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Indoor occupancy sensing is a crucial problem in several application fields that have
progressed from intrusion detection systems to automatic control of lighting, heating, air
conditioning and many other presence-related loads. Continuous wave Doppler radar is a
simple technology to face this problem due to its capability to detect human body
movements (e.g., walk, run) and small chest wall vibrations associated to the
cardiorespiratory activity. This work deals with a radar prototype operating at 2.4 GHz
as a real-time occupancy sensor. The emphasis is on data processing approaches
devoted to extract useful information from raw radar signal. Three different strategies,
designed to detect human presence in indoor environments, are considered and the main
goal is the assessment and comparison of their performance against experimental data
collected in controlled conditions. The first strategy is based on the analysis of the standard
deviation of the radar signal in time-domain; whereas the second one exploits the
histogram of the time-varying signal amplitude. Finally, a third strategy based on an
energy measure of the received signal Doppler spectrum is considered. The proposed
detection algorithms are optimized through a set of calibration measurements and their
performances and robustness are assessed by laboratory trials.
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1 INTRODUCTION

Occupancy sensors, originally developed for intrusion detection systems, attract considerable interest
in home automation and energy saving applications (Ahmad et al., 2021). Indeed, they are regularly
used for the control of lighting, heating, ventilation, air conditioning (HVAC), and many other
presence-related loads allowing a reduction up to 80% of the energy in residential, commercial and
public spaces (EPRI, 1994).

The most common occupancy sensors are passive infrared (PIR) and ultrasonic sensors (Yavari
et al., 2014). PIR sensors are motion detectors that detect large body movements such as walking and
running; however, they are not sensitive to small movements (e.g., writing). PIR sensors operate only
in line of sight and suffer from a high false alarm rate (Yatman et al., 2015). Ultrasonic sensors emit
an acoustic wave in the 25–40 KHz band, imperceptible to the human ear, and detect the frequency
shift of the backscattered signal caused by the Doppler effect when a target moves within the
monitored area. Ultrasonic sensors are not entirely limited to the line of sight; within certain limits,
through reflection and diffraction phenomena, it is possible to overcome a fixed obstacle and detect a
moving person (Yavari et al., 2014). However, it is not possible to detect a person behind a wall due to
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the jump of acoustic impedance at the air-wall interface, which
causes only a minimal signal penetration. Ultrasonic sensors are
more expensive than PIR ones and can interfere with other
hearing aids. Moreover, they are sensitive to air flows and,
thus, they can generate false alarms (Yavari et al., 2014).
Hybrid sensors based on both infrared and ultrasonic
technologies have been developed to reduce the number of
false alarms. These sensors are more expensive than PIR and
ultrasonic sensors alone and are suitable for large open spaces
(Steiner, 2009).

In recent years, Continuous Wave (CW) Doppler radar (Li
and Lin, 2014; Li et al., 2013) has emerged as a simple and cost-
effective technological solution for human detection in indoor
environments. This type of radar exploits the phase modulation
of the signal (Doppler effect) caused by human movements and
small physiological displacements of the human chest wall related
to the cardiopulmonary activity.

