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Facial micro-expressions (MiEs) analysis has applications in various fields, including
emotional intelligence, psychotherapy, and police investigation. However, because
MiEs are fast, subtle, and local reactions, there is a challenge for humans and
machines to detect and recognize them. In this article, we propose a deep learning
approach that addresses the locality and the temporal aspects of MiE by learning
spatiotemporal features from local facial regions. Our proposed method is particularly
unique in that we use two fusion-based squeeze and excitation (SE) strategies to drive the
model to learn the optimal combination of extracted spatiotemporal features from each
area. The proposed architecture enhances a previous solution of an automatic system for
micro-expression recognition (MER) from local facial regions using a composite deep
learning model of convolutional neural network (CNN) and long short-term memory
(LSTM). Experiments on three spontaneous MiE datasets show that the proposed
solution outperforms state-of-the-art approaches. Our code is presented at https://
github.com/MouathAb/AnalyseMiE-CNN_LSTM_SE as an open source.
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1 INTRODUCTION

Analysis of MiEs plays an important role in several disciplines such as psychology, human–machine
interaction, and security due to its characteristics disclosed by (Ekman and Friesen, 1969) as
universal, spontaneous, local, and low-intensity expression. However, analyzing them is challenging
because they are subtle and fast reflexes that last only from 1/25 to 1/5 s.

Since then, numerous researchers have proposed automated approaches for MER. Various
strategies, ranging from handmade to deep learning, are utilized to handle various issues such as the
low-intensity aspect, the limitation of MiE samples, and the imbalance of the available data.

Our proposed solution relies on a recent and efficient region-based deep learning approach
presented by Aouayeb et al. (2019). This method (Aouayeb et al., 2019) is unique in using an updated
label vector based on emotion and its related action units (AUs) for each location in the spatial
domain to learn more robust features. The main disadvantage of that method is the static selection of
regions of interests (ROIs), with no guarantee that all areas of the region are essential for MER.
Another drawback is that the spatiotemporal features from all regions are fused by a simple
concatenation block. However, each region may contribute with different weights for different MiEs.

In this study, we aim to overcome these two issues. The proposed solution addresses the first issue
by learning the active patches on each region and the second issue by learning the active region for
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each MiE sequence through time. Its novelty is to combine a deep
learning architecture of CNN-LSTM for spatiotemporal features
extraction with a fusion attention block called squeeze and
excitation (SE) (Hu et al., 2018) to learn more local features. It
results in training CNN efficiently on more local areas and
learning the attention of each region’s features extracted by
LSTM, which helps classify them using fully connected layer
(FCL) and outperforms state-of-the-art performance on 3 MiE
datasets.

The principal contribution of this study concerns extracting
more local characteristics of each ROI, identified by Aouayeb
et al. (2019), using CNN and SE. By training the CNN with very
local regions (patches), the model focuses on learning more local
features avoiding unnecessary ones for MER (e.g., edges, shapes,
and textures). However, it could augment the redundancy of the
extracted spatial features from different patches and harm the
model’s training. To alleviate this issue, we employ SE as an
attention block to learn the active patches. The originality is that it
is the first time a deep learning model is trained on tiny regions to
extract very local features, pointed out by different handcrafted
approaches (Zhao and Xu, 2018; Zhao and Xu, 2019; Zhao et al.,
2021) as essential for MER. The second contribution is to employ
another SE block to learn the attention of the spatiotemporal
features and identify the principal regions during a micro-
expression sequence. As a result, a classifier could learn more
efficiently.

The rest of the study is organized as follows. Section 2 presents
the state-of-the-art solutions for MiE recognition. Section 3
describes the proposed spatiotemporal architecture for MiE
recognition. The performance of the proposed solution is
assessed and compared to the best-performing solutions in
Section 4. Finally, Section 5 concludes this paper.

