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This study shows an approach for classifying road users using a 24-GHz millimeter-wave
radar. The sensor transmits multiple linear frequency–modulated waves, which enable
range estimation and Doppler-shift estimation of targets in the scene.We aimed to develop
a solution for localization and classification, which yielded the same performance when the
sensor was fixed on ground or mounted on amoving platform such as a car or quadcopter.
In this proposed approach, classification was achieved using supervised learning and a set
of hand crafted features independent of relative speed between the target and sensor. The
proposed model is based on obtaining micro-Doppler information; only one receiver is
used. Therefore, in addition to the target reflectivity, no geometrical information is used. For
our study, we selected three classes: pedestrians, cyclists, and cars. We then illustrated
distinctive micro-Doppler features for each class based on simulations, which we
compared with real-world data. Our results confirm that a limited set of low-complexity
features yields high accuracy scores when the target’s trajectory does not excessively
deviate from the radar’s radial direction.
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1 INTRODUCTION

Advances in radar technology enabled the detection and classification of targets in the surroundings. This
potential is valuable for multiple applications, e.g., for obstacle avoidance when operating autonomous
vehicles, it is important to consider possible targetmaneuvers for robust path planning; therefore, a simple
obstacle localization is insufficient. In general, target classification is achieved using optical sensors. The
primary advantage of using radars on optical sensors is their performance invariance at night and under
adverse weather conditions. Furthermore, when the wavelength of electromagnetic (EM) waves
transmitted by radar is appropriately selected, it provides robustness against heavy rain, dust, and
fog. For these scenarios, radar sensors can provide important support to image-based recognition systems.
Radar-based classification is a relatively new field and currently is being explored using different
approaches. In general, research in this field can be divided in two major branches: 1) unmodulated
frequency continuous-wave (UFCW) and 2) frequency modulated continuous-wave (FMCW) radars.

With a UFCW radar, the micro-Doppler signature was used to recognize different human activities in
(Kim and Ling, 2009; Zenaldin and Narayanan, 2016). The high accuracy scores achieved confirms the
preciseness of the micro-Doppler features obtained. However, these approaches have specific limitations
such as long observation time required to estimate frequencies and lack of range information. In UFCW
radars, a long observation time is necessary to capture low-frequency components in the signal. In
practice, it may require storing considerable amount of data, which is often too much for commercial
micro-controllers.
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However, the FMCW radar is of considerable interest to the
automotive sector because it can provide the necessary range and
help cope with the challenge of the long observation time required
for low frequencies. A popular classification approach used with
the FMCW radar is to pass multidimensional Fourier
transformed data to a neural network architecture.

In (Perez et al., 2018), to classify three targets-namely cars,
cyclists, and pedestrians—the authors used convolutional neural
networks (CNNs), which extracted features from the
range–Doppler–azimuth data cube. In the present study, to form
a data cube, a 77-GHz 1 × 8 multiple-input and multiple-output
(MIMO) FMCW radar system was used. The limitation of the
algorithm is its high computational complexity for identifying the
3D fast-Fourier-transform (FFT). In addition to the expense of
computing a 3D FFT, the proposed algorithm exploits the
absolute velocity of the targets to discriminate between targets.
Velocity estimation is easy for a radar on a fixed platform;
however, it can be challenging for a radar on a moving platform.
The CNN used in (Patel et al., 2019) to classify cars, construction
barriers, motorbikes, baby carriages, bicycles, garbage containers,
and stop signs is similar to that used in (Perez et al., 2018). In the
present study, a 77 GHz 4 × 4MIMOFMCWradar system is used to
capture the target features from the range-velocity-azimuth data
cube. This algorithm requires a 3D FFT; therefore, the algorithm’s
computational complexity is extremely high. To classify humans and
vehicles in lower computational complexity, a 24 GHz 1 × 1 FMCW
radar that depends on the range-Doppler data matrix is used in
(Hyun and Jin, 2020). The algorithm proposed in this research
extracts three features from the slow-time samples corresponding to
a target: the complexity–scattering-point count, the scattering-point
difference, and the magnitude difference rate. These features are
input to a support vector machine classifier. In real life, we notice
cyclists on the road along with pedestrians and cars. The
performance of the algorithm significantly degrades when cyclists
are added to the proposed classifier. This happens because of
similarities between pedestrians and cyclists in terms of their
return signal strength and micro-Doppler effects. To improve
performance, additional features require to be added to the classifier.

