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We consider the problem of joint beamforming and discrete motion control for mobile
relaying networks in dynamic channel environments. We assume a single source-
destination communication pair. We adopt a general time slotted approach where,
during each slot, every relay implements optimal beamforming and estimates its
optimal position for the subsequent slot. We assume that the relays move in a 2D
compact square region that has been discretized into a fine grid. The goal is to derive
discrete motion policies for the relays, in an adaptive fashion, so that they accommodate
the dynamic changes of the channel and, therefore, maximize the Signal-to-Interference +
Noise Ratio (SINR) at the destination. We present two different approaches for
constructing the motion policies. The first approach assumes that the channel evolves
as a Gaussian process and exhibits correlation with respect to both time and space. A
stochastic programming method is proposed for estimating the relay positions (and the
beamforming weights) based on causal information. The stochastic program is equivalent
to a set of simple subproblems and the exact evaluation of the objective of each
subproblem is impossible. To tackle this we propose a surrogate of the original
subproblem that pertains to the Sample Average Approximation method. We denote
this approach as model-based because it adopts the assumption that the underlying
correlation structure of the channels is completely known. The second method is denoted
asmodel-free, because it adopts no assumption for the channel statistics. For the scope of
this approach, we set the problem of discrete relay motion control in a dynamic
programming framework. Finally we employ deep Q learning to derive the motion
policies. We provide implementation details that are crucial for achieving good
performance in terms of the collective SINR at the destination.

Keywords: relay networks, discrete motion control, stochastic programming, dynamic programming, deep
reinforcement learning

Edited by:
Monica Bugallo,

Stony Brook University, United States

Reviewed by:
Francesco Palmieri,

University of Campania Luigi Vanvitelli,
Italy

Stefania Colonnese,
Sapienza University of Rome, Italy

*Correspondence:
Athina Petropulu

athinap@rutgers.edu

†These authors have contributed
equally to this work

Specialty section:
This article was submitted to

Signal Processing for
Communications,

a section of the journal
Frontiers in Signal Processing

Received: 01 February 2022
Accepted: 01 June 2022
Published: 06 July 2022

Citation:
Evmorfos S, Kalogerias D and

Petropulu A (2022) Adaptive Discrete
Motion Control for Mobile

Relay Networks.
Front. Sig. Proc. 2:867388.

doi: 10.3389/frsip.2022.867388

Frontiers in Signal Processing | www.frontiersin.org July 2022 | Volume 2 | Article 8673881

METHODS
published: 06 July 2022

doi: 10.3389/frsip.2022.867388

http://crossmark.crossref.org/dialog/?doi=10.3389/frsip.2022.867388&domain=pdf&date_stamp=2022-07-06
https://www.frontiersin.org/articles/10.3389/frsip.2022.867388/full
https://www.frontiersin.org/articles/10.3389/frsip.2022.867388/full
http://creativecommons.org/licenses/by/4.0/
mailto:athinap@rutgers.edu
https://doi.org/10.3389/frsip.2022.867388
https://www.frontiersin.org/journals/signal-processing
www.frontiersin.org
https://www.frontiersin.org/journals/signal-processing#articles
https://www.frontiersin.org/journals/signal-processing
https://www.frontiersin.org/journals/signal-processing#editorial-board
https://doi.org/10.3389/frsip.2022.867388


GRAPHICAL ABSTRACT |

1 INTRODUCTION

In distributed relay beamforming networks, spatially distributed
relays synergistically support the communication between a
source and a destination (Havary-Nassab et al., 2008a; Li
et al., 2011; Liu and Petropulu, 2011). The concepts of
distributed beamforming hold the promise of extending the
communication range and of minimizing the transmit power
that is being wasted by being scattered to unwanted directions
(Barriac et al., 2004).

Intelligent node mobility has been studied as a means of
improving the Quality-of-Service (QoS) in communications. In
(Chatzipanagiotis et al., 2014), the interplay of relay motion
control and optimal transmit beamforming is considered with
the goal of minimizing the relay transmit power, subject to a QoS-
related constraint. In (Kalogerias et al., 2013), optimal relay
positioning in the presence of an eavesdropper is considered,
aiming to maximize the secrecy rate. In the context of
communication-aware robotics, motion has been controlled
with the goal of maintaining in-network connectivity (Yan and
Mostofi, 2012; Yan and Mostofi, 2013; Muralidharan and
Mostofi, 2017).

In this work, we examine the problem of optimizing the
sequence of relay positions (relay trajectory) and the
beamforming weights so that some SINR-based metric is
maximized at the destination. The assumption that we adopt
is that the channel evolves as a stochastic process that exhibits
spatiotemporal correlations. Intrinsically, optimal relay
positioning requires the knowledge of the Channel State
Information (CSI) in all candidate positions at a future time
instance. This is almost impossible to achieve since the channel
varies with respect to time and space. Nonetheless, since the
channel exhibits spatiotemporal correlations (induced by the
shadowing propagation effect (Goldsmith, 2005; MacCartney
et al., 2013) that is prominent in urban environments), it can

be, explicitly or implicitly, predicted. We follow two different
directions, when it comes to the discrete relay motion control.

The first direction (Kalogerias and Petropulu, 2018; Kalogerias
and Petropulu, 2016) (we call it model-based) pertains to the
formulation of a stochastic program that computes the
beamforming weights and the subsequent relay positions, so
that some SINR-based metric at the destination is maximized,
subject to a total relay power budget, assuming the availability of
causal CSI information. This 2-stage problem is equivalent to a set
of 2-stage subproblems that can be solved in distributed fashion,
one by each relay. The objective of each subproblem is impossible
to be analytically evaluated, so an efficient approximation is
proposed. This approximation acts as a surrogate to the initial
objective. The surrogate relies on the Sample Average
Approximation (SAA) (Shapiro et al., 2009). The term
“model-based” is not to be confused with model-based
reinforcement learning. We just use it because this method (or
direction rather) assumes complete knowledge of the underlying
correlation structure of the channels, so it is helpful formalism to
distinguish this method from the second approach that makes no
particular assumption for the channel statistics.

The second direction (Evmorfos et al., 2021a; Evmorfos et al.,
2021b; Evmorfos et al., 2022) tackles the problem of discrete relay
motion control from a dynamic programming viewpoint. We
formulate the Markov Decision Process (MDP), that is induced
by the problem of controlling the motion. Finally, we employ
deep Q learning (Mnih et al., 2015) to find relay motion policies
that maximize the sum of SINRs at the destination over time. We
propose a pipeline for adapting deep Q learning for the problem
at hand. We experimentally show that Multilayer Perceptron
Neural Networks (MLPs) cannot capture high frequency
components in natural signals (in low-dimensional domains).
This phenomenon, referred to as “Spectral Bias” (Jacot et al.,
2018) has been observed in several contexts, and also arises as an
issue in the adaptation of deep Q learning for the relay motion
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control. We present an approach to tackle spectral bias, by
parameterizing the Q function with a Sinusoidal
Representation Network (SIREN) (Sitzmann et al., 2020).