2 RELATED WORK

In this section, we review different approaches for MER. The
state-of-the-art solutions are grouped into four categories:
handcrafted, deep learning, hybrid, and region-based solutions.
A complete survey on micro-expression databases, features, and
algorithms is made by Ben et al. (2021) for further details.

2.1 Handcrafted Solutions
The pioneer works onMiE recognition are handcrafted solutions.
Zhao and Pietikainen (2007) proposed Local Binary Pattern on
Three Orthogonal Planes (LBP-TOP) for features extraction to
detect the appearance of face information that describes the
variation of pixel intensity. Subsequently, many variants of
LBP-TOP were proposed for MER. Wang et al. (2014)
proposed Local Binary Pattern (LBP) with six intersection
points of the planes (x, y), (x, t), and (y, t) to reduce
redundancy in LBP-TOP. Guo et al. (2019) proposed
Extended LBP-TOP (ELBP-TOP), which computes three
components—the LBP-TOP, the radial difference LBP-TOP,
and the angular difference LBP-TOP—to explore the second
order of local information in angular and radial directions.
Different from these methods, Polikovsky et al. (2009) used

the Histogram of Oriented Gradient (HOG) as a descriptor on
particular regions of the face to recognize MiE. In addition,
Duque et al. (2020) proposed the Mean Oriented Riesz
Features (MORF) descriptor, which uses a Riesz pyramid to
create an image pair and then extracts spatiotemporal features
from it. Despite the progress in handcrafted solutions for MER
and other computer vision tasks, they show limits in terms of
performance. On the contrary, based on the good results using
deep learning methods for different computer vision problems,
many researchers invested in using those methods for MER.

2.2 Deep Learning Solutions
Deep learning has been widely used for computer vision tasks
such as face recognition, object detection, image segmentation,
and tracking. Recently, deep learning architectures have been
proposed to classify MiE videos/clips. Patel et al. (2016) used a
pre-trained model on the ImageNet dataset and then fine-tuned
its weights to classify macro- and micro-expressions. Reddy et al.
(2019) proposed a 3D-CNN for spatiotemporal features
extraction and then performed the classification using a FCL.
Quang et al. (2019) adapted CapsuleNet (Sabour et al., 2017) for
MER. Furthermore, Choi and Song (2020) created a 2D feature
map based on the time variation of distance between facial
landmarks. Then, they fed the sequence of 2D feature maps to
a combined architecture of CNN and LSTM to extract
spatiotemporal features and classify them.

Themain challenge for deep learning solutions inMiE analysis
is not only that the provided datasets of spontaneous MiE
sequences are limited but also the imbalance between classes.
To overcome these problems, Yu et al. (2020) used an improved
architecture of conditional Generative Adversarial Nets (cGAN)
(Mirza and Osindero, 2014) called Identity-aware and Capsule-
Enhanced GAN (ICE-GAN) to synthesize and augment data. The
proposed solution consists of a conditional encoder-decoder to
generate synthesized MiE and a discriminator based on
CapsuleNet (Sabour et al., 2017) to discriminate the real from
the fake and identify the corresponding MiE class.

Considering the results of different deep learning solutions, we
can notice the improvement compared to handcrafted solutions.
However, the performance is still insufficient compared to other
computer vision tasks. Hence, there is a need for other solutions.

2.3 Hybrid Solutions
Instead of choosing between handcrafted and deep learning
approaches, some researchers consider benefiting from both of
them. Typical structures of optical flow (OF) or LBP-TOP are
usually employed, and the output is fed to a CNN or a
combination of CNN and recurrent neural network (RNN).

