captured. Here, we review and discuss the potential clinical applications and

technical limitations of deep learning based markerless motion tracking

methods with a focus on DeepLabCut (DLC), an open-source software

package that has been extensively applied in animal neuroscience research.

We first provide a general overview of DLC, discuss its present usage, and

describe the advantages that DLC confers over other motion tracking methods

for clinical use. We then present our preliminary results from three ongoing

studies that demonstrate the use of DLC for 1) movement disorder patient

assessment and diagnosis, 2) intraoperative motor mapping for deep brain

stimulation targeting and 3) intraoperative neural and kinematic recording for

basic human motor neuroscience.
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1 Introduction

Movement disorders such as Parkinson’s disease (PD) and

essential tremor (ET) are prevalent, debilitating diseases. PD

affects 1.6% of the population (Pringsheim et al., 2014) and ET

affects 4.6% of people older than 65 (Louis and Ferreira, 2010).

These disorders are initially treated with neuromodulatory

medications, and in cases where symptoms are not adequately

controlled, neurosurgical interventions including deep brain

stimulation (DBS) are considered.

The current method of movement disorder severity

assessment is the administration of a rating scale by a trained

clinician. The most common scale for PD (Mitchell et al., 2000) is

the Movement Disorder Society sponsored update of the Unified

Parkinson’s Disease Rating Scale (MDS-UPDRS) (Fahn, 1987;

Goetz et al., 2007). Despite the MDS-UPDRS being a validated

metric for assessment of parkinsonism, interrater reliability is

moderate (Heldman et al., 2011; Luiz et al., 2021) or low in the

case of tremor ratings (Martinez-Martin et al., 1994; Richards

et al., 1994; Goetz et al., 1995). This is remarkable given the

extensive training necessary to become a movement disorders

expert capable of administering these scales. Similar subjectively

rated scales have been developed for ET, such as The Essential

Tremor Rating Assessment Scale (TETRAS) (Elble et al., 2008).

DBS surgery also relies on subjective clinician judgments

when aided by awake intraoperative microelectrode recording

(MER). MER requires clinicians to judge the presence or absence

of correspondence between neural activity and patient

movement (Hutchison, 2009; Abosch et al., 2013). Tuning of

DBS parameters requires additional subjective assessments of

motor improvements.

While DBS is effective, its mechanism of action is not fully

understood (Lozano et al., 2019). Though much has been learned

about PD neuropathophysiology (Gonzalez-Escamilla et al.,

2020), many questions remain. In the case of ET, even less is

known (Haubenberger and Hallett, 2018).

Digital motion tracking could help to address these issues

(Chen et al., 2016). Motion tracking can objectively quantify

subtle movement variations during clinical exams, leading to

more consistent assessments (Belić et al., 2019). Furthermore,

motion tracking can aid clinicians by generating objective

measures during intraoperative MER. Motion tracking

combined with neural recording enables investigation of the

neurophysiology of brain areas involved with movement

disorders, informing future treatments.

In recent years, deep learning based markerless motion

tracking software, such as DeepLabCut (DLC) (Mathis et al.,

2018), has emerged as a flexible and reliable method to measure

kinematics. We propose that markerless methods such as DLC

have the potential to aid in the diagnosis, assessment, treatment,

and neuroscience of movement disorders. In this review, we

discuss the methodology of DLC, its current uses, and its

applicability in clinical settings. We then describe three of our

ongoing studies that utilize DLC: 1) a clinical trial for assessment

and diagnosis of movement disorders, 2) the development of a

tool for objective MER-assisted motor mapping during DBS

surgery for PD and 3) a basic motor neuroscience study

characterizing the relationship between thalamic neuron

spiking and reach kinematics in ET. The basic setups and

preliminary results of these studies are presented here as

proofs-of-concept for the use of DLC in clinical settings;

rigorous analysis and quantification of results will be

presented in future publications.

2 Review of markerless motion
tracking methods

2.1 Technical background

Conventional motion tracking methods such as inertial,

magnetic, acoustic, and electromechanical sensors, and video-

based tracking of reflective markers or LEDs (Zhou and Hu,

2008), all require that a device or marker be affixed to the body

part of interest, and often require expensive equipment.

In the last decade, deep learning (the application of many-

layered artificial neural networks) has seen considerable progress,

especially in image recognition tasks (Voulodimos et al., 2018)

such as pose estimation (Dang et al., 2019). Accordingly, several

open-source deep learning based tools specifically designed for

motion tracking, such as DLC (Mathis et al., 2018), have

emerged. These tools allow for motion to be digitized directly

from video, eliminating the need for sensors or markers.

