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Due to the rapid development of 5G and Internet-of-Things (IoT), various emerging
applications have been catalyzed, ranging from face recognition, virtual reality to
autonomous driving, demanding ubiquitous computation services beyond the capacity
of mobile users (MUs). Mobile cloud computing (MCC) enables MUs to offload their tasks
to the remote central cloud with substantial computation and storage, at the expense of
long propagation latency. To solve the latency issue, mobile edge computing (MEC)
pushes its servers to the edge of the network much closer to the MUs. It jointly considers
the communication and computation to optimize network performance by satisfying
quality-of-service (QoS) and quality-of-experience (QoE) requirements. However, MEC
usually faces a complex combinatorial optimization problem with the complexity of
exponential scale. Moreover, many important parameters might be unknown a-priori
due to the dynamic nature of the offloading environment and network topology. In this
paper, to deal with the above issues, we introduce bandit learning (BL), which enables
each agent (MU/server) to make a sequential selection from a set of arms (servers/MUs)
and then receive some numerical rewards. BL brings extra benefits to the joint
consideration of offloading decision and resource allocation in MEC, including the
matched mechanism, situation awareness through learning, and adaptability. We
present a brief tutorial on BL of different variations, covering the mathematical
formulations and corresponding solutions. Furthermore, we provide several
applications of BL in MEC, including system models, problem formulations, proposed
algorithms and simulation results. At last, we introduce several challenges and directions in
the future research of BL in 5G MEC.
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1 INTRODUCTION

The ever-increasing deployment of the fifth-generation (5G) communication and the Internet-of-
Things (IoT) has created a large number of emerging applications ranging from face recognition,
virtual reality to autonomous driving (Shi et al., 2016; Teng et al., 2019), and generated enormous
volumes of data for transmission, storage, and execution. However, these tremendous computational
requirements are usually beyond the capacity of mobile users (MUs), making it impossible to
complete tasks in a prompt manner. Mobile cloud computing (MCC) (Khan et al., 2014) is a
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promising computational paradigm to relieve this situation by
enabling MUs to offload their applications to the remote central
cloud with strong computation and storage infrastructure.
However, the inherent issue of MCC is a long communication
distance between MUs and the remote cloud center, resulting in a
long propagation and network delay.

Mobile edge computing (MEC) (Wang et al., 2017; Zhang
et al., 2020; Asheralieva et al., 2021) has been envisioned as a key
enabler to deal with the latency issue in MCC. MEC pushes the
computation and storage resources to the network edge much
closer to the local devices, benefiting from a low propagation
latency and privacy/security enhancement (Mao et al., 2017). In
MEC, joint consideration of communication and computation
plays a pivotal role in network performance optimization to
satisfy quality-of-service (QoS) and quality-of-experience
(QoE) requirements (Yang et al., 2020; Lim et al., 2021).

Despite its potential benefits, MEC also suffers from several
challenging issues. An MU needs to offload computation tasks to
MEC servers in an opportunistic manner subject to the available
edge computation and communication resources shared by a
large number of MUs. Consequently the offloading decision and
communication/computation resource allocation should be
jointly optimized to maximize the network performance,
typically leading to a complex combinatorial optimization
problem with complexity of exponential scale. This is further
exacerbated by the dynamic nature of the offloading environment
and network topology, where many important parameters (e.g.,
channel state information and servers’ computation workload) in
the formulated problem are either impossible or difficult to obtain
a-priori.

Bandit learning (BL) (Gittins et al., 2011; Sutton and Barto,
2018), a typical online learning approach, offers a promising
solution to deal with the aforementioned issues. It enables each
agent (MU/server) to make a sequential selection from a set of
arms (servers/MUs) in order to receive some numerical rewards
available to the agent after pulling the arm. BL aims to strike a
tradeoff between exploitation (exploit the learned knowledge and
select the empirically optimal arm) and exploration (explore
other arms than the optimal one to get more reward
information). Consequently, the arms can be iteratively
learned, and selection decisions will be improved progressively.
The major advantages that BL brings to the joint consideration of
offloading decision and network resource allocation can be
summarized as follows.

• Matched mechanism: The inherent idea behind MEC is to
design policies to make a better selection forMUs or servers.
This clearly coincides with the design purpose of BL. This
match in mechanism provides selection policies to obtain
better performance such as lower latency, lower energy
consumption, and higher task completion ratio.

• Situation awareness through learning: In the arm selection
process, BL is able to learn the corresponding parameters of
the offloading environment.