Liong et al. (2019) proposed Shallow Triple Stream Three-
dimensional CNN (STSTNet): the model used only the onset and
apex frames to generate optical flow images (optical strain,
horizontal flow, and vertical flow). The optical flow images are
stacked with the raw image, followed by three CNNs and a fusion
layer. Zhou et al. (2019) considered another approach: instead of
extracting deep features from a mix of handcrafted features, they
mixed the deep features extracted from the handcrafted ones
separately. Precisely, they used a dual CNN model: one for the
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horizontal component and the other for the vertical component
of OF calculated from a mid-position frame that represents the
apex and onset frame. The two outputs are merged by FCL to
perform the classification. Xia et al. (2020) studied the effect of
lower-resolution data on shallow architecture models. They
proposed an OF map as input for a recurrent convolutional
network with shallow architectures and used a neural architecture
search (NAS) (Liu H et al., 2019) strategy to find an optimal
combination of wide extension, short connection, and attention
units for strong features with low learning complexity.

Hybrid solutions gained a significant performance
improvement compared to previous approaches by mixing the
handcrafted and deep learning approaches to cover their flaws.
However, the results are still limited.

2.4 Region-Based Solutions
MiE video classification has evolved from handcrafted models (Zhao
and Pietikainen, 2007; Davison A et al., 2018; Duque et al., 2020) to
deep spatiotemporal networks (Patel et al., 2016; Reddy et al., 2019;
Yu et al., 2020) and hybrid solutions (Gan et al., 2019; Liong et al.,
2019; Xia et al., 2020). However, the improvements in MiE analysis
are more modest compared to other computer vision tasks such as
human action recognition (Ji et al., 2013). This observation reveals the
challenge ofMERand invites researchers to address the characteristics
of MiE as a short expression in space. Previous works focused on the
time and movement specificities of MiE. Recently, some researchers
(Zhao and Xu, 2018, 2019; Aouayeb et al., 2019) have proposed to
adopt the previous approaches on selected regions of interest (ROI)
instead of using the whole face to address the locality aspect of MiE.
Such solutions lead to significant improvements over state-of-the-art
works. The current work is also related to a region-based approach to
extract robust spatiotemporal features from local regions using deep
learning architecture for efficient MER. Inspired by existing works
(Hu et al., 2018; Aouayeb et al., 2019; Chen et al., 2019), we integrate
fusion units to learn active patches on each region and active regions
along each MiE temporal sequence.

3 PROPOSED SOLUTION

In this section, the proposed approach is presented on a deeper
level. The overall flow of the proposed system for automatic MER

is illustrated in Figure 1. The framework integrates a
preprocessing step to normalize the input data. Besides, it
includes two processing streams. The first is performed via a
CNN to extract spatial structures of each region. The second
stream is to extract spatiotemporal structures and classify them.
To sum up, our ultimate goal is to reduce the non-useful features
for MER extracted from the whole face. This is achieved by
extracting features from only ROIs and integrating a double
system of fusion in both space and time to add attention to
the most relevant spatiotemporal features.

3.1 Preprocessing: ROI Extraction
The selected ROIs are based on the Necessary Morphological
Patches (NMPs) presented by Zhao and Xu (2019). First, an
automatic technique (Kazemi and Sullivan, 2014) based on HOG
and linear classifier (the algorithm is provided on dlib1 library) is
used to detect the 68 facial landmarks. Second, we align and crop
the face based on these landmarks. Then, we identify the ROIs
that must contain the AUs responsible for a MiE.

According to Ekman and Friesen (1978), a facial MiE can be
represented with Facial Action Coding System (FACS) by a
combination of AUs. These AUs are mainly distributed in six
regions \{the left and the right (eyes + eyebrows), the nose, the left
and the right cheeks, and the mouth \} as shown in Table 1.

To find the active location of theMiEs and their corresponding
emotion label, Zhao and Xu (2019) used a random forest

FIGURE 1 | Overview of the proposed solution. Images reproduced from the SAMM database with permission from Davison A. K et al. (2018).

TABLE 1 | Facial regions and corresponding AUs: we focus on the local region
where characteristics of MiE appear.