Our intentions for this work lie in two directions. First, we
attempt to compare two methods for relay motion control in
urban communication environments. The two methods
constitute two different viewpoints in terms of tackling the
problem. The first method assumes complete knowledge on
the underlying statistics of the channels (model-based)
Kalogerias and Petropulu, (2018). The second method is
completely model-free in the sense that it drops all
assumptions for knowledge of the channel statistics and
employs deep reinforcement learning to control the relay
motion Evmorfos et al. (2022). In addition to the head-to-
head comparison, we propose a slight variation of the model-
free method that deviates from the one in Evmorfos et al. (2022)
by augmenting the state with the addition of the timestep as an
extra feature. This variation is more robust than the previous one,
especially when the shadowing component of the urban
environment is particularly strong.

Notation: We denote the matrices and vectors by bold
uppercase and bold lowercase letters, respectively. The
operators (·)T and (·)H denote transposition and conjugate
transposition respectively. Caligraphic letters will be used to
denote sets and formal script letters will be used to denote σ-
algebras. The ℓp-norm of x ∈ Rn is ‖x‖p ≜ (∑n

i�1|x(i)|p)1/p, for all
N ∋ p≥ 1. For N ∋ N≥ 1, SN, SN+(+) will denote the sets of
symmetric and symmetric positive (semidefinite) matrices,
respectively. The finite N-dimensional identity operator will be
denoted as IN. Additionally, we define J ≜

���−1√
, N+ ≜ 1, 2, . . .{ },

N+
n ≜ 1, 2, . . . , n{ }, Nn ≜ 0{ } ∪ N+

n and Nm
n ≜ N+

n \N
+
m−1, for

positive naturals n > m.

2 PROBLEM FORMULATION

2.1 System Model
Consider a scenario where source S, located at position pS ∈ R2,
wishes to communicate with user D, located at pD ∈ R2 but does
not have enough power to do so, or due to the topography, cannot
communicate in a line-of-sight (LoS) fashion. Therefore, R single-
antenna, trusted mobile relays are enlisted to support the
communication. The relays are deployed over a two-
dimensional space, which is partitioned into M × M imaginary
grid cells. Time evolves in a time-slotted fashion, where T is the
slot duration, and t denotes the current time slot. In every time
slot, a grid cell can be occupied by at most one relay.

Source S transmits symbol s(t) ∈ C, where E[|s(t)|2] � 1,
using power

��
PS

√ > 0. Let us drop for notational simplicity the
relay position dependence on t. The signal received by relay Rr,
located at pr(t), r = 1, . . . , R, equals

xr t( ) � ��
PS

√
fr pr, t( )s t( ) + nr t( ),

where fr denotes the flat fading channel from S to relay Rr, and
nr(t) denotes reception noise at relay Rr, with E[|nr(t)|2] � σ2,
r = 1, . . . , R.

Each relay operates in an Amplify-and-Forward (AF) fashion,
i.e., it transmits received signal, xr(t), multiplied by weight
wr(t) ∈ C. Due to the relays’ simultaneous transmissions, the
destination D receives

y t( ) �∑R
r�1

gr pD, t( )wr t( )xr t( ) + nD t( ),

where gr denotes the flat fading channel from relay Rr to
destination D, and nD(t) denotes reception noise at D. We
assume here that E[|nD(t)|2] � σ2D y(t) can be rewritten as

y t( ) �∑R
r�1

gr pD , t( )wr t( ) ��PS

√
fr pr, t( )s t( )︸															︷︷															︸

desired signal

+∑R
r�1

gr pD , t( )wr t( )nr t( ) + nD t( )︸													︷︷													︸
noise

≜ ysignal t( ) + ynoise t( ),

where ysignal(t) is the received signal component and nD(t)
represents noise at the destination.

In the following, we will use the vector
p(t) ≜ [pT1 (t) pT2 (t) . . . pTR(t)]T , to collect the positions of all
relays at time t.

2.2 Channel Model
The channel evolves in time and space and can be described in
statistical terms. In particular, during time slot t, the channel
between the source and a relay positioned at pr ∈ R2 can be
modeled as the product of four components (Heath, 2017), i.e.,

fr pr, t( ) ≜ fPL
r pr( )fSH

r pr, t( )fMF
r pr, t( ) ej2πϕ t( ), (1)

where fPL
r (pr) ≜‖pr − pS‖−ℓ/22 is the path-loss component with

path-loss exponent ℓ; fSH
r (pr, t) the shadow fading component;

fMF
r (pr, t) the multi-path fading component; and ej2πϕ(t), with ϕ

uniformly distributed in [0, 1], a phase term. A similar model
holds for the relay-destination channel gr (pr, t).

The logarithm of the squared channel magnitude of Eq. 1
converts the multiplicative channel model into an additive
one, i.e.,

Fr pr, t( ) ≜ 10log10 |fr pr, t( )|2( )
≜ αfr pr( ) + βfr pr, t( ) + ξfr pr, t( ),

with

αf
r pr( ) ≜ − ℓ 10log10 ‖pr − pS‖2( ),

βfr pr, t( ) ≜ 10log10 |fSH
r pr, t( )|2( ) ~ N 0, η2( ), and

ξfr pr, t( ) ≜ 10log10 |fMF
r pr, t( )|2( ) ~ N ρ, σ2ξ( ),

where η2 is the shadowing power, and ρ, σ2ξ are the mean and
variance of multipath fading component, respectively.

The multipath fading component, ξfr (pr, t), varies fast in
time and space, and is typically modeled as is i. i.d. between
different positions and times. On the other hand, the
shadowing component, βfr (pr, t), induced by relatively large
and slowly moving objects in the path of the signal, exhibits
correlation between any two positions pi and pj, and between
any two time slots ta and tb, as (Kalogerias and Petropulu,
2018)
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E βfr pi, ta( )βfr pj, tb( )[ ] � ~Σ
f
pi, pj( )e−|ta−tb |

c2 ,

where

~Σ
f
pi, pj( ) ≜ η2e− ‖pi−pj‖2/c1 ∈ RM2×M2

,

with c1 denoting the correlation distance, and c2 the correlation
time. Similar correlations hold for similarly βgr (pi, t).