• Adaptability: The structure of BL can be readily modified to
accommodate a variety of characteristics, requirements, and
constraints in an MEC system.

In this paper, we present a comprehensive tutorial on BL in the
5G MEC system. We first review the background of the BL,
including its origin, concept of regret, objective, and workflow,
then we introduce several basic mathematical parameters to
formulate a general BL problem. To deal with the BL problem,
we present several popular strategies, including ϵ-greedy, upper
confidence bound (UCB) algorithm, and weighted policy. Based
on the number of agents, BL can be classified as single-agent BL
(SA-BL), multi-agent BL (MA-BL), and other types. Specifically,
SA-BL can be classified as stateful and stateless for arms with and
without states, respectively. The stateful and stateless BL can be
further classified into stochastic/non-stochastic and rested/
restless, respectively. For each above BL type, we provide
several widely used solutions to deal with the corresponding
features and issues. Apparently, SA-BL is a special case of MA-BL,
which, due to the participation of multiple agents, increases the
learning efficiency and enhances the system capacity, yet has two
more unique issues: collisions and communications. Collisions
happen when one arm is selected by different agents
simultaneously, and the topology of the network could be
potentially complicated by communication modeling. We
present two popular collision models and two communication
models, in which we provide the corresponding distributed
solutions to alleviate collisions and optimize system
performance. Apart from the BL types in SA-BL and MA-BL,
we also introduce several important BL variations
(i.e., contextual, sleeping, and combinatorial BL) to cover more
features, improving the BL model structure from different
perspectives. Furthermore, to show how to deploy BL into the
5G MEC system, we introduce three BL applications: contextual
sleeping BL, restless BL and contextual calibrated BL. Specifically,
we introduce their system models and problem formulations,
then provide simulation results to illustrate the excellent
performances of the BL algorithms. At last, we envision the
possible development avenues of BL In 5G MEC, and
identified several research directions together with the
associated challenges.

The remainder of this paper is organized as follows. Section 2
introduces the fundamentals of the BL problem and presents a
representative classification. SA-BL, MA-BL, and other types are
elaborated on, and their features and solutions are given in
Sections 3–5, respectively. Several applications of BL in 5G
MEC and the simulation results are introduced in Section 6.
Finally, future challenges and directions are drawn in Section 7.

2 BANDIT LEARNING PROBLEM

2.1 Background
The classical BL problem comes from a hypothetical experiment
where an agent pulls a gambling machine (arm) from a set of such
machines, each successive selection of which yields a reward and a
state. The agent attempts to obtain a higher total reward through
a set of selections. However, due to the lack of prior information
about arms, the agent may pull an inferior arm in terms of reward
at each round, yielding regret measuring the expected
performance loss of the BL process. In other words, regret

Frontiers in Signal Processing | www.frontiersin.org May 2022 | Volume 2 | Article 8643922

Liu et al. Bandit Learning Mobile Edge Computing

https://www.frontiersin.org/journals/signal-processing
www.frontiersin.org
https://www.frontiersin.org/journals/signal-processing#articles


indicates the reward deviation of the pulled arm from the optimal
one. Hence, the agent’s objective is to find a policy to improve its
arm selection decision by minimizing the expected cumulative
regret in the long term.

The workflow of an agent in each learning round is presented
in Figure 1, where the agent pulls one arm based on the
previously collected knowledge of each arm (i.e., historical
reward and the number of selections). The idea is to strike a
tradeoff between exploitation and exploration, where exploitation
is defined as the investigation of the learned knowledge about the
arms and selection of the empirically optimal one and the
exploration is defined as the exploration of other arms than
the optimal one to get more reward information. The selected
arm yields a reward and state associated with itself and/or time.
The agent then updates the corresponding parameters
(i.e., empirical reward and pulled times) for each arm. Thus,
the agent iteratively learns the reward performance of each arm
and progressively improves the arm selection.