Regions
of interest (ROI)

AUs

1 & 2: eyes + eyebrows 1,2,4,7
3: nose 9
4 & 5: cheeks 6
6: mouth 10,12,14,15,25

1http://dlib.net/face_landmark_detection.py.html

Frontiers in Signal Processing | www.frontiersin.org April 2022 | Volume 2 | Article 8614693

Aouayeb et al. STFF for Micro-Expression Recognition

http://dlib.net/face_landmark_detection.py.html
https://www.frontiersin.org/journals/signal-processing
www.frontiersin.org
https://www.frontiersin.org/journals/signal-processing#articles


algorithm on the combination of optical flow’s histogram with
LBP-TOP’s histogram. The result is depicted in Figure 2.

After the localization of the ROIs, they are cropped from the
entire face. Then, their size is normalized to a predefined size for
each region. Table 2 shows the size by region on each dataset and
the average size among the different databases used in our
experiments.

Next, each region is divided into m equal patches. One shall
notice that our method differs from those of Zhao and Xu (2018)
and Zhao and Xu (2019) in that we get the patches from the six

ROIs, not from the entire face. Precisely, we have mp6 patches,
and we have different sizes for patches depending on the size of
the region. Thus, a reshape is applied to fit the CNN input
architecture. An ablation study of the number of patches is
presented in Table 3. It tests the performance of the model
using a different number of patches on the mixed dataset of
SAMM and CASME II for five AU classification tasks. Further
details on the mixed database are presented in the
Supplementary Material. It shows that m = 9 is the best
choice and outperforms the other choice on four different
metrics: accuracy, f1-score, UAR, and UF1. For additional
proof of concept, the confusion matrices are presented in the
Supplementary Material.

3.2 Spatial Features Extraction
Now that we have finished the preprocessing step and the data are
prepared to be fed into the network, we introduce the spatial
model for features extraction from each region. The proposed
model is visualized in Figure 3.

The proposed network first encodes each patch spatially using
the CNN model. This provides a deep local and low-resolution
features representation. Then, the following SE network fuses the
features with an attention process to learn the activated patches
and feed the output to FCL to classify them while reducing the
dimension of the spatial features.

For the CNN model (Figure 4), we used the same
architecture proposed by Aouayeb et al. (2019) with the
adaption of the input to the size of the patches. The model
has a convolution layer of four filters with a size of 5 × 5
followed by a second convolution layer of eight filters with a
size of 3 × 3. Then, a max-pooling layer with a pooling size of
2 × 2 is employed in parallel with four convolution layers of
16 filters with sizes of 1 × 1, 3 × 3, 5 × 5, and 7 × 7,
respectively. A Rectified Linear Unit (ReLU) as an
activation function and a max-pooling layer with a size of
2 × 2, to reduce the spatial dimensions, are employed after
convolution operations. After that, we concatenate the output
of the last parallel max-pooling layers. This model is
formulated by Eq. 1. Let us denote OutPj(r) as the output
of each patch Pj(r) from the region r of the frame Fj, Convba as
the convolution operation with “a” filters of size b × b
followed by ReLU (Conv0a � Identity) and maxP to denote
the max-pooling layer:

H � maxP Conv38 maxP Conv54 Pj r( )( )( )( )( )
Outp,j r( ) � Concat maxP Convi16 H( )( ); i ∈ 0, 1, 3, 5, 7{ }( ).

(1)

The outputs of the nine patches are concatenated and fused
using SE (Hu et al., 2018), as depicted in Figure 3. A detailed
illustration of the SE network is shown in Figure 5. The squeeze
and excitation block mainly contains two operations:

1) The squeeze operation performed by Eq. 2: its operation is
based on compressing the input with a global average pooling
from (H, W, F) to (1, 1, F) and feeding it to an FCL (or 1 × 1
convolutional layer). The FCL has se.F neurons (se < 1 is the
SE parameter) and ReLU as an activation function:

FIGURE 2 | Regions of interest and the corresponding emotions. Image
reproduced from the SAMMdatabase with permission fromDavison A. K et al.
(2018).