However, we propose a low-complexity algorithm to classify
the different targets in this research. The proposed algorithm uses
a range–velocity data matrix to estimate the micro-Doppler

spectrum of targets. Moreover, we design a set of simple
features that extract the distinguishing characteristics of each
class from the micro-Doppler spectrum of the target. We selected
three targets: pedestrians, cyclists, and cars. To improve the
classification of humans, cyclists, and vehicles, we adopted the
extreme gradient-boosted-trees (XGBoost) classifier (Chen and
Guestrin, 2016) and compared the obtained results with those of
the ridge classification and K-nearest-neighbors (KNN) models.
An in-depth overview of these methods can be found in (Trevor
et al., 2009).

The proposed algorithm was implemented on Infineon’s
Position2Go module (Infineon, 2021), which is a 24 GHz 1 ×
2 FMCW radar system. Although this module is equipped with
two receivers, to ensure sufficiently fast data transmission from
the device to a PC, the data of only one receiver were processed.
Moreover, two receivers do not provide sufficient angular
resolution to infer target geometrical information such as the

FIGURE 1 | Basic block diagram of FMCW radar.

FIGURE 2 | Data matrix of slow and fast time samples.
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object width. The primary contributions of our proposed study
are as follows:

• Unlike algorithms that compute 3D FFTs and pass the 3D
feature matrix to train the classifier, our proposed algorithm
computes two 1D FFTs and requires extremely few features
to train the classifier. Thus, we provide a solution more
suitable for hardware-constrained applications.

• Our proposed technique does not require the target’s
absolute velocity. Therefore, it can be used in both
scenarios in which the radar is fixed and moving.

• For the designed classifier model, the trade-off between the
accuracy and feature number was analyzed, which
demonstrated that the gain for each newly added feature
significantly slowed down after ten features were selected.

• We proposed a classifier model design for radial motion that
achieves accuracies of 98.2, 97.3, and 98.1% for pedestrians,
cyclists, and cars, respectively.

The remainder of this study is organised as follows: In the
following section signal model is described. In Section 3 the data
sample collection and feature extraction are described. The
feature extraction based on the scattering model is discussed
in Section 4 and experiment results are given in Section 5.
Finally, we present our concluding remarks in Section 6.

2 SIGNAL MODEL

In (Richards et al., 2010; Melvin and Scheer, 2012; Melvin and
Scheer, 2013; Mark and Richards, 2015), the researchers provided
a rich overview of radar systems and radar signal processing. In a
linear FMCW systems, the transmitted signal, called chirp signal,
can be expressed as

s t( ) � exp j2π fst + S

2
t2( )( )rect t − T/2

T
( ), (1)

where fs is the starting frequency, T is the chirp period, and S � B
T

is the frequency sweep rate (or chirp rate), while B represents the
bandwidth of the signal. Here, we do not treat the signal
amplitude, we thus assume that amplitude is unity. If an
object, present at distance Ro, intercepts the transmitted
electromagnetic (EM) waves, a part of the signal’s energy is
reflected from the object. Assuming that the target is moving
with the velocity v along the radial direction, its position at the
time t can be described as follows: R(t) = Ro + vt, where Ro is the
position of target at the start of chirp. Ignoring the signal’s
amplitude variation, the received signal y(t) can be written as
follows:

y t( ) � s t − 2R t( )
c

( ) � s t − τ t( )( ), (2)

where τ(t) � 2R(t)
c is the time delay, which is the time taken by a

waveform to cover the distance from the radar to target and back.

TABLE 1 | Firmware Configuration.

Firmware Configuration

Parameter Meaning Value

fs Start Frequency 24.025 GHz
B Bandwidth 200 MHz
Tc Up-chirp duration 300 μs
Ns Samples per chirp 64
Ts Fast-time sampling frequency 4.687 μs
TPRI Pulse Repetition Interval 500 μs
Nc Chirps per frame 128
TFRI Frame Repetition Interval 200 ms

TABLE 2 | Measurement specifications.

Measurement specifications

Parameter Meaning Value

Rmax Maximum unambiguous range 48 m
Rres Range resolution 0.75 m
vmax Maximum unambiguous velocity ±6.24 m/s
vres Velocity resolution 0.01 m/s

FIGURE 3 | Firmware Configuration (A). Hypothetical magnitude of the complex samples in the matrix F along each column, in the case of two scatterers (B).
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At the receiver, the signal is demodulated as shown in
Figure 1; moreover, the output can be written as follows
(Cooper, 1980; Mark and Richards, 2015)

r t( ) � s t( ) + �w t( )( )y* t( )
� ej2π Sτ t( ) t−τ t( )( )+fsτ t( )+S

2 τ t( )2( ) + w t( ), (3)

where �w(t) and w(t) are the noises at the receiver before and after
demodulation, respectively. Expanding Eq. 3, the demodulated
signal can be simplified as follows

r t( ) � ej
4πRo
λ ej2π Sτo−fd( )t + w t( ), τ τo( )≤ t≤T (4)

where fd � 2v
c fs is the Doppler frequency and τo � 2Ro

c . Note that
the signal in Eq. 4 is a complex sinusoidal signal whose frequency
is Sτo − fdwhich is a combination of two frequencies and is known
as beat frequency. Since both frequencies are coupled; therefore, it
is difficult to separate them. However, to measure the Doppler
shift with sufficient accuracy from a single chirp, an extremely
long chirp period would be required, see (Mark and Richards,