2.2 Mathematical Formulation
We consider a BL system with K arms indexed by K �
{1, . . . , k, . . .K} and the timeline is divided into T slots
indexed by T � {1, . . . , t, . . . , T}. We denote by Xk,t and μk,t �
E[Xk,t] the reward and the expected reward of pulling arm k at
slot t, respectively. We define at as the action selection of an arm
at slot t. The indicator function 1{at � k} � 1 indicates that arm k
is pulled at slot t. We then denote by rk,t the reward yielded by
pulling arm k at slot t. The objective of the agent is to find a policy
G � {a1, . . . at, . . . , aT} to select the optimal arm with the highest
expected reward and decrease the regret of the BL process
accordingly. Therefore, we define the optimal policy G*, which
has the prior knowledge of all arms. It makes sure that the agent
can always pull the optimal arm at′ at slot t with the highest
reward. Hereafter, each symbol with superscript “*” corresponds
to that achieved by the optimal policy. Then the general form of
the regret can be written as

R T( ) � EG* ∑T
t�1

rat′,t*⎡⎣ ⎤⎦ − EG ∑T
t�1

rat,t⎡⎣ ⎤⎦. (1)

On this basis, the agent decides which arms to pull in a
sequence of trials to minimize its BL regret across slots by
striking a tradeoff between exploitation and exploration.

2.3 Bandit Learning Approaches
In the sequel, we review several widely used strategies to tackle the
BL problem. These strategies will be modified and extended to
obtain a few state-of-the-art algorithms to resolve specific
problems, to be detailed in Sections 3–6.

2.3.1 ϵ-Greedy
As an intuitive strategy, ϵ-greedy (Kuleshov and Precup, 2014)
enables the agent to select an arm with the maximum observed
value of the reward based on the current knowledge with a
probability smaller than ϵ (0 < ϵ < 1). If the probability is
larger than ϵ, it randomly selects arms. For ϵ-greedy, its regret
grows linearly in time and its performance can be improved by
adjusting the value of ϵ.

2.3.2 Upper Confidence Bound Algorithm
UCB (Auer et al., 2002a) utilizes the confidence intervals on
the empirical estimate of the reward of arms and calculates a
UCB index for each arm. The UCB index consists of the
average reward of each arm and a padding function. The
padding function adjusts the exploration-exploitation
according to the current slot and the pulled times of each
arm. The arm with the highest UCB index will be pulled by the
agent at each slot, and the index will be updated according to
the received reward and selected times.

2.3.3 Weighted Policy
The weighted policy (Bubeck and Cesa-Bianchi, 2012) enables the
agent to select an arm at each slot based on a mixed probability
distribution. The distribution combines a uniform distribution
and another one, which weights the arms according to their
average regret performance in the past. This method is usually
exploited to deal with the non-stochastic reward problems where
the reward generation model of each arm cannot be classified into
any specific probability distribution.

2.4 Classification of Bandit LearningModels
We can classify BL into several different models as shown in
Figure 1 based on its settings in terms of the number of agents
and the reward generation models. Note that the classification
cannot cover all types of BL, and we chose the most popular and
representative ones in this paper.

FIGURE 1 | The workflow of BL and a representative Classification of BL.
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2.4.1 SA-BL
When the system has only one agent or multiple agents but with a
centralized controller, it is referred to as single-agent BL (SA-BL) or
centralized BL model. SA-BL can be further classified as stateful
(Markov) and stateless for armswith andwithout states, respectively.
The stateless BL can be classified into two forms. It is referred to as
the stochastic BL, if the reward is stochastically drawn from a
probability distribution, and as the non-stochastic (adversarial)
BL otherwise. For the stateful BL, it could also be embodied in
two forms: the rested BL if only the state of the pulled arm changes at
each slot, and the restless BL if the states of all the arms change.

2.4.2 MA-BL
Furthermore, when the system has multiple agents without a
centralized controller, it is referred to as multi-agent BL (MA-BL)
or distributed BL model. Consequently, the issue of collision
arises due to multiple agents simultaneously pulling the same
arm, adding to the calculation complexity of the regret and the
reward allocation. In addition, the communication model needs
to be carefully designed to accommodate the information
exchange among multiple agents.

2.4.3 Other BL Models
Apart from the SA/MA-BL models aforementioned, other
significant BL variations, such as sleeping, contextual, and
combinatorial BL, can cover more features (e.g., arms
availability, contextual information, and multiple selections).
These features can also be incorporated into SA-BL and MA-
BL, resulting in more complex BL models such as contextual
distributed BL (Lu et al., 2010; Chu et al., 2011), restless
combinatorial BL (Gai et al., 2012).

3 SINGLE-AGENT (CENTRALIZED) BANDIT
LEARNING

In this section, we elaborate on the single-agent (centralized) BL
following the classification in Figure 1. Specifically, the stateless
BL and stateful (Markov) BL will be covered.

3.1 Stateless Bandit Learning
In stateless BL, the agent only receives the reward of the pulled
arm, and independence holds for reward across slots for each
arm. In other words, arms do not have states. We have two typical
stateless BL types based on different reward generation models:
stochastic BL and non-stochastic (adversarial) BL.

