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The automatic analysis of stained histological sections is becoming increasingly popular.
Deep Learning is today the method of choice for the computational analysis of such data,
and has shown spectacular results for large datasets for a large variety of cancer types and
prediction tasks. On the other hand, many scientific questions relate to small, highly
specific cohorts. Such cohorts pose serious challenges for Deep Learning, typically trained
on large datasets. In this article, we propose a modification of the standard nested cross-
validation procedure for hyperparameter tuning and model selection, dedicated to the
analysis of small cohorts. We also propose a new architecture for the particularly
challenging question of treatment prediction, and apply this workflow to the prediction
of response to neoadjuvant chemotherapy for Triple Negative Breast Cancer.
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1 INTRODUCTION

1.1 Context
Breast cancer (BC) is the most common cancer in women and the leading cause of cancer deaths with
18.2% of deaths among female cancer patients and 8% among all cancer patients (Institut National Du
Cancer, 2019). Out of the four main breast cancer types, Triple Negative Breast Cancer (TNBC)
represents 10% of all BC patients. This group has the worst prognostic with a five-year survival rate of
around 77 percent versus 93 percent for the others. Currently no specialised treatments exists and the
standard procedure consists in administrating neoadjuvant or adjuvant chemotherapy (Sakuma et al.,
2011). TNBC research is still a very active field of study (Foulkes et al., 2010) and on the one hand, most
works have focused on stratifying cohorts based on molecular and biological profiles (Lehmann et al.,
2016). We, on the other hand, tackle the problem of predicting the response variable in a TNBC
neoadjuvant chemotherapy (NACT) cohort from a histological needle-core biopsy section from the
primary tumor prior to treatment. In contrast to most of the effort in cancer research, which is driven by
the analysis of sequencing data, our study is based solely on the histological image data prior to treatment.

Each histological sample corresponds to tissue slides encompassing the tumor and its
surrounding, stained with agents in order to highlight specific structures, such as cells, cell
nuclei or collagen. The morphological properties of these elements and their spatial organisation
have been linked to cancer subtypes, grades and prognosis. Even if pathologists have been trained to
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understand and report the evidence found in this type of data, the
complexity, size and heterogeneity found in histological
specimens make it highly unlikely that all relevant and
exploitable patterns are known of today. Tissue images are
informative about morphological and spatial patterns and are
therefore inherently complementary to omics data.

Two major technological advances have triggered the
emergence of the field of Computational Pathology: first, the
arrival of new and powerful scanners replaced to some extent the
use of conventional microscopes. Today, slides are scanned,
stored and can be accessed rapidly at any moment (Huisman
et al., 2010). This in turn has lead to the generation of large
datasets that can also be analyzed computationally. The second
element was the rise of new computer vision techniques.

Indeed, while the analysis of tissue slides has been of
interest to the Computer Vision community for many years
(Bartels et al., 1988), it is the advent of deep learning that has
truly impacted the field. The advent of deep learning has
stemmed a wide number of projects and investments. For
visual systems, it is the combination of very large annotated
dataset (Jia et al., 2009), hardware improvement and
convolutional neural networks (CNN) that led to human-
like capabilities. These outbreaks in performance have led
to the creation of many annotated datasets and to the
application of CNN’s to many tasks. However, for
biomedical imaging in particular the application of CNN is
not always straightforward:

1) The price for generating and annotating large biomedical
dataset limits the progress of big data in this domain
(Gurcan et al., 2009).

2) In histopathology in particular, each individual sample can be
very large, one sample can be up to 60 GB uncompressed. This
leads to multiple issues, again linked with the time and price
needed for annotation, but also for the subsequent analysis
where ad hoc methods have to be used as an entire image does
not comfortably fit in RAM.

3) The nature of the data is inherently complex, each biological
sample has its own individual patterns to be differentiated
with relevant pathological evidence. For histopathology data,
samples have a very large inter-slide, but also intra-slide
variability that make the apparent signal harder to detect.
In addition, the level of detail can be an additional difficulty:
the relevant image features may be very fine grained, such as
mitotic events, or very large such as the size of relevant image
regions (necrotic, tumorous) (Janowczyk and Madabhushi,
2016).