CW radar sensors were first introduced in the 1970s showing
the possibility to detect vital parameters remotely (Lin, 1975; Lin,
1979). Since then, significant technological advances have been
made both on hardware (e.g., sensor miniaturization, sensitivity
improvement, etc.) and signal processing algorithms (Li and Lin,
2014; Li et al., 2013; Tang et al., 2014). The exploitation of CW
Doppler radars has been suggested in several application
contexts. In healthcare, for instance, they are often referred to
as “bioradars” and can be employed to detect sleep apneas
(Alekhin et al., 2013; Baboli et al., 2015) or mental stress
(Fernàndez and Anishchenko, 2018) in humans, and breathing
disorders in living animals (Anishchenko et al., 2015). Moreover,
the application of CW bioradars has been suggested also for
preventing the sudden infant death syndrome (Li et al., 2009),
tumor tracking in radiation therapy (Li and Lin, 2014), and
cardiac motion imaging (Wang et al., 2013). The main
advantage offered by a bioradar is the possibility to avoid
contact electrodes or probes. These last may be uncomfortable
for the patient, especially when a long monitoring is required as
during tests to diagnose sleep disorders (e.g., polysomnography).
In addition, there are also situations where it is difficult to apply
contact sensors, as in the case of patients suffering from severe
burns. A metrological characterization of a bioradar as a tool to
measure the breathing rate of a human has been reported in
(Cerasuolo et al., 2017). In ambient assisted living and elderly
care, CW radars have been proposed to recognize human gait and
detect falls (Geisheimer et al., 2001; Otero, 2005; Hornsteiner and
Detlefsen, 2008; Dremina and Anishchenko, 2016) while, in
security applications, they can be used to get situation
awareness in through the wall scenarios (Lubecke et al., 2007;
Gennarelli et al., 2016). CW radar prototypes with frequency
modulation have been recently developed also for airborne
synthetic aperture radar applications, e.g., see (Aguasca et al.,
2013; Meta et al., 2007; Esposito et al., 2020).

This paper deals with a CW Doppler radar prototype ad-hoc
designed to be used as presence detector for real-time surveillance of
indoor environments. The sensor is a compact portable device
operating at the frequency of 2.45 GHz. The main focus is on
data processing algorithms to be applied to raw signals in order
to detect moving or stationary subjects in the scene. Specifically,

three different detection strategies are considered with the aim to
estimate their performances and determine if one method is more
suitable than the other ones in terms of detection accuracy and
computation effectiveness. On the other hand, the availability of
several performing approaches makes possible, in principle, the
development of integrated techniques combining the outputs of
different algorithms to further enhance the overall system reliability.

The first considered detection strategy has been previously
reported in (Gennarelli et al., 2016) and is based on the standard
deviation of the radar signal in time domain. The second strategy
exploits the histogram of the signal amplitude, while the third
detection scheme is based on an energy measure of the signal
Doppler spectrum. Each data processing approach involves a
detection threshold, which is determined thanks to an ad-hoc
developed calibration strategy. Experimental results concerning
two indoor scenarios are presented to appraise the performance
of the detection strategies.

The article is structured as follows. Section 2 summarizes the
CW radar architecture and the designed prototype. The three
detection strategies are presented in Section 3. Experimental
results are reported in Section 4. Concluding remarks follow
in Section 5.

2 CW RADAR ARCHITECTURE AND
PROTOTYPE

2.1 Radar Architecture and Signal Model
The radar architecture is depicted in Figure 1 and is based on a
dual channel direct conversion (zero IF) receiver. A radio
frequency (RF) source emits a CW signal

xt(t) � At cos(2πft + Θ(t)) (1)
where At is the amplitude, f is the carrier frequency and Θ(t) is
the phase noise. The signal is split into two equal parts by a power
divider such that a part of signal is radiated in air and the other
part is used to generate two reference signals with 90° phase offset
thanks to a quadrature hybrid coupler (Pozar, 2011). These
signals are subsequently used as local oscillators to demodulate
the received signal. As shown in Figure 1, a single transmit/
receive antenna is considered, i.e., the radar operates under a
monostatic configuration. This feature is made possible thanks to
an isolation device as that proposed in (Chao et al., 2015), which
decouples the transmit and receive channels. The baseband
signals I and Q are amplified and digitized and then
transferred to the processing unit (laptop) in order to extract
useful information for detection purposes.

Let d(t) be the time-varying distance between radar and target
(e.g. a human) and τ the one-way travel time. The received signal
is expressed as:

xr(t) � Arcos(2πf(t − 2τ) + Θ(t − 2τ))
� Arcos(2πft − 4π

d(t)
λ

+ Θ(t − 2
d(t)
c

)) (2)

where Ar is the signal amplitude accounting for the power
backscattered by the target and attenuation due to
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propagation, λ � c
f is the wavelength and c = 3 × 108 m/s is the

speed of light in vacuum.
The received signal at the output of the isolation device is split

into two equal parts and demodulated by using the two reference
signals with 90° phase offset. After, these two signals are amplified
and filtered in order to reject the spectral components with
frequency 2f. The baseband outputs over the I and Q
channels are given by:

I(t) � Ai cos(4πd(t)
λ

+ ΔΘ(t)) (3)

Q(t) � Aq sin(4πd(t)
λ

+ ΔΘ(t)) (4)

where ΔΘ(t) � Θ(t) − Θ(t − 2d(t)
c ) is the residual phase noise.

