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Rain gauges (RGs) have been utilized as sensors for local rain monitoring dating back to
ancient Greece. The use of a network of RGs for 2D rain mapping is based on spatial
interpolation that, while presenting good results in limited experimental areas, has limited
scalability because of the unrealistic need to install andmaintain a large quantity of sensors.
Alternatively, commercial microwave links (CMLs), widely spread around the globe, have
proven effective as near-ground opportunistic rain sensors. In this study, we study 2D rain
field mapping using CMLs and/or RGs from a practical and a theoretical point of view,
aiming to understand their inherent performance differences. We study sensor networks of
either CMLs or RGs, and also a mixed network of CMLs and RGs. We show that with
proper preprocessing, the rain field retrieval performance of the CML network is better than
that of RGs. However, depending on the characteristics of the rain field, this performance
gain can be negligible, especially when the rain field is smooth (relative to the topology of
the sensor network). In other words, for a given network, the advantage of rain retrieval
using a network of CMLs is more significant when the rain field is spotty.
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1 INTRODUCTION AND MOTIVATION

Since first introduced in 2006 (Messer et al., 2006), commercial microwave links (CMLs) have shown
their great potential as virtual near-ground rain sensors [e.g., (Messer et al., 2006; Roy et al., 2016;
Messer, 2018; Uijlenhoet et al., 2018; Chwala and Kunstmann, 2019; COST-action, 2021)].

In particular, they have been widely demonstrated, in many countries around the globe, to be a
feasible and effective rain mapping tool (Chwala et al., 2018). In most cases, the CML-based rain
maps are produced using standard spatial interpolation methods, where each CML is represented as
a virtual rain gauge (VRG) located at the center of the link. This approach also allows integrating
measurements from actual rain gauges (RGs) with measurements from CMLs. Even this naïve
approach yields CML-based rain maps that are comparable to, or even better than (e.g., in terms of
resolution), the corresponding radar-based maps (Overeem et al., 2013). While the availability of
dense, near-ground line sensors (i.e., CML networks) together with some point sensors (i.e., RGs or
disdrometers) in random locations enables accurate 2D, near-ground rain retrieval, questions arise
regarding the dependency of their performance on various factors. In this study, we focus on two
of them.

The first question (Question #1) is practical and focuses on the preprocessing step of the spatial
interpolation. The standard algorithm is based on spatial interpolation from point measurements at
random locations [e.g., inverse distance weighting (IDW) or Kriging interpolation (Van de Beek
et al., 2012)]. Applying it to CMLs first requires translating CML measurements into point rain
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measurements (VRGs). Our question is:What is the cost, in terms
of performance, of disregarding the fact that a CML samples the
rain field with a line projection, and approximating it as a single-
point sample? We present considerations for identifying
conditions under which it is sufficient to represent a CML as a
single VRG vs. cases where more sophisticated
preprocessing—allowing the transformation of a CML
measurement into several VRGs along the link—is
recommended for best rain retrieval performance. The
nontrivial preprocessing we focus on here is the GMZ
algorithm [named after the initials of the authors of
Goldshtein et al. (2009)—Goldshtein, Messer, Zinevich] in
which measurements from neighboring links are used to
estimate the variability of the rain along a link, in an iterative
manner. Another practical issue is the question of the integration
of measurements from existing or additional RGs on the
performance of CML-based rain mapping. The second
question (Question #2) is theoretical and focuses on
algorithm-free performance evaluation of rain retrieval from
point vs. line sensors. This question is theoretical since the
availability of point sensors (RGs) is not the same, or even
close to, that of CMLs. For example, in Kunstmann et al.
(2017), the same rain field was retrieved using CMLs, RGs,
and radar. It is evident that the mapping of RGs is
significantly worse than that of CMLs. This is not surprising
since the number of RGs is much smaller. What if instead of each
CML, there was an RG?Whichmapping performance would then
have been better? The theoretical question examines this issue,
namely, what is the role of the sampling method used in a rain
field on its estimation performance? If all CMLs (i.e., the line
projection sensors), or some of them, were replaced by RGs (point
sensors), how would the rain field estimation change?

These two questions were partially studied in our research
group under different models, assumptions, and conditions. In
particular, Question #1 was studied by simulations using
synthetic scenarios with CMLs and RGs, as well as with semi-
real data and an actual CML network (Eshel et al., 2020; Eshel
et al., 2021; Zheng et al., 2022). Question #2 was studied using
theoretical performance bounds, assuming parametric (Gat and
Messer, 2019) or nonparametric (Sagiv andMesser, 2022) models
for the rain field. Table 1 categorizes the contribution of the
aforementioned studies. In this study, we integrate results from
these studies with new results and generalize them, focusing on
harmonizing these works and filling in the gaps they identified.