2015). For this purpose, the Doppler shift can be measured by
transmitting multiple equispaced chirps as follows:

�s t( ) � ∑M−1

m�0
s t −mTPRI( ), (5)

which is the M times repetition of the original chirp signal given
by in Eq. 1. Each signal is then delayed by a multiple of TPRI,
which is the pulse repetition interval. The transmitted signal ofM
chirps is known as a frame. Within a frame, the target range at the
start of mth pulse can be written as R (mTPRI) = Ro + mvTPRI.
Using the range at the start of each chirp in Eq. 4, the received
signal after mth transmitted pulse can be written as

rm t( ) � e−j
4π Ro+mvTPRI( )

λ ej2π Sτo−fd( )t + wm t( ),
� e−j

4πRo
λ e−j2πfdmTPRIej2π Sτo−fd( )t + wm t( ). (6)

The continuous time domain signal in Eq. 6 is passed to the
analogue-to-digital converter and N samples are collected for
each interval Im = [mTPRI, mTPRI + T]. Therefore, in each frame
MN complex samples are collected. In discrete form, these
samples can be written as follows by considering the stop-and-
hop approximation (Mark and Richards, 2015):

rm nTs( ) � e−j
4πRo
λ e−j2πfdmTPRIej2π Sτo−fd( )nTs + wm nTs( ), (7)

where Ts is the sampling period, m = 0, . . ., M − 1 and n = 0,
. . ., N − 1.

As shown in Figure 2, the samples can be arranged in a 2D
matrix. N samples in each column are called fast-time samples,
and they correspond to a single transmitted chirp. The samples in
rows are called slow-time samples, and they correspond to
multiple chirps.

Figures 2, 7 shows that the value of m remains constant in
each column, and the value of n remains constant in each row.
Therefore, by applying FFT on fast-time samples, the beat
frequency can be easily estimated. The term ej2πfdmTPRI

remains unaffected during the FFT operation on the fast-time
samples; therefore, the Doppler shift can be estimated by applying
FFT on the slow-time samples in any row. Therefore, to estimate
the range and the corresponding velocity of a target, we first apply
FFT on fast-time samples. The spectrum peaks show the beat
frequencies that can be used to identify the target range. By

FIGURE 4 | Sixteen point-scatterers body approximation model. Subfigures (A–C) shows how scatterers change locations with respect to person’s movement.

FIGURE 5 | Limbs’ displacement during walking.
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applying FFT on a row corresponding to the index of a spectrum
peak, the target velocity can be estimated. In most practical
scenarios, where the frame duration and the velocity are low,
the beat frequency can be written as follows:

fb ≈ Sτ0, (8)

which makes it easy to estimate the target range using the beat
frequency. Finally, to identify the maximum system limit, we use
the Rayleigh bandwidth. The Rayleigh bandwidth is 1/T for fast-
time samples and 1/MTPRI for slow-time samples; therefore, the
range resolution ΔR, the velocity resolution Δv, the maximum
unambiguous range Rmax, and the maximum velocity vmax can be
easily calculated as follows:

ΔR � c

2B
,

Δv � λ

2MTPRI
,

Rmax � Nc

2B
,

(9)

vmax � ±
λ

4TPRI
. (10)

In the following section, the above mentioned derivations will
be used to collect samples for extracting the features and
estimating ranges and velocities corresponding to different
targets.

3 DATA COLLECTION AND FEATURE
EXTRACTION

To collect samples for the classifier, we used a commercially
available radar module produced by Infineon, called Position2Go
(Infineon, 2021). This module is equipped with a 24 GHz
transceiver chip (BGT24MTR12) and a 32-bit microcontroller
(XMC4700) for signal processing. Three micro-strip series patch
antennas (one for transmission and two for reception) are printed
on the board. The field-of-view of each antenna is 19, ×, 76°. The
basic architecture of the module is similar to the one shown in
Figure 1, the only difference is that Position2Go has one transmit
and two receive channels. The module is described in detail in
(Will et al., 2019). The module’s firmware configuration settings
and the specifications for this study are defined in Tables 1, 2.