Further, βfr (pi, t) and βgr (pi, t) exhibit correlations as

E βfr pi, ta( )βgr pj, tb( )[ ] � ~Σ
fg

pi, pj( )e−|ta−tb |
c2 ,

where

~Σ
fg

pi, pj( ) � ~Σ
f
pi, pj( )e−‖pS−pD‖2

c3

and c3 denoting the correlation distance of the source-destination
channel (Kalogerias and Petropulu, 2018).

2.3 Joint Scheduling of Communications
and Controls
Let us assume the same carrier for all communication tasks, and
employ a basic joint communication/decision making TDMA-
like protocol. At each time slot t ∈ N+

NT
, the following actions are

taken:

1. The source broadcasts a pilot signal to all relays, based on
which the relays estimate their channels to the source.

2. The destination also broadcasts pilots, which the relays use to
estimate their channels relative to the destination.

3. Then, based on the estimated channels, the relays beamform in
AF mode. Here we assume perfect CSI estimation.

4. Based on the CSI that has been received up to that point, a
decision is made on where the relays need to go to, and relay
motion controllers are determined to steer the relays to those
positions.

The above steps are repeated for NT time slots. Let us assume
that the relays pass their estimated CSI to the destination via a
dedicated low-rate channel. This simplifies information decoding
at the destination (Gao et al., 2008; Proakis and Salehi, 2008).

Concerning relay motion, we assume that the relays obey the
differential equation (Kalogerias and Petropulu, 2018)

_p τ( ) ≡ u τ( ), ∀τ ∈ 0, T[ ],
where u ≜ [u1 . . . uR]T , with ui: [0, T] being the motion
controller of relay i ∈ N+

R. Assuming the relays may move only
after their controls have been determined and their movement
must be completed before the start of the next time slot, we can
write (Kalogerias and Petropulu, 2018)

p t( ) ≡ p t − 1( ) + ∫
Δτt−1

ut−1 τ( )dτ, ∀t ∈ N2
NT
,

with p(1) ≡ pinit, and where Δτt ⊂ R and ut denote the time
interval that the relays are allowed to move in, and the respective
relay controller, in each time slot t ∈ N+

NT−1. It holds that

u(τ) ≡ ∑t∈N+
NT−1

ut(τ)1Δτt(τ), where τ belongs in the first NT −

1 time slots. In each time slot t, the length of Δτt, |Δτt|, must be
small enough, so that the shadowing correlation at adjacent time
slots is strong enough. These correlations are controlled by
parameter γ, which can be function of the slot width. Thus,
relay velocity must be of the order of (|Δτt|)−1. For simplicity,
here we assume that the relays are not resource constrained when
they move and they are only limited by their transmission power.

To determine the relay motion controller ut−1(τ), τ ∈ Δτt−1,
given a goal position vector at time slot t, po(t), it suffices to
decide on a path in SR, such that the points po(t) and p(t − 1) are
connected in at most time |Δτt−1|. Assuming the simplest path,
i.e., a straight line between poi (t) and pi(t − 1), for all i ∈ N+

R, the
relay controllers at time slot t − 1 ∈ N+

NT−1 is

uo
t−1 τ( ) ≜ 1

Δτt−1| | po t( ) − p t − 1( )( ), ∀τ ∈ Δτt−1.

Based on the above, the motion control problem can be
formulated in terms of specifying the relay positions at the
next time slot, given the relay positions at the current time
slot and the estimated CSI. We assume here for simplicity that
there exists some path planning and collision avoidance
mechanism, the derivation of which is out of the scope of
this paper.

For simplicity and tractability, we are assuming that the
channel is the same for every position within each grid cell,
and for the duration of each time slot. In other words, we are
essentially adopting a time-space block fading model, at least for
motion control purposes. This is a valid approximation of reality
as the grid cell size and the time slot duration become smaller, at
the expense of more stringent resource constraints at the relays,
and faster channel sensing capability. Under this setting,
communication and relay control can indeed happen
simultaneously within each time slot, with the understanding
that at the start of the next time slot, each relay must have
completed their motion (starting at the previous time slot–also
see our discussion earlier in this section–). In this way, our
approach is valid in a practical setting where communication
needs to be continuous and uninterrupted.

Additionally, we are assuming that the relays move sufficiently
slowly, such that the local spatial and temporal changes of the
wireless channel due to relay motion itself are negligible, e.g.,
Doppler shift effects. Then, spatial and temporal variations in
channel quality are only due to changes in the physical
environment, which happen at a much slower rate than that
of actual communication. Note that this is a standard
requirement for achieving a high communication rate,
whatsoever.

We see that there is a natural interplay between relay velocity
and the relative rate of change of the communication channel
Kalogerias and Petropulu (2018). The challenge here is to identify
a fair tradeoff between a reasonable relay velocity, grid size and a
time slot, which would enable simultaneously faithful channel
prediction and feasible and effective motion control (adherring to
potential relay motion constraints). The width of the
communication time slot depends on the spatial characteristics
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of the terrain, which varies with each application. This also
determines the sampling rate employed for identifying the
parameters of the adopted channel model. In theory, for a
given relay velocity, the relays could move to any position up
to which the channel remains correlated. However, as the per
time slot rate of communications depends on the relay velocity
(characterizing system throughput), the relays should move to
much smaller distances within the slot.

In the following we useC(T t) to denote the set of channel gains
observed by the relays, along their trajectories T t ≜ p(1) . . . p(t){ },
t ∈ N+

NT
. Then, T t may be recursively updated as

T t ≡ T t−1 ∪ p(t){ }, for all t ∈ N+
NT

, with T 0 ≜ ∅. In a more
precise sense, C(T t){ }t∈N+

NT
will also denote the filtration

generated by the CSI observed at the relays, along T t,
interchangeably. In other words, C(T t) denotes the information
(i.e., the σ-algebra) generated by the CSI observed up to and
including time slot t and p(1) . . . p(t), for all t ∈ N+

NT
. By

convention, we define C(T 0) ≡ C( ∅{ }) (i.e., as the trivial σ-
algebra C(T 0) ≜ ∅,Ω{ }), and we refer to time t ≡ 0, as a
dummy time slot.

2.4 Spatially Controlled SINR Maximization
at the Destination
Next, we present the first stage of the 2-stage generic formulation.
The 2-stage approach optimizes network QoS by optimally
selecting beamforming weights and relay positions, on a per
time slot basis. In this subsection, we focus on the calculation
of the beamforming weights. The calculation of the weights at
each step remains the same both for the stochastic programming
(model-based) method and the dynamic programming (model-
free) method.