1. From a practical point of view:
a. We show that spatial interpolation algorithms that consider

the spatial properties of the links (e.g., length and
orientation) outperform those that consider a link as a
single VRG. However, the performance gain for a given
CML network depends on the characteristics of the rain
field, and it is most significant when the size of the rain cell
is on the order of the average length of the links (which is
proportional to the network’s density).

b. Assuming a mixed network of CMLs and RGs with a given
number of sensors, the performance of the 2D rain retrieval
improves as the share of CMLs replacing RGs in the same
central location increases.

2. From a theoretical point of view:
a. We show that if CMLs in a given network were replaced by

actual RGs, no concrete conclusions about the uniform
superiority of one kind of sensor over the other can be
identified.

b. The relative performance of 2D rain retrieval using near-
ground sensors in random locations—either line or point
sensors—depends on the nature of the rain field and on the
topology of the sensor network. If the rain is spotty,
mapping using measurements from line sensors (CMLs)
performs better, with the performance gain depending on
the density of the network and the average length of CMLs.

c. Asymptotically, when the rain field tends to be uniform
(relative to the topology of the sensor network), the
performance using both types of sensors converges.

The contribution of this study is comprehensive conclusions it
draws, based on the various points of view and special cases
studied previously, as follows:

Since our theoretical framing of the problem is based on
analyses using algorithm-independent tools, it can be
considered a lower bound for performance in a practical
setting, so it is not surprising that the key conclusion is
similar. When the size of the rain cell is smaller than the
average CML length, the benefit of the larger spatial coverage
of CMLs (compared with that of a point measurement by RGs)
exceeds the price paid with the accuracy of their measurements
(stemming from the path integration of the sampled field).
However, for a given network topology, the relative
performance gain of CMLs depends on the algorithm used.
Moreover, CML performance can be increased when

TABLE 1 | Categorization of the relevant studies referred to in this study.

Paper Theoretical: Point vs. line sensors Practical: CML representation by one or more VRGs

Gat and Messer (2019) Parametric model rain-field; synthetic CML network
Eshel et al. (2020) Parametric model rain-field; synthetic CML network
Eshel et al. (2021) Semi-real rainfall patterns; actual CML network

Sagiv and Messer (2022) Non-parametric model (B-splines); Synthetic CMLs network
Zheng et al. (2022) Parametric model; actual CML network; mixed with RG network
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employing more sophisticated 2D mapping algorithms rather
than the naïve approach of representing each CML as a noisy rain
gauge.

The study is organized as follows: Section 2 refers to the
practical question, while Section 3 deals with the theoretical one.
Section 4 concludes the study and points out open questions.

2 2D NEAR-GROUND RAIN
RETRIEVAL—PRACTICAL
CONSIDERATIONS
The main challenge in addressing the practical Question #1 was
the absence of a reliable ground truth for performance
assessment. Weather radars appear to be appropriate for
comparing the performances of spatial interpolation methods,
but robust working premises and the need for ground-level
calibration (Harrison et al., 2000; Berne and Krajewski, 2013)
make them a limited tool for this task. To solve this issue, a Monte
Carlo simulation approach was embraced in Eshel et al. (2020), in
which “rain cells” were simplified to single Gaussian-shaped rain
cells (GRCs) with growing spatial coverage (manifested in a
systematically growing Gaussian’s “standard deviation”
parameter). Formally, let R: (R,R) → R+ be a single-cell GRC
generated on the (x, y) plane according to:

R x, y; θ( ) � R0 · exp − 1
2 1 − ρ2( ) x − μx( )2

σ2x
+ y − μy( )2

σ2y
+ 2ρ x − μx( ) y − μy( )

σxσy
⎛⎝ ⎞⎠⎛⎝ ⎞⎠,

(1)

where θ � [R0, μx, μy, σx, σy, ρ]T is the vector parameterizing the
GRC, R0 is themaximum rainfall intensity at the center of the rain
field, located at (μx, μy), σx, σy dictate the spatial coverage of the
cell, and ρ controls the relations between the coordinates and thus
rotation of the cell. In Eshel et al. (2020), a special case of a
symmetric GRC is considered by setting σx = σy = σ (higher σ
refers to lower rainfall spatial variability) and ρ = 0.