In this paper, we set out to predict the response to NACT in
TNBC from Whole Slide Images (WSI). Prediction of treatment
response is one of the most difficult tasks in digital pathology
(Echle et al., 2021). Unlike tasks like tumor detection and
subtyping, for which high accuracies have been achieved in
the past (Echle et al., 2021), there are no known
morphological phenotypes that would allow for the prediction
of treatment response. Moreover, datasets with treatment
response are usually much smaller than datasets acquired in

clinical routine for tasks such as automatic grading, metastasis
detection or subtype prediction.

The contributions of this article are:

1) We benchmark several state-of-the-art architectures with
respect to their performance in treatment response prediction.

2) We propose a new architecture for the prediction of treatment
response and demonstrate its efficiency.

3) We propose a suitable model selection procedure that can
cope with small datasets and avoids re-training, which is
particularly important for deep learning. We prove its
validity and efficiency on simulated data.

The paper is organised as follows: in the next Section 1.2 we
describe related work. In Section 2, we describe the
methodological developments. In Section 2.1, we present the
limits of the current validation procedures and our alternative
method used in this study. We then introduce our histopathology
dataset in Section 2.3. Section 2.4 is devoted to introducing the
DNN architectures which will be applied to the TNBC cohort. In
Section 3, we show our results on the simulated data for our
validation procedure and the application of our DNN to the
TNBC cohort. Finally in Section 4 we discuss our methods and
results.

1.2 Related Work
1.2.1 Challenges in Computational Pathology
The field of research in computational pathology can be divided
in three categories:

1) Preprocessing, in particular color normalisation which aims at
reducing the bias introduced by staining protocols used in
different centers (Ruifrok and Johnston, 2001; Bejnordi et al.,
2016).

2. Detection, segmentation and classification of objects of
interest, such as regions (Bejnordi et al., 2017; Chan et al.,
2019; Barmpoutis et al., 2021) and nuclei (Naylor et al., 2018;
Graham et al., 2019).

3) The prediction of slide variables, such as presence and
detection of disease (Litjens et al., 2018; Campanella et al.,
2019), grading (Niazi et al., 2016; Ström et al., 2020), survival
(Zhu et al., 2017; Courtiol et al., 2019), gene expression
(Binder et al., 2018; Schmauch et al., 2020), genetic
mutations (Coudray et al., 2018) or genetic signatures
(Kather et al., 2020; Lazard et al., 2021).

Of note, these different of Computer Vision tasks have varying
degrees of difficulty. For instance, Deep Learning based tumor
detection and subtyping can be achieved with high accuracies
[AUC: 0.97–0.99 for detection, AUC: 0.85–0.98 for subtyping,
(Echle et al., 2021)]. This is not surprising, as these tasks rely on
well-known visual cues. In contrast, prediction of treatment
response is deemed one of the most difficult tasks in digital
pathology (Echle et al., 2021), because the related morphological
patterns are unknown and could potentially be very complex. It is
even not clear to which extent treatment response is actually
predictable from WSI.
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Pipelines for slide variable predictions are usually divided into
several steps. Tiles are partitioned into smaller images, usually
referred to as patches or tiles, which are then encoded by a DNN,
often trained on ImageNet (Zhu et al., 2017; Courtiol et al., 2019),
as depicted in Figure 2. The training on ImageNet might be
surprising at first sight, as the nature of the images are very
different. In addition, ImageNet samples usually have a natural
orientation, where the main object of interest is usually centered
and scaled to fit in the image (Raghu et al., 2019). In contrast,
histopathology images have a rotationally invariant content with
no prior regarding scale or positioning of the relevant structures.
However, rotational invariance can be imposed (Naylor et al.,
2019; Lafarge et al., 2020), and in practice ImageNet based
encodings are widely used and tend to perform very well.

After encoding of all tiles, each WSI is converted into a P × ni
matrix where P is the encoding size and ni the number of tiles.
The last step consists in aggregating tile level encodings to
perform unsupervised or supervised predictions at the slide
level (Zhu et al., 2017; Courtiol et al., 2018; Campanella et al.,
2019; Courtiol et al., 2019; Naylor et al., 2019).