FIGURE 6 | Time-frequency analysis for a walking human (A), and a cyclist (B).

TABLE 3 | Notation of different features used throughout the paper.

All features

Acronym Meaning

Rt Radial distance in frame t
A Range spectrum amplitude
SD Standard deviation
CMD Close micro-Doppler
BMD Broad micro-Doppler
MTMD Max to mean distance
HPC High point count
MPC Medium point count
LPC Low point count
HPskew High point skewness
MPsd Medium point standard deviation
LPskew Low point skewness
HPKC High peak count
MPKC Medium peak count
LPKC Low peak count
HPK High peak total strength
MPK Medium peak total strength
LPK Low peak total strength
HPKskew High peak skewness
HPKsd High peak standard deviation
MPKsd Medium peak standard deviation
LPKskew Low peak skewness
HPCD HPC difference
HPKDsd HPKsd difference
HPKDskew HPKskew difference
MPKDskew MPKskew difference
LPKDskew LPKskew difference
SDD SD difference
CO Correlation
MDR Magnitude difference rate
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Figure 3A shows the structure of chirp transmission.
Clearly, one frame contains 128 chirps each of duration
300μsec, and chirp repeats itself after pulse-repetition-
interval (PRI) of 500μsec. At the receiver end, after the
transmission of each chirp, 64 samples were collected. The
transmit and receive antennas were not isolated; therefore, the
transmit signal was leaked in the receiver that appeared as a
low-frequency component in the demodulated signal. This
component was independent of the clutter and could be
completely removed by storing it in memory and then
subtracting it from each column of 2D matrix when the
actual experiments were performed. To obtain this signal,
it was recommended to point the radar towards an absorbing
material or the sky such that only the leakage power signal was
received. If the radar was fixed on the ground, it would have
been possible to remove the return signal of the background
(or clutter). The signals caused by the leakage and background
can be removed in a single step by considering a preliminary
recording of the scene without the targets

rpreliminary � rleakage + rbackground. (11)
Subtracting this signal from the received signal in the presence

of actual targets in the scene can in fact significantly improve the
detection performance

rrecordings ≈ rleakage + rbackground + rtargets,
rtargets ≈ rrecordings − rpreliminary.

(12)

The above mentioned equations are approximately valid when
the background return is essentially unaffected by the presence of
the targets, and the sensor is fixed on the ground.

Therefore, as shown in Figure 2, the collected 64 complex
samples of raw data corresponding to each of 128 chirps can be
used to form a 64 × 128 measurement matrix M. After leakage
and background removal, a Hamming window is applied to each
column for range side-lobe reduction. To limit the straddle loss,
each column of the 2D data matrix is zero-padded toNR

pad � 256

samples. Then, each column is transformed in the frequency
domain by applying FFT as follows:

F k,m[ ] � 1����
NR

pad

√ ∑NR
pad

−1

n�0
M n,m[ ]e

−j2π kn
NR
pad , (13)

where k � 0, 1, . . . , NR
pad − 1, m = 0, 1, . . .Nc − 1, and F [k, m]

shows the kth and mth element of the matrix F ∈ R
NR

pad×Nc .
Depending on the number of targets, the amplitudes of each
column of F will look similar to amplitudes shown in Figure 3B.
The peak values in the spectrum represent the location of moving
or static targets.

To differentiate the moving targets from stationary targets,
a technique known as moving target indication (MTI) filtering
is used (see (Mark and Richards, 2015)). MTI involves high-
pass filtering and can be implemented using the algorithm
given in Supplementary Appendix 0.1. Stationary targets do
not move from one chirp to another, and they show
zero Doppler effects; they cannot be completely removed
using MTI filtering alone. Therefore, to remove these
targets, before MTI filtering, the mean of each row of F is
computed and subtracted from the respective row. We
indicate with X the NR

pad × 1 vector resulting from the
overall filtering procedure. To develop an algorithm, a
threshold is set and five top peaks of a column of the
matrix X are selected. For each peak, the corresponding
indices are stored in a vector

p � p1, p2, . . . , p5[ ], (14)
where 0≤pi ≤NR

pad − 1. Suppose the i-th target is being located.
The first condition for an index k to correspond to a spectrum
peak requires the amplitude, |X [k]|, to be greater than a fixed
threshold ρ equal to −46 dB (0.005). This choice was dictated
“empirically” by looking at the noise level in the recordings to
minimize false-positive detections. To increase the robustness, a
second condition must also be satisfied for k to be confirmed a
peak index. The second condition requires that |X [k − 2]| < |X
[k − 1]| < |X [k]| > |X [k + 1]| > |X [k + 2]|. If both conditions hold
then pi = k.