The rain-induced attenuation A “measurements” of a fully
synthetic network, generated according to properties of actual
networks (Gazit and Messer, 2018a), were simulated based on the
well-known power-law relation [e.g., (ITU-R.838, 2005)]:

A � ∫L

0
r l( )bdl, (2)

where a and b are empirical parameters taken from ITU-R.838
(2005), and r(l) is the rain intensity along the path of a link of
length L. The attenuation values Eq. 2 were then quantized
(0.1 dB) after having assigned additive white Gaussian noise,
n ~ N (0, σ2n), where σ2n � 0.12

12 is the noise variance [after
Goldshtein et al. (2009)], which is the variance of a uniform
distribution stemming from the nature of the quantization error.
The above was done such that the simulated attenuation
measurements were y � Q(A + n,Δ), where Q(x,Δ) � Δ�xΔ� is
the quantization operation, and Δ is the quantization lag. Thus,
after the rain maps were reconstructed, a reliable ground truth
was available. In the aforementioned simulation (Eshel et al.,
2020), the error of treating a CML as a point at the center of its

path—the rather simple convention used in the majority of the
studies—was quantified. The study compared rain maps
generated by the inverse distance weighting (IDW)
interpolation method, in which the rain in a given point i is
estimated by a weighted sum of all available measurements within
the radius of influence D (the distance after which the weight
given to a measurement point is equal to zero), according to:

wi �
1 − di

D
( )2

di

D
( )2 , if

di

D
< 1

0, otherwise

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩
(3)

where wi is the weight given to a measurement at distant di from a
target point i. The IDW spatial interpolation has applied to two
methods of converting CMLs to VRGs: (a) a CML is represented
by a single VRG; and (b) a CML is represented by multiple VRGs.
In the second, a preprocessing step was undertaken; the execution
of an iterative algorithm was referred to as GMZ (Goldshtein
et al., 2009), allowing the rainfall intensities along a single link to
differ based on rain measurements from other sensors in the
radius of influence, so multiple VRGs of nonequal rain
measurements represent each CML.

The simulation study was conducted in the following manner:
First, the network of CMLs was created, with a mean length Lm =
2.5 km and a spatial density of 0.53 km−2 as follows: Locations of
the centers of links were randomly assigned to an area of
approximately 16 km2 × 16 km2. Then, based on Gazit and
Messer (2018a), the lengths of CMLs were randomly generated
according to an exponential distribution, with random angular
orientations. GRCs with growing spatial coverage were generated
(the rain cell’s diameter was chosen to represent its size, i.e., the
length equal to 2σ), ranging from 400 to 20 km. In turn, these
were synthetically sampled by the network, which allowed the
effect of the rain cell’s size to be inspected.

Figure 1 [taken from Eshel et al. (2020)] presents the relative
rain mapping performance, as measured by the spatial root mean
square error (RMSE), between IDW, which is applied on CMLs
represented by a single VRG, and multiple VRGs per CML
created by GMZ, as a function of the ratio between the rain
cell size and the mean CML length. It shows that the
reconstruction of rain fields always benefits when the lengths
of CMLs are not disregarded, that is, when GMZ is applied. The
potential improvement in accuracy according to Figure 1 is up to
20%, which occurs when the size of the rain cell is similar to the
links’ average length.

The foregoing implies that for a given area, both the
specific subarea of interest (hinting at the density of the
network) and the season (hinting at the rainfall’s spatial
structure), which are local and temporal factors,
respectively, should be considered, along with the desired
preciseness. That said, note that the 20% improvement
demonstrated here is confined to the single interpolation
method tested in this study, IDW. Other more
sophisticated methods may yield higher improvement rates.
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A similar approach was used on real rainfall patterns, obtained
from a radar product of the German Weather Service, for
different aggregation intervals (Eshel et al., 2021), where the
attenuation of an actual 808-CML network was simulated
(referred to as a “semi-real” study). Here, the differences
between the two cases were noticeable, but they were less
significant than for the simplified Gaussian-shaped rain cells.
In Eshel et al. (2021), however, the Kriging technique (spatial
covariance-based interpolation) was also applied, showing similar
results. A potential point of failure in GMZ as implemented in

Eshel et al. (2021) was suggested for specific scenarios, where
the redistribution of rain intensities between the VRGs on a
given CML is more detrimental than assuming a single point in
the center. The likeliness of such scenarios is conjectured to be
very low when a single symmetric rain cell is in question, and
to increase slightly the more spatially diverse the rain field is.
This may explain differences between the results of Eshel et al.
(2020) and Eshel et al. (2021). Nevertheless, on average,
applying GMZ contributes to increasing accuracy, also in
semi-real experiments.