Optimization of Beamforming Weights: At time slot t ∈ N+
NT

,
given CSI in C(T t), we formulate the problem (Havary-Nassab
et al., 2008b; Zheng et al., 2009)

maximize
w t( )≜ w1 t( ),...,wR t( )[ ]T

E PS t( ) |C T t( ){ }
E PI+N t( ) |C T t( ){ }

subject to E PR t( ) |C T t( ){ }≤Pc

, (2)

where PR(t), PS(t) and PI+N(t) denote the random
instantaneous power at the relays, the power of the signal
component and the power of the interference plus noise at the

destination, respectively, and where Pc > 0 denotes the total relay
transmission power budget. Based on the mutual independence
of source and destination CSI, (Eq. 2) can be expressed as
(Havary-Nassab et al., 2008b)

maximize
w t( )

wH t( )R p t( ), t( )w t( )
σ2
D + wH t( )Q p t( ), t( )w t( )

subject to wH t( )D p t( ), t( )w t( )≤Pc

, (3)

where, dropping the dependence on (p(t), t) or t for brevity,

D ≜ P0diag f1

∣∣∣∣ ∣∣∣∣2 f2

∣∣∣∣ ∣∣∣∣2 . . . fR

∣∣∣∣ ∣∣∣∣2[ ]T( ) + σ2IR ∈ S
R
++,

R ≜ P0hh
H ∈ S

R
+ , with h ≜ f1g1 f2g2 . . . fRgR[ ]Tand

Q ≜ σ2diag g1

∣∣∣∣ ∣∣∣∣2 g2

∣∣∣∣ ∣∣∣∣2 . . . gR

∣∣∣∣ ∣∣∣∣2[ ]T( ) ∈ S
R
++.

The optimization problem of Eq. 3 is always feasible, as long as
Pc is nonnegative, and the optimal value of Eq. 3 can be expressed
in closed form as (Havary-Nassab et al., 2008b)

Vt ≡ V p t( ), t( )
≜ Pcλmax σ2

DIR + PcD
−1/2QD−1/2( )−1D−1/2RD−1/2( ),

for all t ∈ N+
NT

, which can be further written as (Zheng et al.,
2009)

Vt ≡ ∑
i∈N+

R

PcP0 f pi t( ), t( )∣∣∣∣ ∣∣∣∣2 g pi t( ), t( )∣∣∣∣ ∣∣∣∣2
P0σ

2
D f pi t( ), t( )∣∣∣∣ ∣∣∣∣2 + Pcσ

2 g pi t( ), t( )∣∣∣∣ ∣∣∣∣2 + σ2σ2D
≜ ∑

i∈N+
R

VI pi t( ), t( ), ∀t ∈ N+
NT
.

The above analytical expression of the optimal value Vt in terms
of relay positions and their corresponding channel magnitudes
will be key in our subsequent development.

3 STOCHASTIC PROGRAMMING FOR
MYOPIC RELAY CONTROL

During time slot t − 1, we need to determine the relay positions
for time slot t, so that we achieve the maximum Vt. However, at
time slot t − 1, we only know C(T t−1), which does not include
information on the CSI that will be experienced during time slot t.
Therefore, exactly optimizing the relay positions at the next time
slot seems to be an impossible task.

FIGURE 1 | 2-Stage optimization of beamforming weights and relay
motion controls. The variable w*(t − 1) denotes the optimal beamforming
weights, selected at time slot t − 1.

FIGURE 2 | Figure for visualizing the Pipeline of the deep Q learning with
SIRENs approach.
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Since deterministic optimization of Vt with respect to p(t) is
not possible to be carried out during time slot t − 1, we can
alternatively optimize a projection of Vt onto the space of all
measurable functions of C(T t−1) Kalogerias and Petropulu,
(2018). Since, for every p(t) ∈ SR, Vt is of finite variance, we
can consider orthogonal projections. In other words, we can
consider the MinimumMean-Square Error (MMSE) predictor of
Vt given the available information C(T t−1). We can then
optimize the E Vt |C(T t−1){ } with respect to the point p(t),
which results in the 2-stage stochastic program (Shapiro et al.,
2009)

maximize
p t( )

E Vt ≡ ∑
i∈N+

R

VI pi t( ), t( )
∣∣∣∣∣∣∣∣∣∣∣C T t−1( )

⎧⎪⎨⎪⎩
⎫⎪⎬⎪⎭

subject to p t( ) ∈ C po t − 1( )( )
, (4)

to be solved at time slot t − 1 ∈ N+
NT−1, where p

o(1) ∈ SR is the
initial positions of the relays and C(po(t − 1)) ⊆ SR denotes
spatially feasible neighborhood around point po(t − 1) ∈ SR,
which is the optimal decision vector determined at time slot t −
2 ∈ NNT−2 For example, C may be such that it does not allow the
relays to collide with each other, or with other obstacles in space
at their next slot positions. In general, C depends on t, but here,
for simplicity that dependence is not shown.

The map C(·) is typically referred to as finite-valued
multifunction, and we write C: SR6SR (Shapiro et al., 2009).
Additionally, problems (4) and (3) are referred to as the first-stage
problem and the second-stage problem, respectively (Shapiro et al.,
2009). The block diagram of the above described process is shown
in Figure 1.

As compared to traditional AF beamforming for a static case,
our spatially controlled system described above, uses the same
CSI as in the stationary case, to predict the optimal beamforming
performance in its vicinity in the MMSE sense, and moves to the
optimally selected location. The prediction here relies on the
aforementioned spatiotemporal channel model. Of course, this
requires a sufficiently slowly varying channel relatively to relay
motion, which can be guaranteed if the motion is constrained
within small steps.

3.1 Motion Policies & the Interchangeability
Principle
To assist in the process of understanding the techniques to
solve Eq. 4, we make note of an important variational property
of Eq. 4, related to the long-term performance of the proposed
spatially controlled beamforming system. Our discussion
pertains to the employment of the so-called
Interchangeability Principle (IP) (Bertsekas and Shreve,
1978; Bertsekas, 1995; Rockafellar and Wets, 2004; Shapiro
et al., 2009; Kalogerias and Petropulu, 2017), also known as the
Fundamental Lemma of Stochastic Control (FLSC) (Astrom,
1970; Speyer and Chung, 2008) Kalogerias and Petropulu,
(2018). The IP refers conditions that allow the interchange
of expectation and maximization or minimization in general
stochastic programs.