3.1.1 Stochastic Bandit Learning
For stochastic BL, the reward of pulling each arm is stochastically
drawn from a specific probability distribution which can be
stationary or non-stationary. For the stationary case, the
expected reward of each arm is time-independent, i.e., μk,t =
μk. On this basis, the regret function can be written as

Rstationary T( ) � T · μ* − EG ∑T
t�1

rat,t⎡⎣ ⎤⎦. (2)

For the non-stationary case, the expected reward of each
arm might change with time. In this case, the previously
learned knowledge may not truly reflect the real expected
reward of current arms, potentially rendering the historical
observations of the pulled arms less useful. Consequently, the
BL problem becomes complicated, and the probability of
pulling a suboptimal arm increases. Then we have its regret
function as

Rnon−sta T( ) � ∑T
t�1

μt′ − EG ∑T
t�1

rat,t⎡⎣ ⎤⎦. (3)

UCB family algorithms have been widely adopted to resolve
the exploration-exploitation dilemma of the stochastic BL
problems. For the stationary case, the basic UCB algorithms
suffice. To deal with the non-stationary cases, the sliding-
window UCB algorithm (Ding et al., 2019) could be adopted,
only considering the previous observation of a fixed length.
Furthermore, we can utilize the discount UCB algorithm
(Garivier and Moulines, 2008), which emphasizes the recent
actions by averaging the rewards of arms with a discount
factor placing more weight on the recent observations. In
addition, some statistical test methods [e.g., generalized
likelihood ratio or Page-Hinkly test (Maghsudi and Hossain,
2016)] can be drawn upon to detect the expected reward
changes to improve the arm selection process.

3.1.2 Non-Stochastic (Adversarial) Bandit Learning
For non-stochastic (adversarial) BL, the reward generation of
each arm does not have any specific probability distribution. In
other words, the reward of each arm is determined by an
adversary at each slot rather than by a stochastic generation
process. A special case of regret, referred to as weak regret, is
usually used to measure the loss of adversarial BL. It considers the
single globally optimal arm and can be written as

W T( ) � max
i

∑T
t�1

ri,t − EG ∑T
t�1

rat,t⎡⎣ ⎤⎦. (4)

Weighted policy algorithms are usually used to resolve the
adversarial reward generation problem in the non-stochastic
BL. For full information cases, where the agent observes the
total rewards after each selection, we introduce the Hedge
algorithm (Slivkins, 2019), whose main idea is to pull an arm
with a probability proportional to the average performance of
arms in the past. The arms with high rewards quickly gain a
high probability of being pulled. For partial information cases,
where the agent only observes the reward of the pulled arms,
we can utilize the EXP3 algorithm (Kuleshov and Precup,
2014), which performs the Hedge algorithm as a subroutine
with a mixed probability distribution. The distribution
combines the uniform distribution and a distribution,
which is determined by the weight of each arm. In
addition, there are many other variations of the EXP3
algorithm, including EXP3.S, EXP3.P, and EXP4
algorithms. Interested readers are referred to (Auer et al.,
2002b) for details.
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3.2 Stateful (Markov) Bandit Learning
In the stateful (Markov BL), each arm has some finite states and a
Markov chain, where the probability of the following state only
depends on the current state. At each slot, the pulled arm yields a
reward drawn from a probability distribution, and the state of the
arm changes to a new one based on the Markov state evolution
probability. According to different state evolution models,
stateful BL can be classified into two types: rested (frozen) BL
and restless BL.

• In the rested BL model, at each round, only the state of the
selected arm evolves with time and the states of other arms
are frozen.

• In the restless BL model, at each round, all the states of arms
(including the unselected arms) might evolve with time.

In order to resolve the stateful BL problems, we usually
leverage index policies (Whittle, 1980; Liu and Zhao, 2010a),
which, for each arm, calculate a defined index and provide a
proxy tomeasure the expected reward in the current state. To deal
with rested BL, the Gittins index policy (Whittle, 1980) is usually
adopted. This policy works under the Bayesian framework and
transforms an N-dimension rested BL problem into N
independent 1-dimension ones, significantly reducing the
computational complexity. Furthermore, in the restless BL
model, we can leverage Whittle’s index policy (Whittle, 1988).
The policy first needs to prove that each arm is indexable, which
guarantees the existence of Whittle’s index in restless BL. Then it
decouples the restless BL problem into multiple sub-problems by
applying Lagrangian relaxation for computational simplification.