TABLE 2 | The dimension for each region on each dataset and the mean between
the three databases (CASME II, SAMM, SMIC).

ROI SMIC CASME II SAMM Normalized Size

1 & 2 68 × 72 80 × 100 98 × 134 81 × 102
3 68 × 82 80 × 120 98 × 160 81 × 120
4 & 5 48 × 40 60 × 60 74 × 80 60 × 60
6 50 × 106 60 × 160 72 × 214 60 × 160

TABLE 3 | Ablation study of the number of patches. The proposed model is
trained and evaluated using LOSO-CV protocol on a mixed dataset of SAMM
and CASME II for the 5-AU classification task. m is a square root of non-negative
numbers, and its maximum is 16 because of memory limitation. * The batch size is
reduced to 32 instead of 128 like the rest of the experiments.

m Accuracy F1-score UAR UF1

1 0.8493 0.8389 0.8190 0.8110
4 0.8503 0.8400 0.8193 0.8126
9 0.8954 0.8916 0.8317 0.8399
16* 0.8646 0.8621 0.8276 0.8210
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GAP input( ) � 1
W.H

∑
W

i�1
∑
H

k�1
inputik.

squeeze input( ) � ReLU A1.GAP input( ) + B1( ).
(2)

where input ∈ RH×W×F, A1 and B1 are, respectively, the weight
matrix and the bias vector of FCL, and GAP is for global average
pooling layer.

2) The excitation operation (Eq. 3), which is a simple FCL (or 1 ×
1 convolutional layer) with F neurons followed by a sigmoid
activation: the purpose of the excitation is to generate a weight
for each feature channel. In our case, the feature channels
represent the spatial features extracted from each patch Pj(r):

excitation squeeze( ) � σ A2.squeeze + B2( ). (3)

where A2 and B2 are the parameters of the FCL. Finally, we
multiply the generated weights of the excitation with the feature
maps FM:

FM � Concat OutPj r( ), p ∈ 1 . . . 9{ }( )
SE FM( ) � excitation squeeze FM( )( ) · FM.

(4)

For a more thorough description of the SE architecture and its
effectiveness, more details can be found in Hu et al. (2018).

After the SE operations, we integrate a global average pooling
layer and two FCLs, with, respectively, 2048 and 256 neurons and
ReLU as an activation to reduce the dimension of the spatial features.
A last layer of FCL is addedwith the softmax function to perform the
classification. Furthermore, a dropout of 0.5 is used after each FCL to
immunize the model against the overfitting problem.

FIGURE 3 | The proposedmodel for spatial features extraction from the left \{eye + eyebrow\} region. Themodel contains two main parts: the extraction of features
from patch Pj(r) using CNN and the fusion of features using SE. Image reproduced from the SAMM database with permission from Davison A. K et al. (2018).

FIGURE 4 | The CNN architecture proposed by Aouayeb et al. (2019). It is employed to extract very local features form patches.
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After training the spatial model, we save the output of the last
ReLU function applied on the FCL with 256 neurons, as the
spatial features SFj(r) (equation in 5) extracted from region r at
frame Fj. At this point, each MiE sequence is transformed into six
sequences of local spatial features (one for each ROI):

SFj r( ) � FCL256 FCL2048 GAP SE FM( )( )( )( ). (5)

3.3 Spatiotemporal Features Extraction and
Classification
The temporal aspect of MiE is important for automatic MER
systems. In this section, the temporal model, shown in Figure 6, is
described. First, a zero-padding is applied to make all sequences
of spatial features in a batch fit a given standard length N. Then,
an LSTM with 64 units is applied on each sequence {SFj(r), j ∈ [1
... N]}, followed by a leaky Rectified Linear Unit (LeakyReLU) as

activation and a dropout of 0.2. For regions, the output of the
LSTM is considered as the spatiotemporal features performed by