A version of the IP for the first-stage problem of (4) is
established in (Kalogerias and Petropulu, 2017) Specifically,
the IP implies that (4) is exchangeable by the variational
problem (Kalogerias and Petropulu, 2017)

maximize
p t( )

E Vt{ }
subject to p t( ) ∈ C po t − 1( )( )

p t( ) isC T t−1( ) −measurable

, (5)

to be solved at each t − 1 ∈ N+
NT−1. Upon comparing Eq. 5 and

the original problem Eq. 4 one can see that, the former
problem includes optimization of the unconditional
expectation of Vt over all (measurable) mappings of the
variables generating C(T t−1) to C(po(t − 1)). “This implies
that, in Eq. 5, p(t) is a function of all CSI and motion
controls up to and including time slot t − 1, whereas, in Eq.
4, p(t) is a point, since all variables generating C(T t−1) are fixed
before decision making. Aligned with the literature, any feasible
decision p(t) in Eq. 5 will be called an (admissible) policy, or a
decision rule. Exchangeability of Eqs. 4, 5 is understood in the
sense that the optimal value of Eq. 5, which is a number,
coincides with the expectation of the optimal value of Eq. 4,
which is a measurable function of C(T t−1) (and fixed for every
realization of the variables generating C(T t−1)). In other
words, maximization is interchangeable with integration, in
the sense that” (Kalogerias and Petropulu, 2017)

sup
p t( )∈Dt

E Vt{ } ≡ E sup
p t( )∈C po t−1( )( )

E Vt C T t−1( )|{ }
⎧⎪⎨⎪⎩

⎫⎪⎬⎪⎭,

for all t ∈ N2
NT

, where Dt denotes the set of feasible decisions for
(Eq. 5). Furthermore, due to our assumption that the control
space S is finite, the IP guarantees that an optimal solution to the
original stochastic program (Eq. 4) is also feasible and thus,
optimal, for (Eq. 5).

m1: t−1 ≜ FT 1( )GT 1( ) . . . FT t − 1( )GT t − 1( )[ ]T ∈ R2R t−1( )×1

(6)
μ1: t−1 ≜ αS p 1( )( ) αD p 1( )( ) . . . αS p t − 1( )( ) αD p t − 1( )( )[ ]Tℓ ∈ R2R t−1( )×1 (7)

cF G( )
1: t−1 p( ) ≜ cF G( )

1 p( ) . . . cF G( )
t−1 p( )[ ] ∈ R1×2R t−1( ) (8)

cF G( )
k p( )≜ E σS D( ) p, t( )σjS k( ){ }{ }

j∈N+
R

E σS D( ) p, t( )σjD k( ){ }{ }
j∈N+

R

[ ] ∈R1×2R, ∀k ∈N+
t−1

(9)

Σ1: t−1 ≜
Σ 1, 1( ) / Σ 1, t − 1( )

..

.
1 ..

.

Σ t − 1, 1( ) / Σ t − 1, t − 1( )
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣ ⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ ∈ S

2R t−1( )
++ (10)

3.2 Near-Optimal Beamformer Motion
Control
One can readily observe that the problem of (4) is separable.
Given that, for each t ∈ N+

NT−1, decisions taken and CSI collected
so far are available to all relays, (4) can be solved in a distributed
fashion at the relays, with the ith relay being responsible for
solving the problem (Kalogerias and Petropulu, 2018)
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maximize
p

E VI p, t( ) ∣∣∣∣C T t−1( ){ }
subject to p ∈ Ci po t − 1( )( ) , (11)

at each t − 1 ∈ N+
NT−1, where Ci: R26R2 denotes the

corresponding section of C, for each i ∈ N+
R. Note that no local

exchange of intermediate results is required among relays; given
the available information, each relay independently solves its own
subproblem. It is also evident that apart from the obvious
difference in the feasible set, the optimization problems at
each of the relays are identical.

However, the objective of problem Eq. 11 is impossible to
obtain analytically, and it is necessary to resort to some well
behaved and computationally efficient surrogates. Next, we
present a near-optimal such approach. The said approach
relies on global function approximation techniques, and
achieves excellent empirical performance.

The proposed approximation to the stochastic program (11)
will be based on the following technical, though simple, result.

Lemma 1 (Big Expectations) (Kalogerias and Petropulu, 2018)
Under the assumptions of the wireless channel model, it is true
that, at any p ∈ S,

F p, t( )
G p, t( )[ ]∣∣∣∣∣∣∣∣C T t−1( ) ~ N μF,G

t | t−1 p( ),ΣF,G
t | t−1 p( )( ),

for all t ∈ N2
NT

, and where we define

μF,Gt|t−1 p( ) ≜ μFt | t−1 p( ) μGt | t−1 p( )[ ]T ,
μFt|t−1 p( ) ≜ αS p( )ℓ + cF1: t−1 p( )Σ−1

1: t−1 m1: t−1 − μ1: t−1( ) ∈ R,

μGt|t−1 p( ) ≜ αD p( )ℓ + cG1: t−1 p( )Σ−1
1: t−1 m1: t−1 − μ1: t−1( ) ∈ R and

ΣF,G
t|t−1 p( ) ≜ η2 + σ2ξ η2e−

pS−pD‖ ‖2
δ

η2e−
pS−pD‖ ‖2

δ η2 + σ2
ξ

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣ ⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
− cF1: t−1 p( )

cG1: t−1 p( )[ ]Σ−1
1: t−1

cF1: t−1 p( )
cG1: t−1 p( )[ ]T ∈ S

2
++,

with m1:t−1, μ1:t−1, cF1: t−1(p), cG1: t−1(p), cFk(p), cGk (p) and Σ1:t−1

defined as in (6), (7), (8), (9), and (10) respectively, for all
(p, t) ∈ S × N2

NT
. Further, for every choice of (m, n) ∈ Z × Z,

the conditional correlation of the fields |f(p, t)|m and |g(p, t)|n
relative to C(T t−1) may be expressed in closed form as

E f p, t( )∣∣∣∣ ∣∣∣∣m g p, t( )∣∣∣∣ ∣∣∣∣n ∣∣∣∣C T t−1( ){ }
≡ 10 m+n( )ρ/20 exp

log 10( )
20

m
n

[ ]TμF,G
t | t−1 p( )⎛⎝ + log 10( )

20
( )2

m
n

[ ]TΣF,G
t|t−1 p( ) m

n
[ ]),

at any p ∈ S and for all t ∈ N2
NT

.

The detailed description of the proposed technique for
efficiently approximating our base problem (11) now follows.