Computational Pathology as a field has benefited from the
generation of large annotated data sets, mostly with pixel-level
annotations (Kumar et al., 2017; Litjens et al., 2018; Naylor
et al., 2018), or cell-level annotations (Veta et al., 2015) for cell
classification. The major resource for WSI with slide level
annotations are the Cancer Genome Atlas (TCGA) and the
Camelyon Challenge (Litjens et al., 2018). These public
repositories are paralleled by many in-house datasets (thus
not accessible to the public), some of which can be very large,
namely in a screening context, e.g., (Campanella et al., 2019).
In most cases however, the datasets tend to be very small and
fall therefore in the small n large p category. This is due to the
fact that often the most interesting studies focus on particular
molecularly defined cancer subtypes for which only small
cohorts exist. In addition, collecting the output variable
might be very challenging and time-consuming, if the
project is not formulated in the context of Computer Aided
Diagnosis. This is particularly true for treatment response
prediction.

1.2.2 Challenges in Applying DNN to Small Datasets
For all supervised learning method it is custom to use a two step
procedure for estimating the performance. After dividing your
dataset into three categories: train, validation and test. The first
step consists in performing model selection with the training and
validation set. The second step simply involves evaluating the
chosen model on the test set in order to assess an unbiased
estimator of the performance (Pereira et al., 2009). This is
however only possible if the three categories are large enough.
When the validation set is too small and the discrepancy in the
data too high, one could very easily over-fit or under-fit on the
dataset (Varoquaux, 2018). When the number of samples n is
small, which is usually the case for biomedical data, alternative
validation methods have to be found such as cross-validation
(CV) and nested cross-validation (NCV). CV is mostly used for
model selection or assessing performance. NCV is used when the
model needs a tuning based on an external dataset, such as

hyperparameter tunning for Support Vector Machines. Even if
these methods have been debated (Krstajic et al., 2014;
Varoquaux, 2018; Wainer and Cawley, 2018), they are widely
accepted. These methods are explained in more details in
Section 2.1.

1.2.3 Prediction of the Response to Neoadjuvant
Chemotherapy in Triple Negative Breast Cancer
Neoadjuvant chemotherapy (NACT) responses varies among
patients in TNBC and no clear biological signal has been
shown. Survival in these cohorts have been correlated to the
Residual Cancer Burden (RCB) variable (Symmans et al., 2007)
which can be used as a proxy for response. RCB is a
pathological variable based on measurements of how much
the primary tumor has shrunk and of the size of metastasis in
axillary lymph nodes. Finding biological evidence to NACT
response would allow for adequate and specific treatment,
some histological variables have been found to be correlated
with survival, such as the number Ki-67 positive cells (Elnemr
et al., 2016), tumor infiltrating lymphocytes (Mao et al., 2016)
and the Elston and Ellis grade (Elston and Ellis, 1991).
Depending on the context, some alternative treatments have
been found to help overall survival, such as those based on
anthracycline and taxanes (Sakuma et al., 2011), carboplatin
(Pandy et al., 2019) or with olaparib and talazoparib (Won and
Spruck, 2020). Some treatments have emerged with targeted
immunotherapy in combination with atezolizumab (anti-PD-
L1 antibody) and nanoparticle albumin-bound (nab)-
paclitaxel (Won and Spruck, 2020). Most of the studies for
NACT responses have been performed in clinical practices and
based on pathological variables (Elnemr et al., 2016; Gass et al.,
2018; Zhu et al., 2020). In addition, some studies have analysed
sequencing and molecular profiles in order to better
understand and stratify cohorts (Lehmann et al., 2016;
García-Vazquez et al., 2017; Wang et al., 2019).

To the best of our knowledge, it remains unclear whether and
to which extent NACT response can be predicted from biopsies
taken prior to treatment, and only few works have addressed this
question so far (Naylor et al., 2019; Ogier du Terrail et al., 2021).

2 MATERIALS AND METHODS

2.1 Validation Procedure
Here, we present our procedures to replace NCV in order to train
DNN in a context of small n large p. We first explain cross-
validation (CV), nested cross-validation (NCV) and their
limitations. We propose two different procedures, better suited
and show their effectiveness on a small case study.