The dimension of vector p simply corresponds to the
maximum number of targets that someone is interested in
tracking on the same scene.

Each peak index shows the position of a moving target. The
phase history Φ of each target is extracted from the
corresponding row of the matrix F as follows:

FIGURE 7 | Three directions of motion of the targets, radial, diagonal,
and perpendicular.

TABLE 4 | Number of frames captured for machine learning algorithms when
different targets move in radial, diagonal, and perpendicular directions.

Number of Frames

Radial Diagonal Perpendicular

Pedestrian 669 572 557
Cyclist 396 524 652
Car 310 568 875
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Φi � F pi, 0[ ], F pi, 1[ ], . . . , F pi,Nc − 1[ ][ ]. (15)
EachΦi is multiplied by a Hamming window, wH, to reduce

the side-lobes and is zero-padded to Nd
pad samples to reduce

the straddle loss effects. Finally, FFT is applied on these
samples to identify the Doppler shift. Mathematically, the
zero padding and Fourier transform steps can be written as
follows:

�Φ
i � Φi◦wH, 0, 0, . . . , 0[ ]

di k[ ] � 1����
Nd

pad

√ ∑Nd
pad

−1

n�0
�Φ
i
n[ ]e

−j2π kn
Nd
pad ,

(16)

where k � 0, 1, . . . , Nd
pad − 1, and Φi◦wH indicates the

Hadamard product between the two vectors Φi and wH. The
magnitude of the complex vector di is the Doppler spectrum of
the target under examination. For each target an object is created
in memory, which contains the Doppler spectrum di, the radial

distance Ri, and the average amplitude of the return signal Ai are
given as follows:

Ri � pi cNs

2BNR
pad

,

Ai � 1
Nc

∑Nc−1

m�0
|F pi, m[ ]|. (17)

Remark 2: This approach does not require the computation of
the complete 2D FFT. Let us assume (N)FFT denotes the total
number of operations required to compute the FFT ofN elements
sequence. We denote by Nc, N

pad
R , Npad

d , and q the number of
chirps per frame, the number of samples per chirp after zero-
padding, the number of chirps per frame after zero-padding, and
the number of targets in the scene, respectively. The 2D FFT
requires Nc(Npad

R )FFT +Npad
R (Npad

d )FFT operations. In our
proposed approach, we have to compute only Nc(Npad

R )FFT +
q(Npad

d )FFT operations. In our experiments, we had a single target
present in the scene.

FIGURE 8 | Range spectra before (first row) and after (second row) filtering of a pedestrian (A,D), a cyclist (B,E), a car (C,F).

FIGURE 9 | Original Doppler spectrum (first row) and after centering the Doppler spectrum to zero (second row) of a pedestrian (A,D), a cyclist (B,E), a car (C,F).
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FIGURE 10 | Feature number versus accuracy for Ridge (A), KNN (B), and XGBoost (C), using radial data only.

FIGURE 11 | Confusion matrix on the test data set using the best sixteen of our proposed features (A), confusion matrix using the features proposed in (Hyun and
Jin, 2020) (B). For both cases we used an XGBoost model.

FIGURE 12 | Feature importance by weight (A) and gain (B).
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In the following section, scattering model of human and cyclist
will be discussed and samples in dis will be used to extract features.

4 SCATTERING MODEL BASED FEATURE
EXTRACTION

The Boulic-Thalmann is one of the example of human scattering
model, which is based on bio-mechanical experimental data (Boulic
et al., 1990; Melvin and Scheer, 2013). As per this model, the human
echo can be approximated by the superposition of N distinct point-
scatterers, each with its own dynamics.

In (Tahmoush et al., 2010), a 16 points scattering model of a 1.8-
m tall person walking at 1.5 m/s, as shown in Figure 4, is discussed.
Figure 5 and Figure 6A show the movement of the corresponding
simulated limbs and time-frequency spectrum, respectively.
Similarly, a kinematic model of a cyclists has been developed in
(Stolz et al., 2017). Figure 6B shows the simulated time-frequency
spectrum of a cyclist traveling at 3 m/s. Here, we can see that
multiple frequencies are present, in addition to the time-evolving
frequencies that can be attributed to the motion of the legs and

pedals. These frequencies spread from 0m/s to twice the cyclist’s
speed and are attributed to the signals returning from the wheels.
The torsos and heads of the cyclists and pedestrians are responsible
for the dominant return. Because of the relative motion of the
various body parts with respect to the torso, multiple Doppler
frequencies appear in the spectrum; this effect is known as the
micro-Doppler effect (see (Chen et al., 2003)).