4 MULTI-AGENT (DISTRIBUTED) BANDIT
LEARNING

In this section, we extend single-agent (centralized) BL to multi-
agent (distributed) BL. The participation of multiple agents in the
arm selection process brings the benefits of increased learning
efficiency and enhanced system capacity at the expense of
increasing network complication and computational
complexity. Two critical issues, collisions and communications
between agents, naturally arise due to the introduction of multiple
agents. Collisions occur when different agents pull the same arm
simultaneously, and communication modeling could potentially
complicate the topology of the network.

Apparently, SA-BL is a particular case of MA-BL, and the
aforementioned different features of the classifications in SA-BL,
shown in Figure 1, are also applicable to MA-BL. For simplicity,
we do not repeat the classifications and focus on the issues of
collisions and communications.

4.1 Modelling of Collisions
We consider M agents in MA-BL indexed by
M � {1, . . . , m, . . . ,M}, and the policy G for single agent is
extended to G � {a1, . . . , at, . . . , aT}, where the vector at = [a1,t,
. . . , am,t, . . . , aM,t] indicates the actions of all theM agents at slot
t. Other settings are in line with those of the mathematical

formulation in Section 2.2. Two popular collision models are
summarized as follows.

• Collision model I: When multiple agents pull the same arm,
they share the reward of the arm in a specific (e.g., uniform
and arbitrary) manner. In this model, the reward at slot t can
be written as

Xt � ∑K
k�1

1Ik · rk,t, (5)

where 1Ik equals 1 if arm k is pulled at least once, and 0 otherwise.

• Collisionmodel II: Whenmultiple agents pull the same arm,
none of them obtains a reward. In this model, the reward at
slot t can be written as

Xt � ∑K
k�1

1IIk · rk,t, (6)

where 1IIk equals 1 if arm k is pulled exactly once, and 0 otherwise.
Note that if a collision happens and all the collided agents have

the full reward of the arm, it is a trivial problem as it carries no
difference from SA-BL.

Following the above models, the regret function of MA-BL can
be written as

RMA T( ) � EG* ∑M
m�1

ram,t* ,t*⎡⎣ ⎤⎦ − EG ∑T
t�1

Xt
⎡⎣ ⎤⎦. (7)

To minimize the regret function, a distributed policy needs to
be carefully designed to alleviate collisions, although such a policy
might not be optimal from the perspective of a single agent.

4.2 Modelling of Communications
The level of information exchange among agents could vary
significantly. Here we introduce two communication models
and give the corresponding solutions in the following.

4.2.1 No Communication
One extreme case is that no information exchange among agents
takes place. In such a case, each agent pulls an arm only based on
its local observation of the previous selections and rewards. To
alleviate collisions, we usually utilize order-optimal policies (Liu
and Zhao, 2010b). These policies design a pre-determined slot
allocation pattern so that each agent can use a different slot to
select the optimal arm independently. We exemplify such a
concept for the case with two agents. At even slots, agent one
selects the arm with the highest BL index (e.g., UCB index) and
agent two selects the arm with the second-highest index, and vice
versa for the odd slots.

4.2.2 Partial Communications
In partial communications, different agents partially
communicate with each other. For instance, either an agent
can observe other agents’ selections only when they select the
same arm, or an agent can only communicate with agents being
its neighbor or within a given number of hops. With this
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information exchange, agents involved can make a collaborative
policy to facilitate the collision reduction, usually with the aid of a
graph-based method. We define an undirected coordinate graph
G � (V, E), where V is a set of nodes and E is a set of edges
between nodes. We model the MA-BL network as a coordinate
graph, where each node v ∈ V can be viewed as an agent and each
edge between a pair of nodes (vp, vg) ∈ E,∀vp, vq ∈ V indicates
that the agent vp and vq are neighbors and the two agents may
make arm selection collaboratively. Based on the graph, coop-
UCB and coop-UCL algorithms (Landgren, 2019) are developed
to deal with the issue of collisions in the BL with partial
communications. As another solution, calibrated-based BL
(Foster and Vohra, 1997) enables each agent to simultaneously
learn the reward performance of arms and predict the selections
of other agents. The equilibrium point will be progressively
reached in the BL process, reducing the collision frequency.