DLC is an open-source, Python-based software package

adapted from the feature extraction layers of DeeperCut

(Insafutdinov et al., 2016), a pose estimation network

trained on ImageNet (Deng et al., 2009). DLC networks

can be adapted to track subjects in novel environments

using transfer learning (Mathis et al., 2018). The typical

workflow for motion tracking with DLC is the following: 1)

collect video using any digital camera, 2) manually label the

body parts or objects to be tracked in a subset of frames, 3)

train the network with this input data, and 4) apply the

network to the entire video. For each frame, DLC outputs

the estimated pixel locations of the tracked points and

numerical measures of confidence (Nath et al., 2019).
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TABLE 1 Enumeration ofmarkerlessmotion tracking studies in the literature. DeepLabCut (DLC) studieswere identified by searching for articles citing
the initial DLC publications (Mathis et al., 2018; Nath et al., 2019) using Google Scholar. The Kinect (Microsoft) and Leap Motion controller
(Ultraleap) are consumer markerless motion tracking devices that do not utilize deep learning. For the “Human Tracking, Non-Clinical” and “Non-
Human Tracking” categories, only studies which utilized DLC were enumerated; studies using other markerless motion tracking methods were
excluded for brevity.

Human Tracking, Clinical # Of studies Pioneering study

DeepLabCut Whole body 4 Moro et al. (2020)

Hand 3 Zhao et al. (2020)

Internal anatomy 4 Li et al. (2020)

Total 12

OpenPose Whole body 6 Li et al. (2018b)

Hand 2 Pang et al. (2020)

Total 8

Other neural networks Whole body 4 Lee et al. (2008)

Hand 6 Khan et al. (2014)

Face 2 Peterson et al. (2016)

Total 13

Kinect Whole body 7 Procházka et al. (2015)

Hand 1 Dror et al. (2014)

Total 8

Leap Motion Hand 6 Garcia-Agundez and Eickhoff (2021)

Total 6

Other non-neural network Whole body 3 Green et al. (2000)

Hand 1 Bank et al. (2017)

Total 4

Grand Total 51

Human Tracking, Non-Clinical

DeepLabCut Whole body 9 Cronin et al. (2019)

Hand 1 Pouw et al. (2020)

Face 4 Seidel et al. (2020)

Total 14

Non-Human Tracking

DeepLabCut Rodents (gross movement) 82 Mathis et al. (2018)

Rodents (orofacial behavior) 24 Tsunematsu et al. (2020)

Rodents (reach/grasp) 12 Mathis et al. (2018)

Primates 8 Berger et al. (2020)

Other mammals 9 Nath et al. (2019)

Birds 6 Lemaire (2020)

Reptiles 2 Gautam et al. (2020)

Fish 7 Marques et al. (2020)

Arthropods 9 Mathis et al. (2018)

Other invertebrates 2 Wu et al. (2020)

Cells 2 Cachot et al. (2021)

Inanimate 3 De Bari et al. (2019)

Total 165
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2.2 Advantages of deeplabcut and
suitability for clinical use

The accuracy of DLC has been validated in human studies; when

camera views of subjects are unobstructed, DLCperforms comparably

to or as well as inertial sensors (Pérez et al., 2021), electromagnetic

sensors (Pouw et al., 2020), infrared markers (Moro et al., 2020;

Vonstad et al., 2020; Drazan et al., 2021; Moro et al., 2021; Needham

et al., 2021) and manual video labeling (Papic et al., 2021). DLC

performs as well as or better than othermarkerlessmethods (Liu et al.,

2020;Vonstad et al., 2020; Cronin, 2021;Needhamet al., 2021) such as

OpenPose (Cao et al., 2019), which does not allow for network

retraining, and LEAP (Pereira et al., 2019), which uses a shallower

network.

DLC is particularly adept at tracking a wide variety of

subjects in unconventional settings (Mathis and Mathis,

2020). This flexibility is evidenced by the widespread adoption

of DLC in animal neuroscience across many different species and

scenarios. DLC has also been used to track humans in complex

environments. The variety of studies utilizing DLC is enumerated

in Table 1.

An additional advantage of DLC is its open-source availability

and associated development community (Mathis et al., 2020;

Anderson et al., 2021). DLC development is ongoing (Nath

et al., 2019), and third-party contributions have enabled real-

time tracking (Forys et al., 2020; Kane et al., 2020; Nourizonoz

et al., 2020; Schweihoff et al., 2021; Sehara et al., 2021) and 3D

reconstruction (Gosztolai et al., 2020; Sheshadri et al., 2020; Dunn

et al., 2021; Karashchuk et al., 2021; Zhang et al., 2021).