2.1.1 Cross-Validation
CV is a common procedure for model evaluation or model
selection, specifically in situations where the data set is
relatively small. CV divides the initial data set into kf folds,
denoted F cv

1 ,F cv
2 , . . . ,F cv

kf
and runs algorithms on the data

sets with one fold left out. We define, for all j, the set F cv
−j,

which is the union of all folds expect for fold j:
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F cv
−j � ⋃

k∈[[1,kf]]
k≠j

F cv
k

2.1.1.1 Cross-Validation for Model Selection
CV can be used for model selection or model tuning. The
procedure that returns a tuned model M will be notated fcv.

M � fcv D( ) (1)
We give the pseudo code in Algorithm 1, where H �

h1, . . . hi, ‥ is the set of hyperparameters (HP).

Algorithm 1. Model selection, fcv.

2.1.1.2 Cross-Validation for Model Evaluation
We can use CV to evaluate a given model and a HP set h. The
procedure is similar to the pseudo code given in Algorithm 1,
however we give in input a model and only one
hyperparameter set and return t̂h. In this case, t̂h is an
unbiased estimator of the performance, as no optimization
of the hyperparameters took place. If however several sets of
hyperparameters are tested as to minimize the accuracy

measured by cross-validation, this accuracy is an over-
optimistic estimation of the true accuracy. In order to get a
realistic estimation of the accuracy, we therefore have to turn
to nested cross-validation.

2.1.1.3 Nested Cross-Validation
NCV is a procedure that allows one to tune a model and
effectively report an unbiased estimation of the performance
of the tuned model.

Given sets of HP and a data set D, NCV corresponds to two
nested loops of CV: The outer CV loop is for model
evaluation, usually applied on test folds, sometimes
referred to as outer folds. The inner CV loop is for model
tuning, i.e., for each test fold, we perform a complete CV on
the remaining data to correctly tune the model, and test the
performance of the tuned model on data that has neither been
used for training nor for HP tuning. We show the pseudo-code
for NCV in Algorithm 2.

Algorithm 2. Nested cross-validation.

Another possible view is to see NCV as a simple CV for a
model selection algorithm. For NCV, the model selection
algorithm would be fcv.

It is important to note that as we are training DNN, we do not
use a fixed hyperparameter set, H, but randomly generate the set
as it has been shown that randomised search performs better
(Bergstra and Bengio, 2012).

FIGURE 1 | Data set simulation with p = 256 and model, (A) σ = 2, (B) σ = 6, (C) σ = 10, (D) σ = 14. (E) Simple two layer DNN model for predicting the class label.
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2.1.2 Limitations
DNN training suffers from inherent randomness, as the loss
function is highly non-convex and possess many symmetries
(Bishop, 2006). In addition, there are some stochastic
differences between training runs, such as the random
initialization of the weight parameters and the data shuffling,
naturally leading to different solutions. Especially for small
datasets, these stochastic variations lead to notable
differences in performance when we repeat training with the
same hyperparameters.

In the classical setting, CV provides us with a set of
hyperparameters that lead to a model with optimal
performance, as estimated in the inner loop. For DNN trained
on small datasets, there is no guarantee that the same set of
hyperparameters will lead to similar performance, and for this
reason retraining is not guaranteed to lead to a very good
solution.

Another problem with the retraining in line 10 in
Algorithm 1 is the use of early stopping. Early stopping is
a very powerful regularization procedures that choses
experimentally the point between the under- and over-
fitting regime, but for this it requires a validation set. Early
stopping would therefore not be applicable in the traditional
CV-scheme with retraining.

2.1.3 Nested Ensemble Cross-Validation
Due to the incompatibility between NCV and early stopping we
propose to modify the model selection procedure, i.e., function fcv

shown in Algorithm 1. In particular we do not perform retraining
and return an ensemble of the models used during CV. Similarly
to NCV, we perform a CV where we propose to modify fcv into a
better suited procedure, named fecv (ensemble cross-validation),
shown in Algorithm 3.

Algorithm 3. Model selection, fecv.

The main difference between fcv and fecv is that we remove the
final model retraining, i.e., line 10 of Algorithm 1 and give back
the full set of kf models trained for all folds for the maximizing
hyperparameters; the prediction is obtained by ensembling these
models.

The advantage of this procedure is that we omit the
retraining step which allows us to use early stopping for all
individual models. In addition, we add another level of

FIGURE 2 | Encoding a biopsy.

TABLE 1 | Mean number of tiles.