This last quantity is neglected hereafter because of the range-
correlation effect. Indeed, according to (Droitcour et al., 2004), if
the same source is used for transmitting and receiving, the phase
noise of the received signal is correlated with that of the source
and the level of correlation depends on the time delay between the
two signals. Since the radar operates at short range, this condition
greatly decreases the noise spectrum at baseband.

According to Eqs 3, 4, the baseband signals I(t) and Q(t) are
phase-modulated by the time-varying distance d(t). It is worth
noting that a dual channel radar architecture offers the advantage
to have always a significant baseband signal and then a
satisfactory measurement sensitivity (Li and Lin, 2014).
Indeed, when I(t) is at a null detection point, Q(t) is at an
optimal detection point, as the latter is maximized. Conversely,
when I(t) is at an optimal detection point, Q(t) will obviously be
at a null detection point.

Note that different amplitude termsAi andAq appear in Eqs 3,
4. These terms take into account the non-idealities introduced by
system components, which cause amplitude imbalances over I
and Q channels. Actually, phase imbalances and DC offsets also
affect the baseband signals I(t) and Q(t) and various techniques
have been proposed to compensate them (Li and Lin, 2014). In
this work, non-ideality effects are not compensated and neglected
because the goal is to detect the presence of targets in the scene

based on the signal amplitude. Moreover, only one of the
baseband signals is chosen according to a criterion of
maximum variability (standard deviation) so to ensure a
satisfactory measurement sensitivity. Such a signal is referred
to as radar signal and denoted by y(t) from this point on.

2.2 Radar Prototype
A short range CWDoppler radar for occupancy sensing has been
designed and developed (see Figure 2). The system has the
architecture sketched in Figure 1 and generates a RF signal at
2.4 GHz thanks to a voltage-controlled oscillator. The chosen
working frequency assures the possibility to operate within the
Industrial, Scientific and Medical (ISM) band, i.e., the portion of
the electromagnetic spectrum internationally reserved for
industrial, scientific and medical use. Moreover, a 12.5 cm
electromagnetic wavelength in free-space yields a good
detection sensitivity for the detection of human targets.

FIGURE 1 | CW radar system architecture.

FIGURE 2 | Radar prototype.
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The prototype in Figure 2 comprises a RF front-end, a power
supply section, and a baseband analog circuitry, which are all
integrated on a double layer printed circuit board. The RF
circuitry has been designed by using the microstrip
technology. The antenna is a compact and low profile
corporate fed 2 × 2 patch array with 10 dB gain and
horizontal polarization.

The main technical parameters of the radar are summarized in
Table 1. The radar emits a low power (<20 dBm) and has a short
range coverage (about 20 m) and an angular coverage of ±50°

both in elevation and azimuth with respect to the antenna
boresight. Moreover, the electric field intensity 1 m far away
from the antennas is lower than 1 V/m. Accordingly, the
instrument complies with the Italian regulatory constraints on
exposure to electromagnetic fields (D.P.C.M. 8/7/, 2003).

The baseband outputs are digitized by using a commercial
data acquisition board (Measurement Computing mod. USB-
2408) and sent to a laptop via USB. The laptop allows
controlling the system as well as performing the real-time
signal processing operations needed for the detection task.

The software for data acquisition, processing and
visualization has been implemented under MATLAB
environment. In particular, a user friendly graphical user
interface (GUI) has been developed to aid the management
of the aforementioned operations (see Figure 3).

3 DETECTION STRATEGIES

This section summarizes the data processing strategies for real-
time detection of human presence. The algorithms achieve
automatic target detection based on different criteria and need
a proper detection threshold. Such a threshold is determined
thanks to a calibration procedure applied over reference datasets
collected in known experimental conditions.