Markerless methods in general are attractive for clinical use

because they do not require anything to be attached to the body.

This reduces setup time, potential for error, and patient

encumbrance, which is especially important for movement

disorder patients with limited or excessive movements, and

who may need to physically interact with clinicians for

evaluation. Additionally, the capability of DLC to track

motion in a wide range of settings is desirable as clinical

environments, especially operating rooms, are visually

complex due to reflective surfaces and variable lighting

conditions. As such, many clinical studies have been

conducted using markerless methods such as DLC, OpenPose,

custom neural networks, Kinect (Microsoft), Leap Motion

(Ultraleap), and other non-neural network solutions. These

preliminary studies have focused on a range of applications,

including quantifying gross kinematics for movement disorders

or rehabilitation, capturing facial expression changes, and

tracking movements of internal anatomy using radiography

and endoscopic cameras. These studies are enumerated in

Table 1, and studies particularly relevant to the use of

markerless tracking for movement disorders are discussed in

the following sections.

Based on these advantages, we have chosen to use DLC to

pursue three novel clinical research questions, as described below.

3 Study 1: Clinical trial using
deeplabcut for movement disorder
diagnosis and assessment

3.1 Study 1: Background and related work

Objective quantification of movement can augment movement

disorder diagnosis and assessment. Kinematic metrics obtained with

conventional tracking methods have shown high correlations with

clinical ratings and have predicted disease states. Such studies have

been performedwith inertial sensors (Burkhard et al., 1999; Hoff et al.,

2001; Salarian et al., 2007; Giuffrida et al., 2009; Patel et al., 2009; Kim

et al., 2011; Pulliam et al., 2014; Ramsperger et al., 2016; Delrobaei

et al., 2017; Jeon et al., 2017), electromagnetic sensors (Espay et al.,

2009; Gao et al., 2018), infrared markers (Das et al., 2011) and

smartwatches (Malekmohammadi et al., 2016; López-Blanco et al.,

2019). Similar studies have also been performed using markerless

methods (Li M. H. et al., 2018; Liu et al., 2019; Sato et al., 2019; Wong

et al., 2019; Williams et al., 2020a; Pang et al., 2020; Jaber et al., 2021;

Shin et al., 2021). We identified four studies that used DLC for

movement disorder diagnosis and/or assessment. Miao et al. (2020)

tracked gait using iPad videos to distinguish dystonia patients from

controls. Stolk et al. (2020) tracked children with dyskinetic cerebral

palsy to predict Dyskinesia Impairment Scale scores. Shin et al. (2020)

andWilliams et al. (2020b) predictedMDS-UPDRS scores by tracking

movements in archival footage and cellphone videos, respectively.

3.2 Study 1: Description of current work

We designed a clinical trial (https://clinicaltrials.gov/ct2/show/

record/NCT04074772) to evaluate the use of DLC for automated

movement disorder disease state evaluation and classification. We

built a custom mobile frame to position three synchronized cameras

(Blackfly USB3, Teledyne FLIR) in front of subjects (Figure 1A).

Healthy control subjects andmovement disorder patientswith various

diagnoses, including PD and ET, were filmed while performing hand

movements used in movement disorder rating scales.

Subject-specific DLC networks were trained to track

11 points on the hand (Figure 1B), which were then

reconstructed in 3D (Figure 1C). Subjects were also rated by a

movement disorders neurologist. We expect that DLC output can

be used to predict rating scale scores, and that dimensionality

reduction and clustering of kinematic data will distinguish

movement disorder patients with different diagnoses from

each other and from controls.

By using an unobtrusive video recording system and DLC, we

can obtain 3D positional data during clinical exams without

restricting patient movements. This method can measure

kinematic features of hard-to-detect movement variations in

clinically relevant tasks like finger tapping and tremor, which

are used to characterize disease state and evaluate subtle changes

in treatment responses during DBS programming.

Frontiers in Signal Processing frontiersin.org04

Tien et al. 10.3389/frsip.2022.884384

https://clinicaltrials.gov/ct2/show/record/NCT04074772
https://clinicaltrials.gov/ct2/show/record/NCT04074772
https://www.frontiersin.org/journals/signal-processing
https://www.frontiersin.org
https://doi.org/10.3389/frsip.2022.884384


4 Study 2: Use of deeplabcut for
functional targeting of deep brain
stimulation electrodes

4.1 Study 2: Background and related work

DBS applied to the subthalamic nucleus (STN) is an effective

treatment for advanced PD (Bronstein et al., 2011). After initial

imaging-based targeting, MER is performed to accurately

identify the motor territory of the dorsolateral STN for

implantation of the therapeutic electrode (Benazzouz et al.,

2002; Sterio et al., 2002; Hutchison, 2009; Gonzalez-Escamilla

et al., 2020). Studies in which STN MER was performed

simultaneously with electromyography have identified

regions of STN with neural activity correlated with tremor

and active and/or passive movements (Lenz et al., 1988;

Magariños-Ascone et al., 2000; Rodriguez-Oroz et al., 2001;

Amtage et al., 2008).