Down-sampling Factor ni: Mean Number of
tiles

∑ini

20 11,186 ± 6,983 3,758 389
21 2,757 ± 1,757 926,409
22 628 ± 403 211,077

FIGURE 3 |Model OneOne: tile encodings Xi from a pretrained network
are projected to a more compact representations Xi′ and then aggregated to
build the slide representation Zi, which is then used for prediction. Same colors
indicate identical dimensions.
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regularization by the ensembling. Of note, fecv can be used in an
inner loop, too. This then leads to Nested Ensemble cross-
validation (NECV).

2.1.4 Nested Best Fold Ensemble Cross-Validation
Similarly to the procedure NECV, we can define another
procedure that we name NBFCV. NBFCV is based on fbfcv

FIGURE 4 | Tile computation: Three layers.

FIGURE 5 | ThreeTwoSkip.

FIGURE 6 | Aggregation layers: (A) Average pooling; (B)WELDON pooling; (C)WELDON-C pooling which is WELDON concatenated with previous tile encoding.
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defined in Algorithm 4. Compared to the preceding procedure,
we inverted the two for-loops and retain the best model per fold.
It then returns the ensemble of these selected models.

Algorithm 4. Model selection, fbfcv.

2.2 Simulations
In order to compare and validate our procedure presented in
Section 2.1 we propose to conduct a series of simulation studies
where the results will be given in Section 3.1. In particular, we
wish to demonstrate that DNN training given a set of HP can lead
to inconsistent models and that NCV therefore might provide
under-performing models compared to NECV and NBFCV, the
proposed validation procedures.

2.2.1 Data Set Simulation
We simulated a simple balanced binary data, of size N = 350 in a
medium to high dimensional setting with p = 256.We have ∀i ∈ [(1,
N)], Yi ∈ (−1, 1) andXi ~ N (pyi, σIp)where pj is a cluster center, σ
a given standard deviation and Ip the identity matrix of size p. We
set one cluster center at p1 = (1, 1, . . ., 1) and the second cluster
center at p−1 = (−1, −1, . . . , −1). In Figures 1A–D respectively, we
show four plots of the simulated data reduced to two dimensions
thanks to a UMAP (McInnes et al., 2018), with standard deviations
set to 2, 6, 10 and 14 respectively. Naturally, when the standard
deviation increases the data becomes less separable.

2.2.2 Model
We apply a simple DNN model, composed of two layers, a first
hidden layer with 256 hidden nodes and a classification layer with
two nodes, the model is depicted in Figure 1E.

In particular, we minimise a cross-entropy error with an
Adam optimiser and a batch size of 16. The tunable

parameters are the weight-decay, drop out and learning rate.
As an extra regularisation we use batch normalisation.

2.3 Application to Histopathology Data
2.3.1 Data Generation and Annotation
The data set used was generated at the Curie Institute and
consists of annotated H&E stained histology needle core
biopsy sections at 40× magnification sampled from a patient
suffering from TNBC. In this paper, we evaluate the prediction
of the response to treatment based solely on a biopsy sectioned
prior to the treatment. As discussed in the introduction, not all
patients respond to NACT, and we are therefore aiming at
predicting the response to NACT based on the biopsy. In
particular, each section was quality checked by expert
histopathologists.

For each patient, we also collect WSI after surgery, allowing an
expert pathologist to establish the residual cancer burden, as a
proxy for treatment success. Out of the 336 samples that populate
our data set, 167 were annotated as RCB-0, 27 as RCB-I, 113 as
RCB-II and 29 as RCB-III. This data set is twice as large as the
data set used in our previous study (Naylor et al., 2019). Similarly to
this study, we refine the number of classes in order to avoid the
problem of under-represented class. We investigate two prediction
settings: 1) pCR (no residuum) vs. RCB (some residuum) and 2)
pCR-RCB-I vs. RCB-II-III, which is clinically more relevant, as it is
informative of a patient’s prognosis.

2.3.2 Data Encoding
As each biopsy section is relatively big, we wish to reduce the
computational burden of feeding the entire biopsy to our algorithms.
Instead, given a magnification factor, we divide each biopsy into tiles
of equal sizes, 224 × 224 and project this tile into a lower dimensional
space.We use a pre-trained DNN on ImageNet (Jia et al., 2009) such
as ResNet (He et al., 2016) which produces a encoding of size 2048.
This process is illustrated in Figure 2 where each biopsy section is
converted into an encodedmatrix of size ni × Pwhere P is the size of
the resulting encoding and ni the number of tiles tissue extracted
from tissue i, i ∈ N.