3.1 Standard Deviation Method
The presence of a target induces evident variations of the radar
signal or equivalently increases the signal standard deviation
(Gennarelli et al., 2016). The Standard Deviation Method
(SDM) exploits this phenomenon to accomplish the occupancy
sensing task.

Let us denote with yn, n = 1, . . . ,N, the discrete-time version of
the radar signal y(t), N being the total number of samples in the
observed sequence. Let wlm, l = 1, . . . L, indicate a windowed
version of the sequence yn, where L is the total number of samples
in the window identified by index m. Such a window is translated
progressively forward in time of one sample starting from the
initial one in order to capture subsequent portions of the signal.
This operation is repeated until the last sample of the sequence yn
is reached.

TABLE 1 | Radar system parameters.

Frequency [GHz] 2.4
Operating range [m] 20
Emitted power [dBm] 20
Antenna type 2 × 2 patch array
Elevation coverage [°] ±50
Azimuth coverage [°] ±50
Electric field intensity (@ 1 m) [V/m] <1
Dynamic range [dB] 50

FIGURE 3 | MATLAB GUI for data processing, acquisition and visualization.
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The detection strategy is based on the calculation of the
standard deviation σm of the radar signal expressed by the
following formula:

σm �

��������������
1
L
∑L
l�1
(wlm − �wm)2

√√
m � 1, . . . , N − L + 1 (5)

where �wm is the average value of the sequence wlm.
Then, the following two hypotheses {H0, H1} decision rule is

applied

Ym � { 0 σm < γ
1 σm > γ

m � 1, . . . , N − L + 1 (6)

where Ym � {0, 1} is a binary output and γ is a properly fixed
threshold value.

The rule in Eq. 6 decides the hypothesis H0 (Ym � 0), i.e. no
target is present, or the hypothesis H1 (Ym � 1) to indicate the
presence of targets depending on the value of the standard
deviation σm compared to the threshold γ.

The determination of the optimal threshold γ is a crucial point
since a too low threshold may cause several false alarms while a
too high threshold could lead to missed detections. Here, the
optimal threshold is determined by means of a calibration
procedure, where the threshold is chosen as the one that
maximizes the detection rate calculated over calibration
datasets collected in known experimental conditions. In detail,
each dataset is partitioned into K contiguous intervals with
duration T. In each interval, the standard deviation σk,
k � 1, . . .K, of the radar signal is calculated. Then, the
threshold space is discretized and the decision rule in Eq. 6 is
applied to find the threshold γp which maximizes the detection
rate DR:

γp � max
γ

DR � max
γ

1
2
(DR(Yk � 0|H0) +DR(Yk � 1|H1))

(7)
where DR(Yk � i|Hi) is the detection rate under the hypothesis
Hi � 0, 1.

It must be stressed that the window duration T plays an
important role while maximizing DR. Indeed, a lower DR is
achieved for smaller T values. On the other hand, enlarging the
window increases the system delay to produce a detection, which
may not be tolerable in real-time applications. Accordingly, a
trade-off between detection accuracy and system responsiveness
needs to be established.

3.2 Histogram Method
Experimental observations have shown that the amplitude of the
radar signal is concentrated about the origin when no target is
present in the scene, while it varies over a wider range when a
target is present (Yavari et al., 2014; Gennarelli et al., 2016). A
simple graphical representation to visualize this concept is
provided by the histogram of amplitude levels. In particular,
in the case of an empty scene, the histogram is concentrated

around the origin, i.e. most signal samples fall in the central bin.
On the contrary, when targets are stationary, the histogram
becomes more spread and such spreading grows much more
when they are moving.

The Histogram Method (HM) detects the presence of targets
based on the percentage of signal samples with amplitude
belonging to an interval (–A, A) centered over the origin. For
each windowed signal wlm, let us define NAm the number signal
samples whose amplitude falls in the interval (–A, A) and pm �
NAm
L · 100 is the corresponding percentage of samples. Then, HM

is defined by the two hypotheses {H0, H1} decision rule

Ym � { 0 pm > ξ
1 pm < ξ m � 1, . . . , N − L + 1 (8)

where Ym � {0, 1} is again a binary output and ξ is a
threshold value.