5 OTHER TYPES OF BANDIT LEARNING

Apart from the classifications in SA-BL and MA-BL, shown in
Figure 1, there are many other BL models and we will introduce
some of them in this section. Here many other BL models exist,
which are independent of those in SA-BL andMA-BL, potentially
covering more features. They can be incorporated into SA-BL and
MA-BL, generating more comprehensive BL models. For
simplicity, we only introduce these models with a single agent.

5.1 Contextual BL
Contextual BL assumes that the expected reward of each arm is a
function of the contextual information. It enables the agent tomake a
sequential selection from a set of arms based on the observed
contextual information and previous knowledge, followed by
receiving numerical rewards. This extra information can
accelerate the convergence process by learning the underlying
connection between arms and contextual information.

LinUCB algorithm (Chu et al., 2011), developed based on the
classical UCB algorithm, is usually leveraged in contextual BL. It
takes advantage of the contextual information by maintaining a
context-related vector, assuming that the reward of pulling an
arm is a function of the vector and the corresponding contextual
information. In addition, there are many other solutions, e.g.,
LinREL and KernelUCB, and interested readers are referred to
(Zhou, 2015) for details.

5.2 Sleeping BL
In sleeping BL, the set of available arms is time-varying and each
arm’s state can be exchanged between “awakening” (can be
pulled) and “sleeping” (cannot be pulled).

The optimal arm may be time-varying and the arm selection
becomes more complex, decreasing the learning speed. Moreover,
apart from awakening and sleeping, the states of arms can also be
mortal (Chakrabarti et al., 2008). It means that arms are available
only for a finite time period, which can be known/unknown and
deterministic/stochastic.

The sleeping BL is often resolved by using FTAL and AUER
algorithms (Kleinberg et al., 2010). Since the optimal arm may be

sleeping in some slot, these algorithms aim to order in advance all the
arms in terms of the expected rewards, and view the optimal ordering
of the selections as the optimal policy. As for the mortal case, DetOpt
algorithm (Chakrabarti et al., 2008) solves the selection by pulling each
arm several times and abandoning the arm unless it seems promising.

5.3 Combinatorial BL
In combinatorial BL, we relax the setting that the agent selects one
arm for each slot, and assume that a set of arms (a super arm) can
be pulled at each slot.

The reward of the pulled super arm is a sum function of
weighted value of all the pulled arms’ rewards, due to the
dependencies of arms. Here, the selection space exponentially
increases due to the explosion of combinations of arms.

To deal with the issues of selection space and dependencies of
arms, we can utilize LLR algorithm (Gai et al., 2012), which selects
a super arm and records the observations both for the arms and
the super arm. As an arm might belong to different super arms,
LLR could exploit this dependency information to accelerate the
learning process. Other algorithms for solving combinatorial BL,
such as CUCB and ComBand, can be found in (Cesa-Bianchi and
Lugosi, 2012) for interested readers.

6 APPLICATIONS OF BL IN 5G MOBILE
EDGE COMPUTING

In this section, we introduce several applications of BL in the 5GMEC
system. We first present their system models and problem
formulations, then provide their simulation results to show the
excellent performances of the proposed different BL algorithms. We
consider SA-BL in thefirst two applications andMA-BL in the last one.

6.1 Contextual User-Centric Task
Offloading for Mobile Edge Computing
In Liu et al. (2022), we consider a general user-centric task
offloading scheme for MEC in ultra-dense networks (UDN),
where a mobile user (MU) randomly moves around the whole

FIGURE 2 | Illustration of user-centric task offloading for MEC in UDN.
The two dotted lines represent the uncertain future tracks of the MU.
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network without any predictable tracks. The MU may remain
static or move in any direction and computational tasks can be
generated sequentially at any location. These tasks will be
offloaded to its nearby small base stations (SBSs), which can
be referred to as arms. As shown in Figure 2, the dotted lines
represent the uncertain future tracks of the MU, and tk and tk+1
indicate the time when kth and (k + 1)-th tasks are generated,
respectively.

We formulate the mobile task offloading problem, aiming to
minimize the long-term total delay in finishing the tasks of the
MU. However, due to the unpredictability of the MU’s tracks,
many information (e.g., moving tracks, SBS computation
capacity, and channel fading gain) cannot be obtained in
advance. Besides, the channel conditions (between SBSs and
MU) and the delays (of executing different tasks) are changing
over time and exhibit randomness. Therefore, the conventional
methods cannot tackle the problem.