In Table 1 we show the average number of tiles, ni and
variance at different magnification factors: highest resolution
i.e. no down-sampling (20 = 1), down-sampling by a factor 21

and by a factor 22 = 4.
The size of the data remains relatively large even after this

reduction. We further reduce the size of the tile encoding with a
PCA (Jolliffe, 2011), and project each tile encoding into a space
approximately 10× smaller. By keeping 256 components, we keep
93.2% at 20, 94.0% at 21 and 94.3% at a magnification factor of 22 of
the explained variance.

2.3.3 Mathematical Framework
The data set will be denoted by D � (Xi, Yi)i∈[[1,N]], where every
item indexed by i inD is a joint variable (Xi, Yi), N is the size of
the data set, Xi is the input sample and Yi the corresponding
label. As described in the previous section, each tissue is

TABLE 2 | Model architecture and pooling strategy, as described in the text.
CHOWDER has been published previously (Courtiol et al., 2018).

1For Magnification Factor.

Frontiers in Signal Processing | www.frontiersin.org June 2022 | Volume 2 | Article 8518097

Naylor et al. Prediction of TNBC Treatment Response

https://www.frontiersin.org/journals/signal-processing
www.frontiersin.org
https://www.frontiersin.org/journals/signal-processing#articles


represented by a bag of tiles of variable sizes, in particular ∀i ∈
[(1, N)], Xi ∈ Rni×P and Yi ∈ (0, 1) for task (1) or (2). This is
simply a multiple instance learning framework, and such a
framework has already been implemented for
histopathological data (Xu et al., 2012, 2017; Courtiol
et al., 2018; Couture et al., 2018). We simplify this
framework by setting ∀i ∈ i ∈ [(1; N)], ni = nMF

1 which is
set accordingly to the chosen magnification factor. For a
given sample i, if ni > nMF we down-sample Xi, otherwise
we up-sample Xi to the correct size. We evaluate our models
by using the Area Under the Curve of the Receiver Operating
Characteristic for measuring the performances in our two
binary settings.

2.4 Neural Network Architectures
Today, DNN models for WSI classification usually consist in three
steps: starting from encodings that are usually provided by pre-
trained networks, a reduction layer might be applied, followed by
an aggregation step that computes a slide level representation from
the tile level representations and a final module that maps the slide
level representation to the output variable.

In Figure 3, we show a basic example for such an architecture
along these lines, with the three algorithmic blocks highlighted in gray.
At the tile-level computation, we use 1D convolutions to transform the
input encodings Xi into a more compact representation Xi′. The tile
representationsXi′ are then summarized by a pooling layer, providing
us with the biopsy section profile Zi. For this, we can use a standard
pooling layer such as an average pooling to quantify the abundance of
specific tile patterns, or more complex, attention-based pooling, such
asWELDON (Durand et al., 2016). Finally, from Zi, the slide variable
is predicted.

In this article, we test several encoding and agglomeration
strategies which are explained in the next sections.

2.4.1 Encoding Projection
In Figure 3, the baseline architecture is illustrated (OneOne), with a
1D convolution for the tile level encoding and one fully connected
layer at the slide level. In Figure 4, we test a deeper architecture for
the encoding projections, consisting in three consecutive 1D
convolutions, including bottleneck layers (depicted in orange),
according to best practice in deep learning (Huang et al., 2017).

Furthermore, we also experiment with skip connections by
concatenating the first tile representations to the final representation
Xi′ and by concatenating Zi prior to the final softmax. We name this
structure ThreeTwoSkip and illustrate it in Figure 5.

2.4.2 Pooling Layers
In terms of pooling layers, we experiment with: average pooling
shown in Figure 6A, WELDON (Durand et al., 2016) shown in
Figure 6B, a modified version ofWELDON shown in Figure 6C and
the concatenation of the first and the third is named WELDON-C
(for context). The DNN that uses WELDON-C will be named
CONAN2.