As for SDM, a calibration stage is essential to determine
the optimal threshold ξ. Moreover, a further parameter
involved in HM is the half-width A of the interval used for
counting the occurrences of signal samples. The parameter A
has a direct impact on the detection performance because, if it
is too small, a low percentage of samples may belong to the
interval even in absence of targets (false alarms); however if A
is too large, a high percentage of signal samples may fall in the
interval even when someone is present in the scene (missed
detections). The calibration strategy here adopted consists in
searching for the optimal parameters ξ and A that
simultaneously maximize DR on a collection of calibration
datasets. Formally, the following optimization problem is
solved:

(Ap, ξp) � max
(A, ξ) DR � max

(A, ξ)
1
2
(DR(Yk � 0|H0) +DR(Yk � 1|H1)) (9)

The choice of the time window T is a compromise between
accuracy and system responsiveness as for the SDM.

3.3 Doppler Spectrum Energy Method
The Doppler spectrum of the radar signal provides an indication
of the distribution of target’s speed and movements (Otero, 2005;
Hornsteiner and Detlefsen, 2008). As the complexity of the scene
increases (e.g., one or more targets in motion), the Doppler
spectrum becomes more spread compared to a scenario with
stationary targets.

The Doppler Spectrum Energy Method (DSEM) is based on
the computation of the descriptor:

αm � ∑K
k�1

fk

∣∣∣∣Hm
k

∣∣∣∣2 m � 1, . . . , N − L + 1 (10)

In the above formula, αm is the weighted energy of Doppler
spectrum related to the sequence wlm; the weights (f1, . . . , fK)
are the Doppler frequencies in Hz and (Hm

1 , Hm
2 , . . . , Hm

K) are
the samples of the Discrete Fourier Transform (DFT) of
sequence wlm.

The DSEM is based on the two hypotheses {H0, H1} decision
rule
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Ym � { 0 αm < ψ
1 αm ≥ ψ

m � 1, . . . , N − L + 1 (11)

where Ym � {0, 1} is a binary output and ψ is a threshold value.
According to Eq. 11, the hypothesis H0 is decided when the

weighted Doppler energy is lower than threshold ψ while the
hypothesis H1 is decided when the energy is greater than ψ.

Similarly to previous methods, the threshold ψ is selected by
maximizing DR evaluated on calibration datasets, i.e.

ψp � max
ψ

DR � max
ψ

1
2
(DR(Yk � 0|H0) +DR(Yk � 1|H1))

(12)

4 EXPERIMENTAL TESTS

This section describes the results of experimental trials carried
out in laboratory with the aim of evaluating the radar system
capability to detect human presence and comparing the
performance of the detection techniques introduced in
Section 3. The tests were carried in two different indoor
environments characterized by a different level of static
clutter. The first one (Environment 1) is an empty landing
with size 3 m × 8 m (see Figure 4). The second environment
(Environment 2) is a laboratory containing different pieces of
furniture (desk, tables, locker, etc.) and surrounded by
plasterboard walls (see Figure 5). In all the tests, the radar
was mounted at a height of 1.2 m above the ground and the
signal was recorded over a time window of 60s with a sampling
step of 0.08 s.

4.1 Preliminary Tests
In the following, we show the results of some preliminary tests
concerning the Environment 1 with the aim to check the system’s
operation. During the first test, a person carried out various
actions in the scene such as walk, stop, turn around, exit and enter
the room. Figure 6 shows the radar signal in the time domain
achieved after filtering the average value. When the person
moves, the signal is characterized by strong fluctuations that
become very intense as the subject approaches the radar. In the

interval 18–24 s, the person stops and then the signal shows some
periodic oscillations with lower amplitude that are related to the
cardiorespiratory activity. At time t = 36 s, the subject leaves the
scene taking the corridor indicated at the bottom left in Figure 4
and then re-enters the scene after 12 s. As can be seen in Figure 6,
in the interval 36–48 s when the person is in the corridor, the
radar signal is almost flat and its variability is essentially
determined by system’s noise.