STF r( ) � LSTM64 SFj r( ), j ∈ 1 . . .N{ }( ). (6)
After that, we integrate another SE block to fuse the

spatiotemporal features of the six regions and learn to activate
the region for each MiE sequence. The output STF of the SE block
is presented by

STF � SE Concat STF r( ), r ∈ 1 . . . 6{ }( )( ). (7)
The final step is classification. In this model, a simple neural

network (NN) is applied. It contains an FCL with 256 neurons
and LeakyReLU as an activation function, followed by a dropout
of 0.5 and then another FCL with K neurons and softmax as an
activation function, where K represents the number of classes.
Then, the system provides for each MiE sequence S a set of K
probabilities P(s) set as

FIGURE 5 | Squeeze and excitation (SE) block structure.

FIGURE 6 | Temporal model architecture: the LSTM is employed to extract spatiotemporal features and SE to learn attention of active regions.
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P S( ) � Softmax FCLK FCL256 STF( )( )( ). (8)

3.4 Architecture Details
This section provides some details on the input,
hyperparameters, and loss function used in the proposed
solution. The input image for the spatial model has pixels
with values in the [0, 255] range. It is standardized to be in the
range [0, 1]. The input sequence of spatial features for the
temporal model is normalized in such a way that the mean
value data are equal to 0 with the standard deviation equal to 1.
Moreover, all the layers are initialized with random values of
the normal distribution with a mean value equal to 0 and a
standard deviation equal to 1.

In order to train the spatial model or the temporal model with
the classification network, a focal loss (Lin et al., 2018) is used. It is
presented by

LFL � −∑
i

αiyi 1 − pi( )γ log pi( ). (9)

where LFL denotes the focal loss, αi ∈ [0, 1] is a weighting factor
for class i set by inverse class frequency to contribute the
imbalance between classes, and γ > = 0 is the focusing
parameter often set to 2. The role of (1 − pi)γ factor is to
balance the loss between hard and easy classification task of
samples.

Furthermore, the used optimizer is Adam, with a learning
rate set to 1e − 4 for the training of the spatial model and 5e − 5
for the training of the temporal model with the classification
network. For fast implementation, we utilize the library of
Tensorflow-gpu 1.12.0, and all the experiments are
performed on a GPU cluster (GeForce GTX 1080 Ti GPU
32 GB memory).

4 EXPERIMENTS AND COMPARISON

In this section, we experimentally evaluate our contributions. We
start with a brief introduction of the datasets and the evaluation
methodology used in the 2nd Micro-expression Grand Challenge
(MEGC) (4.1). Then, we ablate the various design choices in the
proposed architecture to assess the comprehension of each (see
Section 4.1.6). Finally, we compare our solution to state-of-the-art
solutions (Section 4.2).

4.1 Databases and Evaluation Methodology
4.1.1 Databases
The three used datasets are CASME II (Yan et al., 2014), SAMM
(Davison A. K et al., 2018), and SMIC (Li et al., 2013). Besides
these three databases, another one called FULL is introduced in
MEGC (See et al., 2019) by fusing the three of them.

4.1.2 SMIC
The Spontaneous Micro-Expression (SMIC) dataset contains
three versions using three different cameras: a high-speed (HS)
camera at 100 frames per second (fps) and two cameras at 25 fps
of both visual (VIS) and near-infrared (NIR) light range. In all
experiments, we used the SMIC-HS version that features 164 clips
from 16 distinct persons. SMIC-HS generates sequences with a
face resolution of (190 × 230) that fall into only three categories:
negative, positive, and surprise.

4.1.3 CASME II
The Chinese Academic of Science Micro-Expressions II (CASME
II) dataset contains 247 sequences2 of spontaneous MiE from 35
people, comprising five categories—happiness, disgust,
repression, surprise, and sadness—and the Other category. The
sequences have high temporal and spatial resolutions of 200 fps
and (280 × 340), respectively.