FIGURE 1 | From Eshel et al. (2020)—RMSE improvement rate of cases where GMZ was applied in simulations where 3, 9, and 13 VRGs were assigned per CML,
relative to the RMSE of the case of a single VRG per CML without GMZ. Results are plotted against the rainfall cell size normalized by the average length of CMLs in the
network. A simulation with a larger dataset, solely for the case where GMZwas applied with three VRGs per CML, is displayed as well (dashed). GMZ constantly improves
RMSE performance but has negligible additional contribution when more than nine VRGs are used. The grey shading marks the area where the reconstruction and
the ground truth had a correlation coefficient <0.6, indicating that the rain GRC was too small to monitor. The number of links was generated (approximately 130) for a
link density of 0.53 km−2 in an area of 16 km2 × 16 km2.

FIGURE 2 | (A)Map of commercial microwave links in Zheng et al. (2022); (B) distribution of the relative error for average areal rainfall with 100 different simulated
rain fields, for various types of near-ground sensor networks in the same location: from CMLs only (S1) to RGs only (S5). Each CML was represented by multiple VRGs
determined by GMZ preprocessing. A growing number of CMLs were replaced by RGs in groups S1-S5, such that the number of CMLs was 10, 7, 5, 3, and 0,
respectively, which represents a linear model. The positive slope indicates that the more CMLs are sampling the rain field, at the expense of RG, the smaller the
error is.
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In Zheng et al. (2022), the study of Eshel et al. (2020) was
extended to the case where the spatial interpolation employs both
CMLs and RGs. Here, the study is based on an actual CML
network (see Figure 2A) where a CML is sometimes replaced by
an RG located in its center. In each experiment, a growing
number of CMLs were taken out of the network and replaced
by a point measurement, that is, an RG based on their location. It
is important to notice the difference between a VRG and an RG:
The first refers to a location along a CML path (usually its center),
which was chosen to represent a path-integrated measurement,
whereas the latter is a point sampler of the rain field at its very
location. In Zheng et al. (2022), nonisotropic GRCs (1)
characterized by 6 parameters are assumed. The parameters
defining the GRC, including the size and the orientation of the
rain cell, have been chosen randomly and then “sampled” by the
network according to (2), along with the addition of noise and
quantization to simulate actual measurements. The IDW
interpolation method was then used for rain field
reconstruction, with GMZ as a preprocessing step in some
scenarios. The resulting maps were later compared with the
ground truth, to assess their performance. In Zheng et al.
(2022), multiple points along the link represented the CML
measurements and GMZ was utilized prior to the
interpolation, where 11 VRGs were equally spaced along each
CML path. In scenarios in which CMLs were replaced by RGs, the
location of RGs was set randomly along the paths of discarded
CMLs. The number of CMLs and RGs defines the scenario:
Scenario S1 consists of CMLs only, while S5 consists of only
RGs. In between, the number steadily decreases, such that S2, S3,
and S4 consist of 7, 5, and 3 CMLs, respectively. For each of the
100 randomly generated GRCs, the replacement of randomly
picked CMLs with RGs (done for S2-S4) was repeated 30 times.
The decision about the random position of RG was made
100 times. It emerges from the above that S2-S4 consist of
300,000 experiments, S5 of 10,000 experiments, and S1 of only
100 experiments, since there was no need for random discard
allocation. The map’s resolution is 5 m × 5 m. GRCs were created
following (1), where ρ was randomly chosen between 0 and 1;
locations of (μx, μy) were randomly assigned; and values of R0
were randomly selected from 10 to 50 mm/h, and the minimum
rainfall intensity was set to 0.1 mmh−1. Following Marra and Morin
(2018), σxwas randomly chosen from 0.25 to 1.5 times the minimum
side length of the study area; σy is randomly selected from 0.4 to
1 times σx. All random selections assume uniform distribution.

As a performance evaluation metric, the normalized relative
error of average areal rainfall (REAAR) was used:

REAAR � ∑NT
i�1 oi − ei( )∣∣∣∣ ∣∣∣∣∑NT

i�1oi
, (4)

whereNT is the total number of pixels in the domain, and oi, ei are
observations and estimates of ith pixel, respectively. The
observations here are the simulated rain field (the ground
truth) at each pixel, and the estimates are the reconstruction
results, which are derived from the measurements of the
simulated rain field by the assumed sensors, resulting the
measurement vector y.

