AUTHOR=Ravenscroft William , Goetze Stefan , Hain Thomas TITLE=Att-TasNet: Attending to Encodings in Time-Domain Audio Speech Separation of Noisy, Reverberant Speech Mixtures JOURNAL=Frontiers in Signal Processing VOLUME=2 YEAR=2022 URL=https://www.frontiersin.org/journals/signal-processing/articles/10.3389/frsip.2022.856968 DOI=10.3389/frsip.2022.856968 ISSN=2673-8198 ABSTRACT=

Separation of speech mixtures in noisy and reverberant environments remains a challenging task for state-of-the-art speech separation systems. Time-domain audio speech separation networks (TasNets) are among the most commonly used network architectures for this task. TasNet models have demonstrated strong performance on typical speech separation baselines where speech is not contaminated with noise. When additive or convolutive noise is present, performance of speech separation degrades significantly. TasNets are typically constructed of an encoder network, a mask estimation network and a decoder network. The design of these networks puts the majority of the onus for enhancing the signal on the mask estimation network when used without any pre-processing of the input data or post processing of the separation network output data. Use of multihead attention (MHA) is proposed in this work as an additional layer in the encoder and decoder to help the separation network attend to encoded features that are relevant to the target speakers and conversely suppress noisy disturbances in the encoded features. As shown in this work, incorporating MHA mechanisms into the encoder network in particular leads to a consistent performance improvement across numerous quality and intelligibility metrics on a variety of acoustic conditions using the WHAMR corpus, a data-set of noisy reverberant speech mixtures. The use of MHA is also investigated in the decoder network where it is demonstrated that smaller performance improvements are consistently gained within specific model configurations. The best performing MHA models yield a mean 0.6 dB scale invariant signal-to-distortion (SISDR) improvement on noisy reverberant mixtures over a baseline 1D convolution encoder. A mean 1 dB SISDR improvement is observed on clean speech mixtures.