The spectrum of the signal’s return reveals the periodicity T of
limbs’ kinematics, which is usually in the order of seconds.
Unmodulated CW radars are best suited for time-frequency
analysis; however, they require long windows to capture low
frequencies. Nevertheless, FMCW radars typically transmit
multiple short waveforms in a frame over a long duration.
Because of the short time window, the Doppler frequencies
captured during the transmission of one frame are almost
constant. With sufficient velocity resolution, sufficient Doppler
information could be captured for the classification.

Considering these factors, we designed two subsets with low-
complexity features. The first subset captures the number, strength,
and distribution of peaks in the current Doppler spectrum. The
second subset captures feature variations in the current and previous

FIGURE 13 | Doppler spectra for diagonal motion of a pedestrian (A), a cyclist (B), a car (C) and for perpendicular motion of a pedestrian (D), a cyclist (E), a car (F).

FIGURE 14 | Feature number versus accuracy for Ridge (A), KNN (B), and XGBoost (C).
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Doppler spectrums. None of the features are based on the ego speed
of the target, i.e., the target’s actual speed. To extract the features, we
first determine the 512-point FFT of the corresponding row for each
selected index pi of the matrix F, i = 1, 2, . . ., 5. This spectrum
specifies the Doppler frequencies associated with the target present
in the pi index location, and it is denoted by D. compactness,Nd

pad is
denoted by N. The notation used to define different features are
defined in Table 3. The first subset of features comprises SD, CMD,

BMD, and MTMD. The pseudo-code to identify these features is
described in Supplementary Appendix 0.2.

The first subset includes also the following simple threshold-
based features HPC, MPC, LPC, HPskew, MPsd, and LPskew. The
pseudo-code to identify these features is then described in
Supplementary Appendix 0.3, where an approach similar to the
one in (Hyun and Jin, 2020) is used. Finally, the first subset contains
the following “twin” advanced threshold-based features HPKC,

FIGURE 15 | Confusion matrix - XGBoost.

FIGURE 16 | Confusion matrices for radial (A), diagonal (B), and perpendicular (C).
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MPKC, LPKC, HPKskew, HPKsd, MPKsd, LPKskew, HPK, MPK, and
LPK. These features consider the number of peaks contained in the
intervals defined by the thresholds, rather than merely
considering the number of spectrum points. The pseudo-
code used to identify these features is described in
Supplementary Appendix 0.4. The features determined so
far are based only on a single frame. To improve the
prediction accuracy, the second subset of features measures
the numerical variations of certain features over two subsequent
frames. For the differential features defined as HPCD, HPKDsd,
HPKDskew, MPKDskew, LPKDskew, SDD, CO, and MDR, the
pseudo-code is described in Supplementary Appendix 0.5. The
reason to select these features can be understood by looking at
Figure 6. We observe that, at any instant, there are numerous
strong peaks in the pedestrian’s Doppler spectrum; this is
captured by features like HPC, HPKC, and HPK. We can
also observe that the distribution of the peaks around the
pedestrian’s body speed tends to be very skewed in one
direction, unlike what we can observe in the cyclist’s
Doppler spectrum: this is captured by features like HPskew
and HPKskew. Moreover, this skewness varies a lot from one
frame to the next one: this is captured by features like
HPKDskew. The distribution and deviation of the peaks from
the strongest frequency present in the Doppler spectrum are
also captured by features like SD, CMD, BMD, andMTMD. The
contribution of the wheel’s motion is much lower in amplitude
than the contributions of the bike’s frame and cyclist’s body;
obviously, this characteristic can’t be observed in the Doppler
spectrum of a pedestrian: this is captured by features like LPC,
LPKC, and LPK.

To select these features, let us assume that a set of No labeled
observations each of feature length l are available for a

classification problem. We denote this set by X. Feature
selection is a procedure that identifies a column subset with
cardinality g < l. Mathematically, if �X is a selected feature set, we
can write the following

�X ⊂ X,
X ∈ RNo×l,
�X ∈ RNo×g, g< l.

(18)

Feature selection is useful to reduce the dimension of the data
set; however, most importantly, it helps identify the relevant
features. Viable feature selection algorithms depend on the model
selected for the classification. We used sequential feature selection
for Ridge Classification and KNNs having the radial basis
function. Similarly, for classification and regression tree
(CART) ensemble trees, model-based feature selection is used.
Sequential-feature-selection (SFS) is a suboptimal recursive
method to sequentially add (or subtract) relevant (or
irrelevant) features (see (Ferri et al., 1994)). Forward SFS is a
greedy method that maximizes a criterion function by recursively
adding locally optimal features. However, MBFS is usually faster
when it is possible to directly measure the importance of a feature
from the model as per a given criterion.