Figure 2B summarizes the distribution of the skill (Eq. 4) for
the five different scenarios, indicating the median value of the
REAAR. A clear trend can be noticed; the larger the CML/RG ratio
is, the better the performance is. A linear model was fitted to
median values of the boxplot distributions; thus, the slope serves
as an indicator of the rate of the effect examined. The positive
slope value implies that there is a loss in accuracy, on average,
stemming from using a point and not a path measurement, since
the median REAAR increases as more CMLs are discarded.

From these simulations, it emerges that, on average, the
combined effect of applying GMZ and using a path
integration measurement type yields higher accuracy in
mapping. However, the performance improvement does not
seem to be dramatic for the case of a small area with a
relatively dense sensor network.

3 2D NEAR-GROUND RAIN
RETRIEVAL—THEORETICAL
CONSIDERATIONS
The best way to study the optimal potential performance of a
parameter estimation problem, independently of the algorithm
used, is by evaluating the Cramér–Rao bound (CRB) on the mean
square estimation error. Formally, let θ̂(y) be an unbiased
estimator of θ ∈ Rk using the measurement vector y ∈ Rn with
EY[‖θ̂(y)‖22]<∞. If py(y; θ) satisfies appropriate regularity
conditions (Lehmann and Casella, 2006), then the lower
bound of the covariance matrix of any such estimator θ̂(y) is
given by:

EY θ̂ y( ) − θ( ) θ̂ y( ) − θ( )T[ ] ≻ CRBY θ( ) ≜ FY θ( )[ ]−1, (5)

where the inequality A ≻ B for matrices A and B means that A−
B ≻ 0, EY[·] denotes the expectation with respect to Y, and FY(θ)
is the Fisher information matrix (FIM), given by:

FY θ( ) ≜ EY
z log pY y; θ( )

zθ

z log pY y; θ( )
zθ

[ ]T⎡⎣ ⎤⎦. (6)

The FIM can be evaluated for any given model that relates the
parameter vector to the measurements, assuming that the
probability density function (PDF) of measurements is known.
For rain retrieval, the measurement vector y contains attenuation
measurements from CMLs and rain measurements from RGs; the
parameter vector θ fully characterizes the rain field. Assuming
that the sensor measurements are independent, the FIM is
given by:

FY θ;ψ( ) � ∑
ξi∈ψ

EY|ξi
z log pY y; θ, ξi( )

zθ

z log pY y; θ, ξi( )
zθ

[ ]T⎡⎣ ⎤⎦,
(7)

where ξi is the ith sensor placement vector (e.g., position, length,
and orientation), ψ � {ξi}ms

i�1 is the set of sensor placement vectors
for a given grid of size ms, pY(y; θ, ξi) is the measurement
distribution of a single sensor with parameters θ and
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placement vector ξi, and EY|ξi[] denotes the expectation w.r.t
pY(y; θ, ξi).

When trying to apply the CRB to the problem of 2D rain
retrieval from near-ground measurements by multiple sensors, a
few difficulties arise:

(a) In general, rain fields are not described by parametric models.
(b) In cases where a parametric model is assumed to describe a

rain cell, as in Messer et al. (2006), the estimation errors for
the individual parameters are of limited interest.

(c) The statistical characteristics of the measurements by either
CMLs or RGs are complex (Ostrometzky and Messer, 2020)
because of quantization, nonlinear preprocessing, etc.,
thereby making the evaluation of the FIM challenging.

In Gat and Messer (2019), an elegant solution to (b) was
proposed, using any assumed parametric model
R: (R,R;Rk) → R+ for a rain cell [e.g., Eqs 1, 10]; the bound
of the rain rate estimation variance Var(R(x, y; θ̂(y))) at pixel (x,
y) is obtained using the transformation of the parameter vector
(Kay, 1993):

Var R x, y; θ̂ y( )( )( )≥ zR x, y; θ( )
zθ

T

FY θ;ψ( )[ ]−1zR x, y; θ( )
zθ

, (8)

where zR(x,y;θ)
zθ is the derivative of R w.r.t θ. In Gat and Messer

(2019), a uniformly spaced grid of mg × mg points was chosen
along the x-axis and y-axis in a region of size L2. Then, using this
grid of points, the mean square error over the entire map is
defined as:

MSErm θ( ) � 1

m2
g

∑mg

i�1
∑mg

j�1
EY R xi, yj; θ( ) − R xi, yj; θ̂ y( )( )( )2[ ]

≥
1

m2
g

∑mg

i�1
∑mg

j�1

zR xi, yj; θ( )
zθ

T

FY θ;ψ( )[ ]−1zR xi, yj; θ( )
zθ

,

(9)

where xi is the ith grid point along the x-axis, and yj is the jth grid
point along the y-axis.