The WELDON pooling is an attention-based layer which
filters tiles based on a 1D convolution score. In particular, it
retains the top and lowest R ∈ N* achieving scores as Zi. This
architecture has shown excellent results for specific problems
where the biological evidence lies in the detection of one type
of specific tiles, like cancer regions (Courtiol et al., 2018). The
method however suffers from identifiability issue, i.e., the model
can not differentiate between two tiles achieving high or low score.
In addition, the agglomeration strategy seems less promising in
cases where the information resides in the percentage of tiles of a
certain type. By providing a context in which a tile was selected, we
allow the model to better differentiate between the selected tiles,
thus allowing different tiles with different meanings to be selected,
this can be particularly efficient when relevant information is based
on different tile patterns.

We recap all the tested models in Table 2.

2.4.3 Baseline Approach
In addition to comparing our proposed architectures to CHOWDER,
we also compare them to a much simpler approach where we
propagate the slide label to the tile level. If a slide is positive, then
we assume all extracted tiles from this slide are positive, if a slide is
negative, we assume that all tiles are negative. This is the simplest form
of MIL. The training set is therefore huge, and we also known that
there will be many errors, as many tiles do not contain any useful
information regarding treatment response. Nevertheless, such an
approach can work if there is a large fraction of informative tiles.

2.4.4 Model Tuning
We perform a random grid search for most parameters and only in
suitable ranges. For the learning rate and weight decay we perform a
random log sampling for a random scale associated to a random
digit. We range from a scale of 10−6 to 10−3 for the learning rate and
from 10−4 to 10−1 for the weight decay. We randomly sample a drop
out from a uniformU[0: 0.4].We randomly sample a bottleneck layer
size from the following list (8, 32, 64) and the size of the larger
representations are randomly sampled from (64, 128).

3 RESULTS

3.1 Simulation Results
3.1.1 High Performance Variability in DNN Training
In Figure 7A, we show the average variance of our model with
increasing standard deviation σ. In particular, for each σ, we
generate 100 simulated dataset with a standard deviation of σ and
train 1000 DNN on the same data and with the same HP. As this
is simulated data, we evaluate the performance of each training on
a large independently simulated test set instead of using the outer
CV loop (Varoquaux, 2018). We found that setting the learning
rate to 1.10−4, the weight decay to 5.10−3 and drop out to 0.4 tend
to always return reasonable results for our simulation setting.

As the standard deviation σ of the simulated data increases, we
expect more overlapping between our two classes and
naturally, the classification accuracy decreases. For lower
σ, regardless of using early stopping or not, the models
reaches perfect scores.2Context cOncatenated tile selection NeurAl Network
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In Figure 7, we observe that the more difficult the problem
(larger σ), the lower the accuracy, but also the larger the
variance: not only do we predict less well, but also does the
performance variation increase, such that by retraining a
model with the same hyperparameters is not guaranteed at
all to provide a model with similar performance. We also see
from Figure 7A that early stopping alleviates this problem and
consistently reduces the variance in performance, in particular
for higher σ.

3.1.2 Nested Cross-Validation Leads to
Under-performing Models
We compare the performance of the proposed validation
procedures to NCV with the number splits kf = 5 in

Figure 7B with 95% confidence intervals around the
estimator. On the x-axis we have the standard deviation σ of
the simulated data and on the y-axis we have the difference
between the Naive Bayes estimator with the corresponding
performance, therefore the lower the curve the better the
procedure. In addition to Figure 7B, we give the
corresponding accuracy score for each σ and validation
procedure explicitly in Supplementary Table S1. As the
dataset distribution is known, the Naive Bayes is the best
classification rule that can be implemented and can be
viewwed as an upper bound of the performance. For each σ,
we collect 100 estimators with Algorithm 1, Algorithm 3 and
Algorithm 4. Next, we compare several strategies for NECV and
NBFCV: NECV-1/NBFCV-1, where we keep the best scoring

FIGURE 7 | (A) Repeated training, with and without early stopping: (A) Performance Variance, as measured on an independently simulated test set, (B)
Comparison of models trained with NCV, NECV and NBFCV. On the y-axis we have the difference in accuracy between the Naive Bayes model and a given validation
approach. As the data distribution is known, the Naive Bayes is a theoretical upper limit of the achievable performance. Curves are shown with 95% confidence intervals.
A lower curve implies a better score.