To identify the motor territory of STN with MER, a

neurologist administers functional tests while visually and

auditorily assessing the MER voltage trace. Clinicians seek to

identify functional territories of STN defined by correlations

between neural activity and tremor, voluntary and/or passive

contralateral movements. This procedure relies on clinicians’

subjective judgments of the presence or absence of movement-

related neural activity. An automated system to assess MER and

kinematics could augment clinicians’ judgments and could be a

useful tool for centers where MER expertise is lacking.

FIGURE 1
Description of three ongoing studies utilizing DeepLabCut (DLC) in clinical settings. Top row: Clinical trial using DLC for movement disorder
assessment and diagnosis. Middle row: Development of an intraoperative tool for automated motor mapping during DBS implantation of STN for
treatment of PD. Bottom row: Motor neuroscience experiment linking VIM unit activity to reach kinematics in ET patients. (A,D and G) depict the
physical setups for each study. (B)Hand tracking during a clinical movement disorder exam. (C)Output of DLC tracking in the vertical dimension
of pointer finger (blue) and thumb (orange) tips during a finger tap test. (E) Hand tracking during active (left) and passive (right) movements for
intraoperativeMER basedmotormapping. DLC is able to identify and label the patient’s hand and not the clinician’s during passive testing. (F) Average
camera coordinate vertical position in pixels of all fingertips during a “chain pull” movement as tracked by DLC. (H) Monitor and cameras used to
administer and track the center-out reaching task. While all targets are displayed simultaneously here, only one target was presented at a time during
the task. (I)DLC-tracked position in pixels of pointer finger tip over an entire center-out session, with each color representing reaches to and from a
different target (seven targets total for this subject).
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4.2 Study 2: Description of current work

Utilizing DLC intraoperatively, we can objectively identify

functional relationships between STN neural activity and

kinematics through statistical analysis of MER signals and

tracked motion. To this end, we designed and executed a

study using DLC to track PD patient movement during MER

(Colorado Multiple Institution Review Board, COMIRB

#17–1291).

Videowas obtained using two cameras (BlackflyUSB3)mounted

on tripods aimed at the operating table (Figure 1D) and synchronized

with the MER system (Neuro Omega, AlphaOmega). DLC was used

to track 21 points on the hand, and was able to distinguish the

patient’s hand from the neurologist’s (Figure 1E). Kinematics

(Figure 1F) were compared to the MER signals offline using

dynamic time warping and Monte Carlo methods to identify

instances of correspondence between movements and neural

activity. These objective assessments of motion-related neural

activity largely agreed with clinician judgments.

To our knowledge, this study is the first attempt to develop an

automated tool to assist clinicians in functional MER for DBS

electrode targeting. While this study is only a first step and

operates offline, it explores the feasibility of such a technique with

potential for real-time intraoperative use. A key advantage of this

technique is that it is unobtrusive and does not interfere with

standard clinical procedures.

5 Study 3: Use of deeplabcut for
human motor neuroscience

5.1 Study 3: Background and related work

MER during DBS surgery presents a rare opportunity to

record from single neurons in wakeful humans (Engel et al., 2005;

Cash and Hochberg, 2015; Lee et al., 2019; Tekriwal et al., 2019).

This allows for basic neuroscience experiments to elucidate the

neurophysiology of the targets of DBS, guiding the development

of future treatments (Stein and Bar-Gad, 2013; Gonzalez-

Escamilla et al., 2020). Several studies have been conducted

with conventional motion tracking methods, but because of

the constraints of the operating room, kinematic tracking has

been limited to the use of joysticks (Amirnovin et al., 2004;

Zavala et al., 2017; Tekriwal et al., 2018, 2022), grip force

dynamometers (Patil et al., 2004; Fischer et al., 2020), bend-

sensitive resistors (Hanson et al., 2012) and inertial sensors (Levy

et al., 2002a,b; MacMillan et al., 2004; Tankus et al., 2017, 2018).

Only a single study has used markerless tracking during MER.