Regarding the other two difficulties (a) and (c), in Gat and
Messer (2019), a simplified single symmetric GRC is
characterized by four unknown parameters as in Eq. 1 with
ρ = 0 and σx = σy = σ and additive white Gaussian noise is
assumed. This simplified model was used to study the bound on
the spatial MSErm 9) when either CMLs or RGs in the same
locations are used for retrieving the 2D rain map. The sensors
were located with a small perturbation around a uniform grid,
and the length and orientation of CMLs were randomly set with
exponential and uniform distributions, respectively.

Figure 3B depicts an example of the sensors used and the
assumed rain cell. Figure 3A shows the resulting CRB on MSErm
Eq. 9 for the case where all sensors are CMLs (solid line) or RGs
(dashed line), as a function of the size of the rain cell for the case
where the average length of CMLs is 3.5 km and the grid size is
2.5 km. It shows that when the size of the rain cell is small
(relative to the grid size), CMLs outperform the mapping done by
RGs. At a certain cell size, at the order of the average length of
links, the performance crosses and the RGs’ mapping prevail
slightly and asymptotically; when the cell size increases, the two
sensors provide the same performance. In Gat andMesser (2019),
it has shown that this crossing phenomenon always happens at a
point that depends on the grid size and the average length of links.

One conjecture based on the analysis in Gat and Messer
(2019), which is in agreement with the results of the analysis
in Eshel et al. (2020), is that the use of CMLs in spotty rain fields
may result in a significant performance advantage. In the sequel,
we extend these results and show theoretically that this
phenomenon occurs in a more realistic setting, where actual
CML properties from the city of Gothenburg, Sweden, are used
(Andersson et al., 2017). We compare three networks of sensors,
where in all cases, the center of sensors is in the same locations
(see Figure 4): a. All sensors are CMLs; b. all sensors are RGs; and
c. a mixture of 60% CMLs and 40% RGs.

FIGURE 3 | From Gat and Messer (2019)—(B) an example of the assumed rain cell and network of ground-level sensors. (A) The Cramér–Rao lower bound (noted
in this figure as crlb) on the spatial mean square error (MSE) over the entire rain map for different sizes of the rain cells. Solid line—all sensors are line sensors (CMLs)—for
example, the lines on (B); dashed lines—all sensors are point sensors (RGs)—for example, the points on (B).
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In Figure 5, we present the CRB on the spatial MSE Eq. 9
derived similar to the result of Figure 3. Here as well, there is a
clear advantage when a network of CMLs is used for retrieving
small rain cells, but it is interesting to note that the performance
of the mixed network is between that of CMLs and RGs only.

Figure 6 extends the results of Figure 5 for the case where the
rain map is more complex. Here, three rain cells exist
simultaneously (Figure 6A). The CRB on the spatial MSE
depicted on the right shows similar features as in the case of a
single rain cell. Moreover, both figures show high MSE in a small

rain field. This is a result of a very low signal-to-noise ratio for
most of the sensors due to a low rain intensity.

To overcome the first difficulty (a)—that actual rain fields do
not obey parametric models—we present a CRB analysis of rain
field mapping based on nonparametric B-spline representation of
rain fields. In a nonparametric model, the rain is not modeled
with a specific function, for example, a Gaussian-shaped function,
but with different rain intensity levels for different locations in a
noncorrelated manner. In this type of model, the estimated
parameters are not intrinsic parameters of the rain model,

FIGURE 4 | CML network in Gothenburg (Andersson et al., 2017)—(C); two simulated networks where all CMLs are replaced by RGs (A) or 40% of CMLs are
randomly replaced by RGs (B).