4.1.4 SAMM
The Spontaneous Micro-Facial Movement (SAMM) has the most
ethnic diversity (13 ethnicities) and the most diverse age range.
Disgust, surprise, happiness, fear, anger, contempt, and sadness
are the seven main types of emotion depicted in the video
sequences, captured with a high-resolution camera at 200 fps.
A total of 159 spontaneous facial MiE sequences from 32 people
are included in the database. Among these three datasets, it has
the highest spatial resolution (400 × 400 pixels). Furthermore, the
focus of this dataset is on the objective AUs labels rather than the

TABLE 4 | Distribution of classes according to the MEGC conditions (See et al.,
2019).

Emotion class SMIC CASME II SAMM FULL

Negative 70 88† 92⊕ 250
Positive 51 32 26 109
Surprise 43 25 15 83
Total 164 145 133 442

†Negative class of CASME II consists of samples from its original emotion classes of
disgust and repression.
⊕Negative class of SAMM consists of samples from its original emotion classes of anger,
contempt, disgust, fear, and sadness.

TABLE 5 | Performance of the spatial and temporal fusion blocks.

(MEGC, LOSO-CV) UAR UF1 Accuracy

Aouayeb et al. (2019) 0.90 0.90 0.92
Spatial fusion 0.90 0.93 0.96
Temporal fusion 0.90 0.91 0.92
Spatiotemporal fusion 0.93 0.94 0.96

TABLE 6 | Performance of using the customized label for each region to train the
spatial model.

(MEGC, LOSO-CV) UAR UF1 Accuracy

Label of the whole face 0.82 0.82 0.83
Label based on region 0.93 0.94 0.96

2247 samples were reported by Yan et al. (2014), while, in the publicly available
dataset, the number of samples is about 255.
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emotional labels. Therefore, all of the sequences are FACS-coded
and include the Onset, Apex, and Offset frames.

4.1.5 FULL
It contains 442 sequences with three classes: “negative,”
“positive,” and “surprise.” It is introduced as data augmentation.

All used datasets in experiments are summarized in Table 4.

4.1.6 Evaluation Methodology
For the evaluation of the proposed solution, the Leave-One-
Subject-Out Cross-Validation (LOSO-CV) is used as a
protocol to split data into train and test sets. Data are divided
per subject following this protocol. At each time, the training is
conducted on Z-1 subjects and the test is run on the remaining
subject (Z is the total number of subjects). The metrics applied to
evaluate the system are the accuracy, the Unweighted Average
Recall (UAR), and the Unweighted F1-score (UF1). The UF1 and
UAR are computed by Eq. 11 and Eq. 10, respectively. Both
metrics are used with LOSO-CV as they are more convenient for
an imbalanced classification problem (See et al., 2019):

UF1 � 1
C

∑
C

c�1
F1c � 1

C
∑
C

c�1

2TPc

2TPc + FPc + FNc
. (10)

where TPc, FPc, and FNc are, respectively, true positive, false
positive, and false negative of class c and C is the number of
classes:

UAR � 1
C

∑
C

c�1
ACCc � 1

C
∑
C

c�1

TPc

Nc
. (11)

where ACCc and Nc are, respectively, the accuracy rate and the
number of samples of class c.

4.2 Results and Analysis
4.2.1 Contribution of Spatial and Temporal Models
The proposed method involves two stages of fusion in space and
time. To validate the use of the two fusion blocks, we test the
solution with and without the fusion blocks under the MEGC
conditions with LOSO-CV. The performance in terms of UAR,
UF1, and accuracy is summarized in Table 5. These results
demonstrate the efficiency of each fusion unit. The performance
with the two SE fusion blocks outperforms the base solution
without any fusion and the model with either a spatial fusion or
a temporal fusion, with a 3% more in UAR and almost 3% more
in UF1. One can observe a gain of 3% on UF1 and 4% on
accuracy with the spatial fusion compared to the basic solution,
which clearly supports the use of small patches instead of the
regions or the whole face. We can notice that the spatial fusion
has a more positive impact on the result compared to the
temporal fusion with 2% more in UF1 and 4% more in
accuracy, which can be explained by the fact that the basic
solution contains already a fusion of LSTMs with a simple
concatenation followed by an FCL but no fusion of spatial
features.