5 EXPERIMENTAL RESULTS

Data were gathered in an area where there was ample
space such that the clutter effect was minimized. The sensor
was positioned on a tripod at the height of 1.3 m. We considered
two pedestrians, two cyclists, and two car models. Each target
was recorded while moving in three directions: radial, diagonal,
and perpendicular (or azimuthal) as shown in Figure 7.

FIGURE 17 | Feature importance by weight (A) and gain (B).
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Data were collected during the day and at night. As shown in
Table 4, we recorded 5,123 frames; moreover, the detection was
limited between 5 and 25 m.

5.1 Radial Data
First, we provide a general overview of radar data before and after
processing. Figure 8A shows the unfiltered range profile for a
pedestrian walking in the radial direction with respect to the
radar. The Fourier transform spectrum of fast-time samples for
the first chirp from each frame are aligned and distributed as per
the corresponding instant of transmission. From Figure 8A,
when the pedestrian is clearly close to the radar at the time
zero, the amplitude of the reflected signal is high; with the passage
of time, the amplitude of the return decreases because of the
pedestrian’s motion away from the radar. When the pedestrian
covers a distance of 40 m, the reflected signal from the pedestrian
becomes negligible. After 25 s, the pedestrian takes a “U″ turn
and returns in the direction of the radar; therefore, the reflected
signal from the pedestrian starts to increase. After 52 s, the
pedestrian returns to the radar with the maximum reflected
signal. Figures 8A–C show that at high ranges, the target peak
is obscured in the nearby slowly-moving and static targets. To
reduce the contribution of static and slowly moving targets, we
use MTI and DC filtering; the output is then shown in Figures
8D–F. We see how the strength of the moving target increased
compared to the static background. The gain is particularly visible
for large distances. Figures 8A,D show the similar plots for
pedestrians moving in the radial direction. Figures 8B,E show
similar plots for cyclists moving in the radial direction, and
Figures 8C,F show similar plots for the car moving in the
radial direction.

After detecting the target, the Doppler spectrum is computed
as previously described. To obtain a more infor¬ mative plot,
distance attenuation is compensated for by multiplying the
Doppler spectrum with the square of the distance of the
target. Figures 9A–C, show a plot of the Doppler spectrum
versus the transmission time.

In Figures 9D–F, the Doppler spectrum’s strongest component
associated with the pedestrian’s torso, the cyclist’s torso, and the car
frame was centered at 0 m/s. Despite the short frame duration
supported by our sensor, the most important trait of spectrograms
shown in Figures 6A,B were captured. The Doppler spectrum of a
pedestrian typically contains multiple relevant frequencies because
limbs are in motion while walking. Furthermore, the asymmetry (or
skewness) in the distribution of these frequencies around the torso
was captured. For a cyclist, the strongest Doppler components are
located extremely close to the torso’s Doppler. Moreover, the weak
frequencies are extensively distributed because of the wheel’s return.
Finally, the Doppler spectrum of a car shows the return of the car’s
frame. Moreover, extremely weak Doppler components can be
observed because of wheels. Unlike the case for a bicycle, a
portion of a car’s wheels is typically obscured by the bumper.
Consequently, only the lowest part of the wheel is exposed, and
the corresponding Doppler frequencies are asymmetrically
distributed around the Doppler of the car’s frame.

5.2 Radial Models
For Ridge Classification and KNNs, we depended on the Scikit-
learn implementations (Pedregosa et al., 2015), whereas for the
CART Tree Ensembles, XGBoost (Chen and Guestrin, 2016) was
used. The selected features are extracted from the targets arranged
in the data matrix X ∈ RNo×l, where l is the total number of
features. We consider three classes labeled by y ∈ {0, 1, 2} as per
the class. We then analyzed the trade-off between accuracy and
feature numbers. For each model, we selected a set of hyper-
parameters to tune these models; up to 20 features were
considered. Note that 70% data were used for training and
denoted by Xtrain, ytrain; the rest 30% data were used for
testing and are denoted by Xtest, ytest. Using a model that
supported only greedy feature selection algorithms, such as
SFS, Algorithm 1 was applied. For each number of features n
and each hyper-parameter choice hl, SFS selects a column subset
of X as per the Forward SFS procedure described in (Ferri et al.,
1994). The resulting subset was denoted by Xf. The model’s
accuracy, a, was assessed using Xf and stratified-5-fold cross-
validation (CV). For each n the best tuned model was stored. A
single training step shows the importance of a feature for a
classifier that supports model-based feature selection (MBFS)
given a model m with hyper-parameter h. Because of the data set
X, ModelBasedFeatureSelection returns the column indexes of X
ordered by importance. For example, if X � [X1,X2,X3], and the
third feature is the most important, followed by the first and the
second, the function would return f = [3, 1, 2]. The results for each
model are shown in Figures 10A–C. For reference, the score on
the test set was plotted. The different classifiers have extremely
similar performance trends. After considering four features, each
classifier surpassed 90% accuracy. Let us consider the XGBoost
classifier, which was the model with the highest accuracy on the
training set, after 5-fold CV, it used 16 features and achieved an
average score of 97.3%. This model was selected for testing, and
yielded an accuracy of 96.5%. The confusion matrix is shown in
Figure 11A, the importance of the features can be measured by
different criterion, for example, byweight as shown in Figure 12A
(i.e., the number of times a feature is used to split the tree node) or
by gain as shown Figure 12B (i.e., the accuracy improvement
achieved on average by the feature).