FIGURE 5 | As in Figure 3 for the three sensor networks of Figure 4, where the GRC is located at (0, 0) with a peak rain intensity of 20 [mmh−1].
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such as rain cell size or rain cell center, but the actual rain
intensities. In Sagiv andMesser (2022), the rain was modeled with
B-spline functions, which have this property along with critical
smoothness properties. B-splines are piecewise polynomial
functions that are defined by two parameters: their order and
the knots, the set of intervals on which each polynomial function
is defined. They are generated in a recursive manner according to
the Cox–De Boor formula (De Boor, 1972). B-splines are basis
functions for spline functions; that is, any spline function of a
given order and knots can be expressed as a linear combination of
B-splines of that order and knots. Modeling the rain field as a 2D
spline function, instead of Eq. 1, it can be described by a tensor
product of B-spline functions (Sagiv and Messer, 2022):

R x, y; θ( ) � ∑q
i�1

∑p
j�1

BijNi,k x( )Nj,l y( ), (10)

where N(i,k)(t) represents the ith (corresponding to the ith knot)
B-spline of order k, and Bij denote the ith and jth element of
coefficient matrix B ∈ Rq×p.

In Eq. 10, k and l correspond to the B-spline order on each
axis, and θ = [B11, . . . , B1p, . . . , Bqp] corresponds to the B-spline
coefficient matrix of the rain field. The results shown in the study
considered B coefficients to be generated uniformly in [0, 1]. The
selected distribution of coefficients was arbitrary, as the
comparison tool chosen in the article is not dependent on
them. For algorithmic purposes, more empirical research
should be conducted to define the coefficient distribution in
real-world rain cells.

This nonparametric model represents a wider range of rain
field options. In particular, B-splines provide several properties
that benefit the nonparametric modeling (De Boor, 1972). The
first is spatial locality so that different areas in space are modeled
using different parameters, reducing correlation between very
distant points. The second is the smoothness of rain field, which
can be controlled by adjusting the order of the B-splines.

Smoothness is a key property of rain fields and is crucial for
their representation. Figure 7 depicts an example of a simulated
rain field, which was generated with 3rd-order B-spline functions.

In Sagiv and Messer (2022), the performance of the estimation
of the B-spline coefficients P using each type of sensors (CMLs as
line projection sensors and RGs as point projection sensors) was
examined through the Cramér–Rao lower bound, which was
derived by calculating the projection matrix of each sensor on
the set of the B-spline functions. Then, the CRB was averaged
numerically over ms different sensor placements, resulting in the
mean Cramér–Rao lower bound:

CRB θ( ) � EΨ CRB θ;ψ( )[ ] ≈ 1
ms

∑
ψi∈Ψ

FY θ;ψi( )[ ]−1, (11)

where Ψ is the distribution of the sensor spatial characteristics,
and CRB(θ;ψ) is the CRB on the estimation error of rain field
coefficients θ with sensor placements ψ. Each sensor’s (mean)
location is distributed uniformly between − L and L for both RGs
and CMLs. In addition, in the case of CMLs, their length is
distributed exponentially with λ = 20 and their orientation is
distributed uniformly between 0 and π.

Averaging the CRB over the different realization of sensor’s
locations, angles, and lengths results in a performance bound that
is not limited to a specific realization of sensor placements ψ.
Instead, this result is influenced by sensor placement distribution
Ψ, which generalized the results shown in Figures 3, 5, and 6 to a
wider variety of sensor networks.

Figure 8 presents the mean CRB 11) of CMLs and RGs, where
the rain field is represented by B-splines. It shows that CMLs
outperform RGs when there is a low number of sensors, while the
performance of both types of sensors becomes relatively similar
when there is a large number of sensors. This phenomenon is
explained by the high spatial coverage of CMLs. In contrast, rain
gauges provide highly localized coverage. This means that the
likelihood of a rain gauge sampling a B-spline in one of its tails is

FIGURE 6 | CRB on the spatial MSE as in Figure 5 (A) for multiple rain cells, as in (B). (A) presents the spatial MSE over the rain field area, which is the sum of cell
sizes, and (B) presents the assumed rain field with three cells.
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considerably higher than that of a CML, leading to less
information retrieved by the sensor and a poorer signal-to-
noise ratio. Therefore, CML-based estimation is better when
there is a low number of measurements. For a large number
of sensors, the spatial coverage is good using both types of
sensors, leading to similar estimation performance. This result
comes to show the importance of CMLs when designing a strong
network with a limited number of sensors.