4.2.2 Impact of Learning With ROI Labels
Aouayeb et al. (2019) suggested using a customized label for each
region to train the spatial model. To demonstrate the effectiveness
of this contribution, we test the proposed model with the
provided labels for the whole face with the label given for each
region based on Aouayeb et al. (2019). Table 6 shows that the
solution with customized labels for each region performs better
because it helps the spatial model to train more efficiently by
focusing on a local region.

TABLE 7 | Performance on three classes based MEGC with LOSO-CV.

Aouayeb et al.
(2019)

Spatiotemporal
fusion

Data/metrics UAR UF1 UAR UF1

SMIC 0.88 0.88 0.91 0.91
CASMEII 0.98 0.98 0.98 0.99
SAMM 0.81 0.78 0.89 0.92
FULL 0.90 0.90 0.93 0.94

TABLE 8 | LOSO-CV performance of the proposed method, baselines, and the recent methods (* references from the MEGC 2019 challenge). Bold: score > 0.90.

Models FULL SMIC-HS Casame II SAMM

UF1 UAR UF1 UAR UF1 UAR UF1 UAR

See et al. (2019)◇ 0.58 0.57 0.20 0.52 0.70 0.74 0.39 0.41
Guo et al. (2019)◇ 0.62 0.62 0.57 0.58 0.78 0.80 0.52 0.51
Zhou et al. (2019)*† 0.73 0.72 0.66 0.67 0.86 0.85 0.58 0.56
Liong et al. (2019)*† 0.73 0.76 0.68 0.70 0.83 0.86 0.65 0.68
Liu Y et al. (2019)*† 0.78 0.78 0.74 0.75 0.82 0.82 0.77 0.71
Choi and Song (2020)† 0.77 0.75 0.72 0.71 0.87 0.84 0.67 0.60
Liu et al. (2021)† 0.83 0.83 0.81 0.81 0.88 0.89 0.80 0.79
Zhang et al. (2021)† 0.81 0.79 0.72 0.70 0.90 0.88 0.71 0.64
Zhao et al. (2021)† 0.91 0.90 0.85 0.85 0.97 0.97 0.91 0.89
Aouayeb et al. (2019) ⊕ 0.90 0.90 0.88 0.88 0.98 0.98 0.78 0.81
Yu et al. (2020)⊕ 0.85 0.84 0.79 0.79 0.87 0.86 0.85 0.82
Ours ⊕ 0.94 0.93 0.91 0.91 0.99 0.98 0.92 0.89

◇Handcrafted approach.
†Hybrid approach.
⊕Deep learning approach.
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4.2.3 Comparison to the State-of-the-Art
Table 7 shows that the proposed model improves the basic
architecture in UAR and UF1 by almost 4% in the FULL
database. By taking a closer look, one can find that the SAMM
part is the most improved, with 8% in UAR and 14% in UF1.

As shown in Table 8, the proposed solution outperforms all
state-of-the-art works, particularly handcrafted solutions where
the UAR and UF1 metrics are improved in most cases by 40%,
and one can also observe a slight improvement compared to
recent deep learning-based solutions. The main drawback of our
solution is the complexity of the algorithm, which makes the
tuning of hyperparameters of the model harder.

5 CONCLUSION

In this study, we have proposed a region-based solution for MER.
The proposed solution extracts spatiotemporal features using a
combined architecture of CNN and LSTM supported by a SE
fusion unit in space and time. The effectiveness of the
architecture, the use of the SE, and the ROI labels are

validated. Experiments on different databases demonstrate the
potential of this model. It outperforms the first solution in the
MEGC and other recently proposed solutions. In future work, we
will explore less complex architecture for MER that addresses the
locality character with an automatic system.
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