Sample Average Approximation (SAA): This is a direct
Monte Carlo approach, where, at worst, existence of a
sampling, or pseudosampling mechanism at each relay is
assumed, capable of generating samples from a bivariate
Gaussian measure. We may then observe that the objective
of Eq. 11 can be represented, for all t ∈ N2

NT
, via a Lebesgue

integral as

E VI p, t( ) ∣∣∣∣C T t−1( ){ } � ∫
R2
r x( )N x; μF,G

t | t−1 p( ),ΣF,G
t | t−1 p( )( )dx,

for any choice of p ∈ S, whereN (·; μ,Σ): R2 → R++ denotes the
bivariate Gaussian density, with mean μ ∈ R2×1 and covariance
Σ ∈ S2×2+ , and the function r: R2 → R++ is defined as

r x( ) ≜ PcP010ρ/10 exp x1 + x2( )[ ]ς
P0σ2D exp x1( )[ ]ς + Pcσ2 exp x2( )[ ]ς + 10−

ρ
10σ2σ2

D

,

for all x ≡ (x1, x2) ∈ R2, where ς ≜ log(10)/10. By a simple
change of variables, it is also true that

E VI p, t( ) ∣∣∣∣C T t−1( ){ } � ∫
R2

r
��������
ΣF,G
t | t−1 p( )√

x + μF,Gt | t−1 p( )( )N x; 0, I2( )dx,

for all p ∈ S and t ∈ N2
NT

.
Now, for each relay i ∈ N+

R, at each t ∈ N+
NT−1 and for some

S ∈ N+, let {xji,t}j∈N+
S
be a sequence of independent random

elements in R2, such that xji,t ~ N (0, I2), for all j ∈ N+
S . We

also assume that all such sequences are mutually independent
of the channel fields F and G. Then, by defining the sample
average estimate

SS p, t( ) ≜ 1
S
∑
j∈N+

S

r
��������
ΣF,G
t | t−1 p( )√

xij,t−1 +μF,G
t | t−1 p( )( ),

the SAA of our initial problem Eq. 11 is formulated as

maximize
p

SS p, t( )
subject to p ∈ Ci po t − 1( )( ) , (12)

at relay i ∈ N+
R, solved at each t − 1 ∈ N+

NT−1. A detailed analysis of
the SAA problem Eq. 12 is out of the scope of our discussion
herein. Still, it is worth mentioning that the feasible of set of Eq.
12 is finite, and therefore its optimal solution possesses various
strong asymptotic guarantees in terms of convergence to the
optimal solution of the original problem, as S → ∞. For further
details, see (Shapiro et al. (2009), Chapter 5).

On the downside, computing the objective of the SAA
problem Eq. 12 assumes availability of Monte Carlo
samples, which could be restrictive in certain scenarios.
Nevertheless, assuming mutual independence of the
sequences {xji,t}j, for each i and each t is not required. In
fact, one could generate one sequence for all relays, per time
slot, or even better, one sequence for all relays, for all time slots
altogether. Such sampling schemes are legitimate, for two
reasons. First, all SAAs of the form Eq. 12 are solved
independently for each relay and at each time slot. Second,
Monte Carlo sampling is by construction statistically
independent from the spatiotemporal channel fields F and
G. As a result, such sampling schemes relax (in fact, eliminate)
the need for (pseudo)random sampling at each individual
relay. This makes them particularly attractive for practical
purposes.

We denote this approach as SAA for the rest of the paper. The
control flow of the SAA is presented in Algorithm 1.
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Algorithm 1. SAA

4 DEEP REINFORCEMENT LEARNING FOR
ADAPTIVE DISCRETE RELAY MOTION
CONTROL

4.1 Dynamic Programming for Relay Motion
Control
The previously mentioned approach tackles the problem of
relay motion control from a myopic perspective in the sense
that the stochastic program is formulated so as to select the
relay positions for the subsequent time slot with the goal of
maximizing the collective SINR at the destination only for that
particular slot.

The employment of reinforcement learning for the problem of
discrete relay motion control entails that we reformulate the
problem as a dynamic program. In this set up we want, at time
slot t − 1, to derive a motion policy (a methodology for choosing
the relays’ displacement) so as to maximize the discounted sum of
VIs (in expectation) from the subsequent time step t to the infinite
horizon.

To formally pose that program we need to introduce a Markov
Decision Process (MDP). The MDP is a tuple defined as
{S,A,P,R, γ} (Sutton and Barto, 2018):

The formulation of the dynamic program is as follows:
If γ is a discount factor, we can formulate the infinite horizon

relay control problem as:

maximize
u t( ),t≥0

E ∑∞
t�1

γt−1∑R
r�1

VI p t( ), t( )⎧⎨⎩ ⎫⎬⎭
subject to

C t( )
p t( )[ ] � e−1/c2C t − 1( ) +W t( )

p t − 1( ) + u t( )[ ]
u t( ) ∈ A is a function of C T t−1( )

, (13)

where u(t) is the control at time t (essentially determining the
relay displacement), and the driving noise W(t) is distributed as
N (0, (1 − e−2/c2 )ΣC) and C(0) ~ N (0,ΣC). ΣC is the covariance
matrix for all channels (source and destination) for all the cells in
the grid. The said covariance matrix is explicitly defined in
(Kalogerias and Petropulu, 2017) and admits a particular form

if the channels evolve according to the spatiotemporal Gaussian
process defined in 2.2.

Now, either the above problem defines a MDP or POMDP is
dependent on the history C(T t). In particular, if C(T t) is
generated by the whole state vector at each time slot then it is
easy to see that problem Eq. 13 is fully observable, since all CSI
generated by the environment is available for the relays to exploit
for deciding upon the subsequent displacement.

On the other hand, if C(T t) is generated by the relay decisions
together with only their local observations by their trajectories,
then problem Eq. 13 becomes partially observable. Specifically,
partial observability may be thought of as a dynamic observation
selection process, which only reveals CSI pertaining to the
trajectory of each relay, keeping the rest of the CSI hidden
from the decision making process.

4.2 Deep Q Learning for Discrete Relay
Motion Control
The employment of deep Q learning for relay motion control
expels the need for making particular assumption for the
underlying correlation structure of the channels.

Taking into account the (12) one can infer that we can
construct a single policy that is learned by the collective
experience of all the agents/relays and it constitutes the single
policy that the movement of all relays strictly adhere to. In that
spirit, we instantiate one neural network to parameterize the
state-action value function (Q) and it is being trained on the
experiences of all the relay. The motion policy is ϵ-greedy with
respect to the estimation of the Q function.

Initially, we adopt the deep Q learning algorithm as described in
(Mnih et al., 2015) and illustrated in Figure 2. Even though, as we
pointed out in the previous subsection, the state of the MDP is the
concatenation of the relay position p = s and the channels f (p, t) and
g (p, t), we follow a slightly different approach in the adoption of
deep Q learning. In particular, the input to the neural network is the
concatenation of the position p = [x, y] and the time step t. We
should note at this point that augmenting the neural network input
with the timestamp of the transition is a differentiation between the
algorithm presented in this current work and the solution proposed
in Evmorfos et al. (2022). This alternative, even though does not
affect the implementation much, provides measurable
improvements in cases where the power of the shadowing is
strong. The reward r is the contribution of the relay to the SINR
at the destination during the respective time step (VI). At each time
slot the relay selects an action a ∈ Afull.