To address the challenges, we propose the contextual sleeping
bandit learning (CSBL) algorithm. The idea is to incorporate the
contextual information (e.g., SBS location, service provider, and task
type) into the bandit learning to accelerate the convergence process
by exploring the underlying relationship between contextual
information and arms. At each selection round, the MU first
collects the current contextual information of the SBSs and then
makes a selection based on the contextual information and previous
knowledge of the delay performance of the SBSs. From the
perspective of the MU, an available SBS may disappear and then
appear again due to the random movement. Hence, we leverage the
sleeping bandit learning to enable theMU to identify the status of the
arms (sleeping or awakening), thereby accelerating the learning
process. We compare the proposed CSBL algorithm with the
existing BL algorithms in terms of the cumulative delay, i.e., the
cumulated delay over slots, in Figure 3. It can be seen that CSBL
outperforms other BL algorithms [i.e., UCB1 (Auer et al., 2002a),
AUER (Kleinberg et al., 2010), S-LinUCB (Mohamed et al., 2021),
and SEEN (Chen et al., 2018)] and close to Oracle and Delay-
Myopic, which are two algorithms with prior knowledge of arms.

6.2 Task Offloading for Large-Scale
Asynchronous Mobile Edge Computing: An
Index Policy Approach
In Xu et al. (2021), we consider aMEC system, shown in Figure 4,
which has one MEC server and multiple users. Each user runs
mission-critical tasks generated randomly, and each task has a
deadline. The local computation resource of each user is not
sufficient to meet the deadline demand of the tasks. Therefore, a
user seeks assistance from resourceful MEC servers by task
offloading at the expense of transmission delay and energy.

Our objective is to design a task offloading policy to meet the
deadline requirement of each task while keeping the total
transmission energy costs at a low level. However, because the
task arrival pattern is stochastic and unpredictable, it is
impossible to solve a static combinatorial optimization
problem before task arrival. Besides, the computational
resources at the MEC server are limited. Thus, it is pretty
challenging to balance the transmission energy costs and the
deadline requirements.

To deal with the challenges, we develop a new reward function,
considering both deadline requirements and transmission energy
costs. Then we formulate the task offloading problem as a restless
BL one with the objective to maximize the total discounted
reward over the time horizon. To solve this problem, we
propose a Whittle’s index (WI) based policy and rigorously
prove the indexability, which guarantees the existence of WI
in restless BL. Then we focus on the task completion ratio and
propose a shorter slack time less remaining workload (STLW)
rule, which identifies the criticality of the tasks by giving priority
to the tasks with shorter slack time and less remaining workload.
By applying STLW intoWI, we develop the STLW-WI algorithm,
which could improve the performance of the policy by selecting
the users with the highest WI value without violating the STLW.
Then we compare our proposed algorithm STLW-WI with the
existing BL algorithms in terms of task completion ratio, i.e., the
proportion of tasks that can be completed before their deadlines.
It is clearly shown in Figure 5 that theWI algorithm outperforms
other existing algorithms (i.e., Greedy (Xu et al., 2021), LST
(Davis et al., 1993), EDF (Liu and Layland, 1973)), and applying
STLW into WI can further improve the task completion ratio
compared with WI.

6.3 Multi-Agent Calibrated Bandit Learning
With Contextual Information in Mobile Edge
Computing
In Zhang et al. (2022), we consider an MA-BL MEC system
composed of one macro base station (MaBS), multiple microcell
base stations (MiBSs), and several randomly located users shown
in Figure 6. At each round, the users select MiBSs independently
to offload their tasks, and the MaBS monitors the task offloading
decisions of all users in this round and broadcasts such
information. We incorporate contextual information into our
model, such as task size and type. The competition of
computational resources among users requires an advanced
strategy to reduce the collision.

FIGURE 3 | Performance comparison in terms of the cumulative delay.
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We formulate the task offloading as an optimization problem,
aiming to minimize the long-term average task delay of all users
with a restricted number of MiBSs. Different from the

conventional static optimization, our problem is quite
challenging due to the lack of information about MiBSs and
other users. Thus, it is impossible to design a task offloading
policy by solving a static non-convex nonlinear integer
programming problem. We can develop a centralized task
offloading policy by utilizing a collaborative BL method.
However, centralized decision making is required, collecting all
users’ task features and then returning the task offloading
decisions. A significant transmission delay may be introduced,
which is highly undesirable in practice.