The graphs in Figure 7 are useful to understand the HM
operation. They show radar signals (top panels) and
corresponding histograms of amplitude values (bottom panels)
concerning three different scenarios. In detail, Figure 7A regards
an empty scene and, in this case, a well-concentrated histogram
around the origin is observed since about 90% of the signal
samples fall in the central bin. In other words, the signal has an
amplitude between –0.5 and 0.5 mV for 90% of the recording
interval. On the other hand, when a stationary subject is present
at 3 m distance (Figure 7B), the histogram is more spread and
such spreading becomes even more evident when the subject is
moving (Figure 7C).

The results illustrated in Figure 8 allow understanding the
operation principle at the basis of DSEM. Specifically, they show
radar signals (top panels) and corresponding spectrograms
(bottom panels) concerning the scenarios described in
Figure 7. The spectrograms are determined by plotting the
short-time Fourier transforms of the signal over time windows
having duration of 3 s and overlap of 2.9 s. As can be observed, the
Doppler band is essentially null in the case of empty scene
(Figure 8A). When a static target is present at 3 m distance
(Figure 8B), it is possible to notice a slight increase in the
amplitude of some spectral components around the typical
frequencies of respiratory activity (0.2–0.4 Hz) (Cerasuolo
et al., 2017). Finally, if the person walks around (Figure 8C),
the spectrum has a significant amplitude at different frequencies.

FIGURE 4 | Photo of the landing (Environment 1).

FIGURE 5 | Photo of the laboratory (Environment 2).
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4.2 Sensor Calibration
In the following, we describe the results of the calibration
procedure for each detection strategy. Six calibration datasets
were recorded in Environment 1, each having a duration of 60 s.
The first two acquisitions were made when the scene was empty,
the third and fourth acquisitions were made when a person (an
adult male) was stationary 2 and 3 m away from the radar,
respectively. The last two recordings were made when a
person was moving during the whole acquisition. The window
duration T = 3 s has been found as the optimal compromise in
terms of detection performance and system’s responsiveness.

The determination of the threshold γ in SDM has been carried
out by solving the optimization problem in Eq. 7 with the
available calibration datasets. In particular, the threshold value
γp = 0.35 mV allows obtaining a detection rate of 100% during the
calibration phase (see asterisk in Figure 9).

As regards HM calibration, this technique requires setting two
parameters: half-width A of the interval used for counting the
occurrences of signal samples and the minimum percentage of
samples ξ in this range. The calibration has been carried out by
solving the problem in Eq. 9 with the calibration datasets. To this
aim, Figure 10 displays the DR as a function of the parameters (A,
ξ) and the maximum value is reached at the point (Ap, ξp) marked
with the asterisk. Specifically, the values Ap = 0.56 mV and ξp =
86.1% maximize theDR (nearly 100%).

The calibration operation has been performed also for the
DSEM based on Eq. 12 and Figure 11 reports the DR versus
threshold. ψAs can be observed, the DR is maximal (about 100%)
when ψ = ψ* = 0.84 · 10–3 mV2s (see asterisk in Figure 11).

The calibration operation has been repeated for Environment
2 by processing six calibration datasets collected in experimental
conditions similar to those recorded in Environment 1.

Table 2 summarizes the detection thresholds for each
detection strategy and calibration environment. It can be
observed that the SDM and DSEM thresholds attained in the

Environment 2 are higher than those provided by calibration in
the Environment 1. Moreover, the comparison between the HM
thresholds shows that the percentage of samples are quite similar
to each other while the half-width A is larger in the Environment
2. The higher thresholds of Environment 2 suggest that this
environment is noisier probably due to the presence of several
static scatterers (see Figure 5) and electromagnetic disturbances
produced by Wi-Fi signals present in the building, which are not
shielded by the plasterboard walls.