The results of our proposed approach are compared with the three
feature approach proposed in (Hyun and Jin, 2020) for the human and
vehicle classification. In this approach, the first feature x1 maintains
the number of Doppler spectrum points above a certain threshold.
The second feature x2 maintains the variation in x1 from frame to
frame, and the last feature x3 keeps the echo’s power fluctuation from
frame to frame. Typically, the pedestrian’s Doppler spectrum contains
many Doppler frequencies because of the multiple body points in
motion, whereas the car’s Doppler spectrum typically contains a single
dominant frequency. Therefore threshold-based features confirm to
be extremely effective to distinguish these targets. The introduction of
cyclists helpedmodify and expand this approach. TheDoppler spectra
of cyclists and pedestrians demonstrate multiple common traits. The
application of features proposed in (Hyun and Jin, 2020) afforded us
the scores shown in Figure 11B.
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Algorithm 1. SFS model training

Comparing the confusion matrices of both approaches, we
can clearly see that the results obtained by our approach offers
higher accuracy than other approaches. Furthermore, graphs
in Figures 12A,B, show ranking by importance for each
feature.

Algorithm 2. MBFS model training

5.3 Multi-Directional Data
We extended our model to consider all three directions, as shown in
Figure 7. Figure 13 shows the Doppler spectra. For the diagonal
motion, the primary characteristics of the pedestrian and cyclist are
preserved; however, the exposure of the car’s wheels to the field of view

of the radar makes the spread of weak frequencies more prominent
and reduces the asymmetry, as shown inFigure 9C. For perpendicular
motion, theDoppler information isminimal. There is a clear similarity
between the frequency distributions around the dominantDoppler for
the cyclist and car; in fact, we will show subsequently that these two
targets can be easily confused by classifiers.

5.4 Multi-Directional Models
We followed the steps described in Algorithm 1 and Algorithm 2.
In addition to target classification, we trained classifiers to predict
the direction of motion; consequently, we obtain nine classes.
Figures 14A–C shows the corresponding results of each model;
these figures show that the average performance was considerably
low this time. The highest accuracy on training and testing was
achieved by XGBoost. Using 19 features, the classifier scored
63.0% on the test set and 72.6% (the highest) on the train set with
the five-fold CV. The confusion matrix in Figure 15 shows that
the selected features yield promising results but they are
insufficient to reliably predict the target and the direction of
motion. However, let’s examine the performance based on target
type (pedestrian, cyclist, or car) classification without predicting
the direction of motion. Here, very good results can be observed
in the confusion matrices shown in Figure 16.

If the target is moving in the radial direction, then an average
of 90% cases are correctly classified. The most challenging
scenario occurs when the target moves perpendicular to the
radar. From Figure 16C, we see that it is difficult to
distinguish between the cyclist and car. However, the
pedestrian was correctly classified in 84% of cases. In
Figure 17, we show the importance of each feature as per the
gain and weight.

6 CONCLUSION

This study explores the role of the commercial radar sensors for
classification tasks. We demonstrated that radar technology can
offer high accuracy for classifying road users using simple
methods that are compatible with low-power applications. In
addition to our model, the device can be directly implemented as
a surveillance system or can be mounted on a vehicle while the
performance levels are preserved. Our proposed algorithm has a
few limitations, e.g., if the Doppler information is limited, as for
targets moving along the azimuth direction, it will be necessary to
consider additional complex features that might be difficult to
design and interpret. In our scenarios, all targets moved; this was
a necessary condition to exploit the Doppler effect. In future, the
robustness of radar-based classification models to static targets
can be increased if multiple transmitters and receivers are made
available. In such cases, it is important to have access to
geometrical information. A demonstration video of the work
can be seen at https://www.youtube.com/watch?v=
AWY2Fhk7i74.
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