To deal with the problem, we develop a decentralized task
offloading policy without peer-to-peer information exchange,
where all users can make decisions locally. We decouple the
formulated problem into several independent contextual BL
problems; each user minimizes its own long-term average task
delay. We also leverage the calibrated method by developing a
calibrated forecaster for each user to predict others’ actions. On
this basis, we propose a contextual calibrated bandit learning
(CCBL) algorithm by fusing the BL and calibrated learning. We
compare CCBL with the existing BL algorithms in terms of the

FIGURE 4 | A typical asynchronous MEC system with 4 users.

FIGURE 5 | Performance comparison in terms of the task completion
ratio.

FIGURE 6 | An example of the system model with 5 MiBS and 8 users.

FIGURE 7 | The average delay of all users versus task round r.
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average delay in Figure 7. It is clearly shown that the proposed
CCBL algorithm outperforms other algorithms [i.e., LTS (Zhang
et al., 2022), Myopic (Wang et al., 2020), ϵ-Greedy (Kuleshov and
Precup, 2014), and Calibration (Foster and Vohra, 1997)] and is
only slightly inferior to CGA (Feng et al., 2019), which is the
benchmark with a centralized algorithm.

7 FUTURE RESEARCH CHALLENGES AND
DIRECTIONS

Although dozens of BL algorithms and several applications have
been introduced and elaborated on, there are still many issues and
solutions which are not involved. Here we present a few possible
future directions and challenges on BL in 5G and beyond MEC.

7.1 UDN
UDN is a promising paradigm to enable future wireless
communications supporting efficient and flexible massive
connectivity. This is achieved by deploying a large number of
MEC servers, each with a small transmission range at the network
edge. Naturally, combining MEC with UDN will significantly
increase the coverage of edge computing and provide ubiquitous
task offloading services consistently across the whole network
(Sun et al., 2017). From the perspective of users, they have more
alternative selections of different MEC servers, increasing the
selection space. However, the first issue in the UDN-MEC system
is the energy constraint because the servers are usually powered
by batteries. Another issue is the migration cost caused by a user
selecting different servers to perform task offloading. This issue
becomes even severe when users are constantly moving across the
network. In addition, other issues, such as the Doppler effect,
resource competition, and mobility management, should also be
considered. These issues must be carefully addressed when we
design BL algorithms. For instance, sleeping/mortal
characteristics of servers can be leveraged to model the system,
and the contextual information of the offloading environment
can be utilized to facilitate the arm selection process.

7.2 IIoT
The booming of the IIoT brings an exponential increase in
industrial devices, calling for more flexible and low-cost
communications. The 5G-MEC technologies bring a cyber
revolution and considerable benefits to the industry. This is
achieved by supporting flexible communication services with
low hardware complexity and providing massive and robust
connectivity. Numerous industrial devices generate a massive
volume of data, which can be utilized for the deployment of BL
methods.

Note that industrial data has unique features. For example,
some machine-type communication data is usually stable and has
a relatively long transmission horizon. Meanwhile, somemission-
critical applications generate ultra-reliable and low-latency data,
which has short-length packet and require instance execution

(Sisinni et al., 2018). Therefore, different application
characteristics and requirements should be considered in the
designing and deployment process of BL.

7.3 FGFA
In most existing communication networks, users trying to access
wireless channels have to obtain access permission via a
contention-based random access (RA) process with multiple
handshakes (Shahab et al., 2020). However, the excessive delay
and signaling overhead involved are unacceptable for many
emerging mission-critical applications and those with small-
size tasks. Therefore, to improve the access success ratio and
the throughput of the MEC system, FGFA is developed to pre-
allocate dedicated channels to specific users so that extra
handshakes can be spared (Mahmood et al., 2019). Meanwhile,
if the pre-allocated channels are not utilized by users, it will cost
unnecessary network resource costs. As a solution, BL could be
incorporated to learn the performance of each user and utilize the
contextual information to streamline the design of pre-allocation
selection policies achieving more efficient network resource
utilization.

8 CONCLUSION

In this paper, we provided a comprehensive tutorial on BL in
5G MEC, where BL is incorporated for joint consideration of
the offloading decision and communication/computation
resource allocation. Specifically, we reviewed the
fundamental of BL, including background, mathematical
formulation, and several popular solutions. We classified BL
into three forms, ranging from SA-BL, MA-BL to other types,
then we elaborated on each of them and presented several
corresponding widely used algorithms. Furthermore, to show
how to deploy BL in 5G MEC, we introduced several
applications, where the system models and problem
formulations were presented, followed by the simulation
results to show the excellent performances of the BL
algorithms. In addition, we introduced several future
directions and challenges on BL in 5G MEC.
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