4.3 Experimental
Assessment—Environment 1
After calibration, the detection performance of the three
strategies have been first assessed through tests carried out in
Environment 1 and involving a variable number of targets:

• Test 1: one male subject in the scene
• Test 2: one female subject in the scene
• Test 3: two male subjects in the scene
• Test 4: one male and one female subject in the scene

The subjects taking part to the experiments were asked to
move, stop, enter or exit the scene during an acquisition time
interval of 60s. Simultaneously to radar operation, the ground
truth of the scene was recorded by the video camera of a
smartphone.

The graphs from Figures 12–14 are the results obtained for
Test 1 with each detection strategy. In the figures, the top panel
displays the radar signal, the middle panel shows the parameter
involved in the decision rule and compared with the threshold
(see Eqs 6, 8, 11), and the bottom panel is the detection output
compared to the ground truth provided by the camera.

In the interval 0–7 s, the subject walks around the room and
the signal is quite oscillating. During the interval 7–10 s, the

FIGURE 6 | Radar signal after mean value filtering. Labels denote the actions performed by the subject.
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subject stops, then continues to move until t = 15 s when
exiting the scene through the corridor. The person stays out
the scene for 10 s. Actually, it is easy to observe that the signal

is almost flat in the interval 15–25 s. Finally, at t = 25 s, the
person re-enters the scene and moves until the end of the
acquisition.

FIGURE 7 | Radar signals (top panels) and corresponding histograms of amplitudes (bottom panels). Empty scene (A). Static subject 3 m far away from the radar
(B). Moving subject (C).
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The middle panel of Figure 12 shows the real-time standard
deviation of radar signal (solid line). As can be seen, the trend of
the curve is consistent with radar signal one and remains below

the threshold (dashed line) when the scene is empty. The bottom
panel of Figure 12 confirms that the output of the detection
algorithm (solid line) is in very good agreement with ground

FIGURE 8 | Radar signals (top panels) and normalized Doppler spectra (bottom panels). Empty scene (A). Static subject 3 m far away from the radar (B). Moving
subject (C). Color scale [0, 0.4].
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truth (dashed line) save for a small time delay occurring in
correspondence of the transitions between two different
situations in the scene (e.g., the person exits or enters the
scene). Such a delay is an effect of the mobile window because
it is necessary to accumulate enough samples to detect abrupt
variations in the scene. It has been found experimentally that the
delay is in the order of half window length, i.e. 1.5 s. The DR
obtained in this case is equal to 98.67%, and the failure to reach
100% is only due to the aforementioned delay rather than to
erroneous detections.

The results reported in Figure 13 concern the HM and, as
observed in themiddle panel, the percentages of samples falling in
the interval [−0.56, 0.56] mV is higher than the threshold ξ* =
86.1% in time interval when no subject is present in the scene.
Conversely, when the subject is in the scene, the percentage of

samples is lower than ξ*. The output of the detection algorithm
reported in bottom panel of Figure 13 is in very good agreement
with the ground truth and the DR is equal to 98.67%. As seen
from the graph, the detection output is slightly delayed compared
to the ground truth also when applying HM.

Figure 14 is concerned with the results achieved by
applying DSEM. As expected, the weighted energy of
Doppler spectrum overcomes the threshold ψp when the
target is in the scene (middle panel). The detection output
(bottom panel) agrees well with the ground truth proving aDR
equal to 98.13%.

For sake of brevity, we do not show the figures of the results
related to the Test 2, 3, 4. Nevertheless, Table 3 summarizes the
detection performance of each detection strategy for every test.

4.4 Experimental
Assessment—Environment 2
Further experiments have been carried out in Environment 2 (see
Figure 5). The sensor was recalibrated in this environment by
processing novel datasets as done for Environment 1. After
system calibration, the following tests were performed:

• Test 5: two male subjects in the scene
• Test 6: one female subject in the scene
• Test 7: two female subjects in the scene
• Test 8: a female and two male subjects in the scene

The tests were performed with the subjects doing analogous
activities to those carried out in Environment 1. Table 4
summarizes the test DRs achieved after comparing the
detection outputs with the ground truth recorded by the video
camera. It can be noticed that satisfactory and consistent DR
values are found also for these tests.