In general, Q learning with rich function approximators such
as neural networks requires some heuristics for stability. The first
such heuristic is the Experience Replay (Mnih et al., 2015). Each
tuple of experience for a relay, namely
{state, action, next state, reward} ≡ s, a, s′, r}, is stored in a
memory This memory we denote as Experience Replay. For
the neural network updates, we sample uniformly a batch of
experiences from the Experience Replay and use that batch to
perform gradient descent to estimate the Q function (and
subsequently the decision-making policy).
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The second heuristic is the Target Network (Mnih et al., 2015).
The Target Network (Qtarget (s′, a′; θ−)) provides the estimation
for the targets (labels) for the updates of the Policy Network
(Qpolicy (s′, a′; θ+)), i.e., the network used for estimating the Q
function. The two networks share (typically) the same
architecture. We do not update the Target Network’s weights
with any optimization scheme, but, after a predefined number of
training steps, the weights of the Policy Network are copied to the
Target Network. This provides stationary targets for the weight
updates and brings the task of the Q function approximation
closer to a supervised learning paradigm.

Therefore, at each update step we sample a batch of
experiences from the Experience Replay and use the batch to
perform gradient descent on the loss:

L � Qpolicy s, a; θ+( ) − r + γ max
a′
Qtarget s′, a′; θ−( )( )( )2.

At each step, the Policy Network’s weights are updated
according to:

θ+t+1 � θ+t + λ Yt − Qpolicy s, a; θ+t( )( )∇θ+t Q s, a; θ+t( ).
where,

Yt � r + γ max
a′
Qtarget s′, a′; θ−t( )

The parameter λ is the learning rate. The parameter γ is a scalar
called the discount factor and γin (0, 1). The choice for the
discount factor pertains to a trade off between the importance
assigned to long term rewards and the importance assigned to
short term rewards. The parameters a, a′ ∈ Afull correspond to
the action chosen during the current state and the action chosen

for the next state (the state during the next time slot). Also, s and s′
correspond to the current state and the next state respectively. The
general pipeline of the deep Q learning algorithm is defined in
Figure 3.

When the relays move (the do not stay in the same grid cell
for two consecutive slots), they require additional energy
consumption. i some cases though, the diplacement to a
neighboring grid cell does not correspond to significant
improvement in terms of the cumulative SINR at the
destination. Therefore, to account for the energy used for
the application, we choose to not perform the ϵ-greedy
policy directly on the estimates Qpolicy (s, a; θ+) of the Q
function, but we decrease the estimates for all actions a, except
for the action stay, by a small percentage μ. In that way we
prohibit the relay displacement if this action does not
correspond to a significant increase in the expectation of
the cumulative sum of rewards (SINR). How significant this
displacement action should be for it to be performed pertains
to the choice of μ. For our simulations, in the subsequent
sections, we choose μ to be 1%.

4.3 Sinusoidal Representation Networks for
Q Function Parameterization
There have been many recent works which convincingly claim
that coordinate-based Multilayer Perceptron Neural Networks
(MLPs), i.e., MLPs that map a vector of coordinates to a low-
dimensional natural signal, fail to learn high frequency
components of the said signal. This constitutes a phenomenon
that is called the spectral bias in machine learning literature (Jacot
et al., 2018; Cao et al., 2019). The work in (Sitzmann et al., 2020)

FIGURE 3 | This is a heatmap for visualizing a trajectory of the relays. We can see the VI for all grid cells for four different time steps (each time step has a 2-time-slot
difference with the previous and the next). One can see the positions of the relays for every time slot. The relays are moving towards better and better positions (larger VIs).
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examines the amelioration of spectral bias for MLPs. The
inadequacy of MLPs for such inductive biases is bypassed by
introducing a variation of the conventional MLP architecture
with sinusoid (sin (·)) as activation function between layers. Tis
MLP alternative was termed Sinusoidal Representation Networks
(SIRENs), and was shown, both theoretically and experimentally,
to effectively tackle the spectral bias.

The sinusoid is a periodic function which is quite atypical as a
choice for activation function in neural networks. The authors in
(Sitzmann et al., 2020) propose the employment of weight
initialization framework so that the distribution of activations
is retained during training and convergence is achieved without
the network oscillating.

In particular, if we assume an intermediate layer of the neural
network with input x ∈ Rn, then the output is an affine
transformation using the weights w passed through the
sinusoid activation, therefore the output is sin(wTx + b). Since
the layer is not the first layer of the network, the input x is arcsine
distributed. With these assumptions it was shown in (Sitzmann
et al., 2020) that, if the elements of w, namely wi, are initialized
from a uniform distribution wi ~ U(−

�
6
n

√
,
�
6
n

√
), then

wTx ~ N (0, 1) as n grows. Therefore one should initialize the
weights of all intermediate layers with wi ~ U(−

�
6
n

√
,
�
6
n

√
). The

neurons of the first layer are initialized with the use of a scalar
hyperparameter ω0, so that the output of the first layer, sin (ω0Wx
+ b) spans multiple periods over [ − 1, 1]. W is a matrix whose
elements correspond to the weights of the first layer.

When we adopt the deep Q learning approach for discrete
relay motion control, we basically train a neural network (MLP)
to learn a low-dimensional natural signal from coordinates,
namely the state-action value function Q (s, a). The Q
function, Q (s, a), represents the sum of SINR at the
destination that the relays are expected to achieve for an
infinite time horizon, starting from the respective position s
and performing action a. The Policy Network, being a
coordinate MLP may not be able to converge for the high
frequency components of the underlying Q function that arise
from the fact that the channels exhibit very abrupt spatiotemporal
variations.

Therefore we propose that both the Policy and the Target
Networks are SIRENs. The control flow of the algorithm we

propose is given in Algorithm 2. We denote this as DQL-SIREN,
which stands for Deep Q Learning with Sinusoidal Representation
Networks.

Algorithm 2. DQL-SIREN

5 SIMULATIONS

We test our proposed schemes by simulating a 20, ×, 20 m grid.
All the grid cells are 1m × 1m. The number of agents/relays that
assist the single source destination communication pair is R = 3.
For every time slot the position of each relay is constrained within
the boundaries of the gridded region and also constrained to
adhere to a predetermined relay movement priority. Only one
relay can occupy a grid cell per time slot. The center of the relay/
agent and the center of the respective grid cell coincide.