FIGURE 8 | Average AUC ROC performance with standard deviation on five fold NECV on the task of predicting: (A) residual cancer and (B) patient prognostic in
TNBC.
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model of the ensemble, NECV-3/NBFCV-3, where we keep the
top 3 models and NECV/NBFCV, where we keep all five models.

We first notice that the NCV curve is lower or equal to any of the
NECV/NBFCV curves. The best performing model is
NECV—i.e., the average of all selected models from the inner CV.
In particular NECV has a higher Accuracy than NCV by at least 2%.
NBFCV under-performs by a slight margin compared to NECV and
seems to be equivalent to NECV-3 in terms of performance.

We conclude that retraining the model without an outer
validation score leads to lower overall performance and early
stopping is a very useful regularization technique for small sample
size problems.

3.2 Prediction of Response to Neoadjuvant
Chemotherapy
We next applied the different architectures detailed in Section 2.4
(also summarized in Table 2) to the problem of the prediction of
response to neoadjuvant chemotherapy in TNBC. We tested 3
different image resolutions (0, 1, 2), 0 being the highest resolution.
In order to get realistic estimations of the performance, while using
early stopping, we perform the validation proposed in Section 2.1. In
Figures 8A,B we show the average AUC ROC performance on the
residual and prognostic prediction tasks, for all methods shown in
Table 2 and for all resolution levels.

For the task of predicting the residual cancer, the best
performing model would be the CONAN-c model at resolution
2 with an AUC of 0.654 ± 0.049. Othersmodel’s performance range
in between 0.55 and 0.60 of AUC with higher standard deviations.
Models at resolution 0 seem to generally achieve higher scores then
those at lower resolutions. Model architecture c seem to be better
suited for this task than the others. The Average concatenated to
WELDON-C pooling seems to perform slightly better then the rest.
The method CHOWDER which gave excellent results on
CAMELYON for cancer detection (Courtiol et al., 2018) and
which has been a state-of-the-art solution in the field under-
performs on our dataset for response prediction.

For the task of predicting the patient prognostic, the best
performing model would be the Avg-bmodel at resolution 0 with
an AUC of 0.601 ± 0.019. CONAN-c at resolution 2 performs
similarly but with a much higher standard deviation. Neither
resolution, nor model architecture and pooling layer seem to
unanimously be better then the others. However, CHOWDER
under-performs compared to the other proposed methods.

4 DISCUSSION

In this study, we set out to predict the response to neoadjuvant
chemotherapy in TNBC from biopsies taken before treatment. A
system that would allow to predict this response with high accuracy
could help identifying patients with no or little benefit of the
treatment and therefore spare them the heavy burden of the therapy.

From a methodological point of view, this is particularly
challenging for three reasons: first, we do not know to which
extent the relevant information is actually present in the image
data. In addition, even if the relevant information is contained in

the slide, the complexity of the related patterns is unclear. Second,
biopsies only capture a part of the relevant information, as they
are only a localized sample of the tumor. Third, as this is a project
regarding a specific subtype, the cohort is relatively small, unlike
many pan-cancer cohorts used in large Computational Pathology
projects (Campanella et al., 2019).

In order to solve this problem, we have developed the model
CONAN, that combines the power of selectingK tiles (top andbottom),
but keeps both the ranking scores and the full tile descriptions to build
the slide representation.We have compared this model with a number
of different architectures, and achieved an AUC of 0.65.

We also tackled an important problem of model selection with
cross-validation, a crucial step in particular for small datasets. We
found that the retraining step in classical Nested cross-validation
can lead to lower performances for small N, because the training
is highly variable, and a network retrained with the optimal set of
hyperparameters is not guaranteed at all to be optimal itself. We
therefore have proposed a new cross-validation procedure relying
on ensembling rather than retraining, and thus allowing to use
early stopping as a regularization method.

Nevertheless, we must conclude that the prediction of
treatment response is probably one of the hardest problems in
Computational Pathology, and that even though we see that there
is some degree of predictability, the results still seem far from
clinical applicability. Also, another problem that is not addressed
in this study is the applicability of trained networks across
different centers. Clearly, we need more data to tackle these
challenging questions. But it is also likely that even with much
more data, AUCs will not reach very high levels by looking at
biopsies alone. A promising avenue would therefore be to use
other kinds of data in addition to histopathology data.
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