London et al. (2021) used the Leap Motion controller (Ultraleap) to

allow subjects to control a cursor in real-timewith handmovements,

allowing the identification of one neural population in the STN that

encoded kinematics, and another that responded to unexpected

action plan changes.

5.2 Study 3: Description of current work

The ventral intermediate nucleus of the thalamus (VIM) is

the primary target of DBS for the treatment of ET (Chopra et al.,

2013). While it is known that neural activity in the VIM covaries

with tremor and active and passive movements (Lenz et al., 1990,

1994; Zirh et al., 1998; Lenz et al., 2002; Hua and Lenz, 2005;

Cajigas et al., 2020), the precise relationship between VIM

neurons and kinematics remains unknown. Recent work in

mice (Becker and Person, 2019) revealed that the interposed

nucleus of the cerebellum is implicated in the precise control of

braking at the reach endpoint. The deep motor nuclei of the

cerebellum project to the VIM in humans (Roostaei et al., 2014),

suggesting that the VIM may also contribute to braking.

To investigate whether VIM neurons encode a brake signal,

we designed a study involving a center-out reaching task during

awake VIM MER in ET patients (COMIRB #20–2979). We

utilized a cart-mounted computer monitor with three cameras

(Blackfly USB3) mounted above it that can be positioned over the

operating table (Figure 1G). This monitor displayed a central

target and eight outer targets (Figure 1H). During the task, the

central and outer targets were shown sequentially, cycling

through all visible outer targets in a pseudorandom order.

Patients were instructed to point at the currently visible

target. DLC was used to extract fingertip position (Figure 1I).

Regression and Monte Carlo methods were used to determine

how VIM unit firing rates related to reach kinematics. These

analyses reveal a temporal congruence between VIM neural

activity and reach braking, and encoding of fingertip position

in VIM units.

To our knowledge this is the first study to examine free

reaching movements during human VIM MER, and the first use

of DLC in such a setting. The flexibility of DLC enables

examination of naturalistic movements that have previously

been difficult to study during MER, such as handwriting, tool

use and facial expressions.

6 Discussion

Deep learning based markerless motion tracking techniques

can improve movement disorder diagnosis, assessment,

treatment and neuroscience. DLC is especially appropriate

for these tasks because of its ease-of-use, flexibility, low cost,

open-source availability and development community, as

evidenced by its widespread and rapid adoption in animal

and human motion tracking applications. We have

demonstrated the utility of DLC in three ongoing studies: a

clinical trial using DLC for movement disorder assessment and

diagnosis, the development of an intraoperative tool for

functional DBS implant targeting in the STN, and a motor

neuroscience study relating VIM neural activity to reach

kinematics.
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Though powerful, DLC does have limitations. The DLC

analysis pipeline requires initial manual labeling. Because the

output of DLC is only as good as its training data, this presents a

potential for variation in tracking performance between different

users. As DLC networks are trained anew for each recording

scenario, standardization of output may be difficult. DLC

network training can take tens of hours even with GPU

acceleration. The ability of DLC to generalize across subjects

of different size, skin color, gender or age has not been well

studied. DLC tracks each feature independently and thus does

not incorporate biomechanical or temporal constraints on

motion. Finally, DLC can occasionally output spurious results,

so human review of final output is advisable, especially if tracking

is to be used for clinical decision making.

Specific limitations apply to the three ongoing studies

discussed herein. In all three studies, a technician was required

to position, calibrate and operate the cameras. Simpler systems will

be required for integration into clinical workflows. Custom camera

mount frames were built for studies 1 and 3, yielding consistency of

camera positioning but potentially sub-optimal capture for each

subject. In Study 2, tripods were used, resulting in variable views

for each subject. Implementing an online version of Study 2 would

require initial DLC network training in the operating room,

increasing surgical time. The kinematic data presented in

Figure 1 are preliminary, and while observed to be qualitatively

accurate, further quantification of accuracy through validation

with established datasets will be required.

The potential applications of DLC extend beyond the efforts

described here. While all three described studies focused on upper

limb movements and thus do not account for abnormal lower

limb, head or jaw movements, these symptoms can be tracked and

studied with DLC. Motion tracking is also critical for

developmental research (van Schaik and Dominici, 2020), and

DLC is capable of tracking infants (Pérez et al., 2021). DLC can also

be used track gaze (Zdarsky et al., 2021) as well as facial expression

(Argyle et al., 2021; Namba et al., 2021), making it a useful tool for

the assessment of various neuropathies and for cognitive

psychology research. Given the promise and utility of DLC, we

predict that it and other markerless motion tracking technologies

will see widespread adoption for clinical applications.
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