When it comes to the shadowing part of our assumed channel
model, we define a threshold θ which quantifies the distance
in time and space where the shadowing component is
important and can be taken into account for the
construction of the motion policy. We assume that the
shadowing power η2 = 15 and the autocorrelation distance
is c1 = 10m and the autocorrelation time is c2 = 20sec. The
variances of noises at the relays and destination are fixed as
σ2 ≡ σ2D ≡ 1.The source and destination are fixed at
pS ≡ [10 0]T and pD ≡ [10 20]T .

Each one of the relays can move 1 grid cell/time slot and the
size of each cell is 1m × 1m (as mentioned before). The time slot
length is set to be 0.6sec. Therefore the calculation of the channel
and the decision of the movement for each relay should take up
an amount of time that is strictly less than the duration of the time
interval.

5.1 Specifications for the DQL-SIREN and
the SAA
Regarding the DQL-SIREN, we employ SIRENs for both the Policy
and the Target Networks. Each SIREN is comprised by three dense
layers (350 neurons for each layer) and the learning rate is 1e − 4.

FIGURE 4 | Comparison of the SAA, the DQL-SIREN and the Random
policy.
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The Experience Replay size is 3,000 tuples and we begin
every experiment with 300 transitions derived by a completely
random policy before the start of training for all the deep Q
learning approaches. The ϵ of the ϵ-greedy policy is initialized
to be 1 but it is steadily decreased until it gets to 0.1 This is a
very typical regime in RL. It is a very simple way to handle the
dilemma between exploration and exploitation in RL, where
we begin by giving emphasis to exploration first and then
gradually exploration is traded for exploitation. We copy the
weights of the Policy Network to the weights of the Target
Network every 100 steps of training. The batch size is chosen to
be 128 (even though the methods work reliably for different
batch sizes ranging from 64 to 512) and the discount factor γ is
chosen to be 0.99. We want to mention that small values for γ
translate to a more myopic agent (an agent that assigns
significance to short term rewards at the expense of long
term/delayed rewards). On the other hand, values of γ
closer to 1 correspond to agents that assign almost equal
value to long term rewards and short term rewards. For the
deep Q learning methods that we have proposed, we noticed
that for low values of γ converence and performance is
impeded, something that we attribute to the interplay of Q
learning and neural network employment rather than to the
nature of the underlying MDP.

We set the ω0 for the DQL-SIREN to 5 (the performance of the
algorithm is robust for different values of the said parameter). Finally,
we use the Adam optimizer for updating the network weights.

When it comes to the SAA, the sample size is set to 150 for the
experiments.

5.2 Synthesized Data and Simulations
We create synthetic CSI data that adhere to the channel statistics
described in 2.2.

In Figure 4, we plot the average SINR at the destination (in dB
scale) achieved by the cooperation of all three relays, per episode,
for 100 episodes, where every episode is comprised by 30 steps.
The transmission power of the source is PS = 57dbm and the relay
transmission power budget is PR = 57dBm. The assumed channel
parameters are set as ℓ = 2.3, ρ = 3, η2 = 15, σ2ξ � 3, c1 = 10, c2 = 20,
c3 = 0.5. The variance of the noise at the relays and destination are
σ2D � σ2 � 0.5.

We generate 3,000 = 100, ×, 30 instances of the source-relay
and relay destination channels for the whole grid (20, ×, 20).
Every 30 time steps we initialize the relays to random positions in
the grid and let themmove.We plot the average SINR for every 30
steps of the algorithms.

5.3 Simulation Results and Discussion
We present the results of our simulations in Figure 4. As we
stated before, the results correspond to the average SINR at the
destination for 100 episodes. Each episode consists of
30 time steps. The runs correspond to the average over six
different seeds.

We compare three different policies. The first one is the
Random policy, where each relay chooses the
displacement for the next step at random. The second
policy is the DQL-SIREN that solves the dynamic
program (maximization of the discounted sum of VIs for
every relay from the current time step to the infinite
horizon). The third policy is the myopic SAA that
corresponds to the stochastic program and optimizes each
individual relay’s VI for the subsequent slot.

As one can see that both the SAA and the DQL-SIREN
perform significantly better than the Random
policy (they both achieve an average SINR of
approximately 7 db in contrast to the Random policy that
achieves about 4 db). Table 1 contains a head-to-head
comparison of the SAA and the DQL-SIREN approaches
regarding some qualitative and some quantitative features.

The convergence of the DQL-SIREN is faster than that of
SAA. This is reasonable since, when it comes to the SAA
approach, for the first five episodes there have not been
collected enough samples (150). Both SAA and DQL-
SIREN perform approximately the same in terms of
average SINR. Towards the end of the experiments there is
a small gap between the two (with the SAA performing
slightly better). This can be attributed to the ϵ-greedy
policy of the DQL-SIREN, where ϵ never goes to zero
(choosing a random action a small percentage of the time
for maintaining exploration).

There are some interesting inferences that one can make,
based on the simulations. First of all, even though the SAA is
myopic and only attempts to maximize the SINR for the
subsequent time slot, works quite well in the sense of the
aggregated statistic of the average SINR. This is a clear
indication that, for the formulated problem, being greedy
translates to performing adequately in the sense of cumulative
reward.

Of course this peculiarity stands true only when the statistics
of the channels are completely known and do not change
significantly during the operation time. Apparently, in such a
scenario, the phenomenon of delayed rewards is not much
prevalent.

TABLE 1 | Table of comparison between the two methods regarding key features.

Features SAA DQL-SIREN

Channel statistics known (model-based) unknown (model-free)
Robustness w.r.t seeds extremely robust slight variation bt seeds
Memory size 150 transitions 3,000 transitions
Horizon myopic policies long horizon policies (for γ close to 1)
Exploration not required required (ϵ-greedy)
Best SINR achieved 7.4 db 7.2 db
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6 CONCLUSION

In this paper, we examine the discrete motion control for mobile
relays facilitating the communication between a source and a
destination. We compare two different approaches to tackle the
problem. The first approach employs stochastic programming for
scheduling the relay motion. This approach is myopic meaning that
it seeks to maximize the SINR at the destination, only at the
subsequent time slot. In addition, the stochastic programming
approach makes specific assumption for the statistics of the
channel evolution. The second approach is a deep reinforcement
learning approach that is not myopic meaning that its goal is to
maximize the discounted sum of SINR at the destination from the
subsequent slot to an infinite time horizon. Additionally, the second
approachmakes no particular assumptions for the channel statistics.
We test our methods in synthetic channel data produced in
accordance to a known model for spatiotemporally varying
channels. Both methods perform similarly and achieve significant
improvement in comparison to a standard random policy for relay
motion. We also provide a head-to-head comparison of the two
approaches regarding various key qualitative and quantitative

features. As future work, we plan on extending the current
methods for scenarios with multiple source-destination
communication pairs and, possibly, include the existence of
eavesdroppers.
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