4 SUMMARY AND OPEN ISSUES

Generating a 2D rain field map from distributed near-ground
sensors is a way to overcome the inherent limitations in remote
sensing technologies. Until 2006, this task was impractical since

the required number of sensors for sufficient accuracy was
unrealistic if designated sensors were to be installed. The
introduction of CMLs as opportunistic near-ground rain
sensors (Messer et al., 2006) makes this task realistic. As
shown in Gazit and Messer (2018b), the availability of CMLs
in most areas on Earth is sufficient for reasonable accuracy of
near-ground rain mapping. Indeed, despite technical challenges,
appropriate tools were proposed, and operational software has
been developed [e.g., Wolff et al. (2022)]. Since most proposed
mapping techniques are based on spatial interpolation, originally
proposed for point rain field sampling by rain gauges, the study of
the relative performance of 2D rain field retrieval from CMLs is of
great interest. In particular, a CML can be considered a noisy RG,
and the good performance of CML-based rain mapping can be
explained by their large quantity. However, CMLs sample a rain

FIGURE 7 | Example of a rain field created by 3rd-order B-splines (A) and demonstration of one-dimensional B-spline set (order = 3, knots = [0,10, 30, 60,100]) (B).

FIGURE 8 | (A): Trace of the mean Cramér–Rao lower bound for 3rd-order B-spline with CMLs (dashed line) and RGs (solid line) as a function of the number of
sensors in the given area (e.g., density). (B): An assumed network of CMLs and the corresponding RGs with a 2D map of the simulated rain field.
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field different from an RG, and their line projection sampling
operation can also introduce opportunities for improved
mapping performance.

We present practical results where the performance of spatial
interpolation-based rain mapping in various scenarios was
compared. The results presented in Section 2 show that CMLs
can indeed be considered virtual, noisy rain gauges, and in most
cases, using them as such in spatial interpolation algorithms
(together with existing RGs, if available) is empirically justified.
However, if appropriate preprocessing of a CML’s measurement
is applied to represent it with several VRGs along the link, even
better mapping accuracy can be achieved, with the potential
improvement being subject to the rain cell size–mean CML
length relationship.

To isolate the algorithm dependency of the conclusions,
Section 3 presents the Cramér–Rao analysis of the task of rain
field retrieval, which provides a lower bound for the
reconstruction accuracy. Here, hypothesized ideal RGs replace
the noisy, virtual RGs used in the spatial interpolation algorithm,
so the resulting bound is the lower bound for the performance of
the common CML-based rain mapping algorithm. The results of
the CRB analysis support the conclusions of Section 2,
quantifying the performance gain of CMLs, depending on the
characteristics of the rain field. In particular, it shows that the
performance difference between CML and RG mapping becomes
negligible when the rain field is smooth (relative to the topology
of the sensor network).

From the foregoing, the following conclusions may be
cautiously drawn: When the rain cell-to-CML length ratio is
relatively small, the benefit of the larger spatial coverage of a CML
(compared with that of a point measurement) exceeds the price
paid in accuracy, stemming from the path integration of the
sampled field. However, the relationships between the spatial
coverage and the accuracy may turn over with the growth of this
ratio, making a CML equivalent to not more than a noisy rain
gauge. Then, in cases where this ratio is large enough, the
differences become negligible.

The results presented in this study are for single-snapshot rain
mapping. An interesting topic for future research would be to
generalize them for the case where a time series of measurements
from each sensor is available, such that the tempo-spatial rain
field R (x, y; t), (x, y) ∈AREA, t ∈ T is to be estimated, whereAREA

and T are the given area of interest and the time period,
respectively.

Another direction for future research is the use of machine
learning (instead of spatial interpolation) for 2D rain field
mapping from measurements taken by CMLs or RGs. While
the results of Section 3 are not influenced by the algorithm used,
machine-learning algorithms, which have already demonstrated
state-of-the-art results in transforming CMLs to VRG (Habi and
Messer, 2020; Polz et al., 2020; Pudashine et al., 2020), may
improve the performance of the interpolation algorithm.
Moreover, the use of, for example, RGs for training and CMLs
for mapping raises interesting questions about the role of various
sensors in the task of near-ground rain field retrieval.

In addition, the theoretical results presented in this study
contain gaps in the modeling of the measurements’ distribution.
For example, the quantization effect in current measurements is
ignored, but one could take this effect into account using the
quantized CRB (Stoica et al., 2021). Moreover, higher order
statistical effects are ignored by assuming a Gaussian noise
model. A new approach called generative Cramér–Rao bound
(Habi et al., 2022), which uses a data-driven approach to learn the
measurements’ distribution, can be used to close these gaps.
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