Based on the data reported in Tables 3, 4, it is natural to
wonder why slightly differentDR values are obtained for the same

FIGURE 9 | Calibration step. DR versus threshold γ for SDM. The
optimal threshold γp corresponds to the asterisk.

FIGURE 10 | Calibration step. DR versus (A, ξ) for HM. The optimal
parameters (Ap , ξp ) correspond to the asterisk.

FIGURE 11 | Calibration step. DR versus threshold ψ for DSEM. The
optimal threshold ψp corresponds to the asterisk.
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test when using different detection strategies. These small
percentage differences are attributable not to missed detection
or false alarms but rather to the time required by the algorithm to

reach the threshold. Indeed, the three techniques share the use of
a sliding window that, as seen, introduces a processing delay. It
has been found that DSEM takes a slightly longer time to follow

TABLE 2 | Detection thresholds achieved for each environment and strategy.

Environment SDM HM DSEM

1 γ* = 0.35 mV A* = 0.56 mV ξ* = 86.1% ψ* = 0.84ˑ10−3 mV2s
2 γ* = 0.75 mV A* = 1.1 mV ξ* = 87.2% ψ* = 3.4ˑ10−3 mV2s

FIGURE 12 |Radar signal measured in Test 1 (top panel). Standard deviation (solid line) and optimal threshold γ* (dashed line) (middle panel). SDM output (solid line)
compared to ground truth (dashed line).

FIGURE 13 |Radar signal measured in Test 1 (top panel). Percentage of samples falling in the interval [−Ap, Ap] (solid line) compared to optimal threshold ξp (dashed
line) (middle panel). HM output (solid line) compared to ground truth (dashed line).
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abrupt transitions in the scene and, for this reason, it provides on
average slightly lower DR values. However, the three procedures
can be considered equivalent from a practical viewpoint as the
mean DR values achieved by each strategy differ by about one
percentage point at most.

As regards the computation complexity, the SDM, HM and
DESM take about 1 ms, 1.2 and 2 ms, respectively, to produce a
detection. The lower computation time of SDM is expected since
it involves simply the calculation of the standard deviation of the
windowed signal rather than a histogram or a spectrogram.
Nevertheless, all processing delays are small enough to be
compliant with real-time operation.

4.5 Robustness Analysis
In all the tests so far described, the SDM, HM, and DSEM
detection thresholds were determined from calibration datasets
collected in the same environment where the tests were carried
out. In the following, we assess the performance of the detection
strategies when the detection thresholds are derived from
calibration datasets recorded in an environment different from
that used for the tests. In other words, the goal is to investigate
whether the sensor requires a new calibration every time it is
installed in a new environment.

Table 5 lists the DR values related to the tests carried out in
Environment 1 when using the thresholds achieved with the
calibration performed in Environment 2. Similarly, Table 6
reports the DR values of the tests in Environment 2 when
using the thresholds provided by calibration in Environment
1. Upon comparing Table 3 with Table 5 and Table 4 with
Table 6, a slight worsening of detection performance is generally
achieved when the detection thresholds refer to an environment
different from that used for the tests. This outcome is better
understood by analyzing the detection thresholds reported in
Table 2. As formerly noticed, the higher thresholds of
Environment 2 suggest that this environment is noisier and,
consequently, using the lower thresholds of Environment 1 in
Environment 2 can arise more false alarms, e.g. the radar is able to
detect human presence beyond the plasterboard walls. Similarly,
applying higher thresholds of Environment 2 in Environment 1
can lead to missed detections as in the case of a stationary person
very far from the radar.

Finally, we analyze also the performance of the three detection
strategies when the calibration procedure exploits all twelve
datasets (six in Environment 1 and six in Environment 2)
simultaneously. To this end, Tables 7, 8 report the average
DRs for the trials performed in Environment 1 and 2,
respectively, as a function of the calibration type. The data

FIGURE 14 | Radar signal measured in Test 1 (top panel). Standard deviation (solid line) compared to optimal threshold ψp (dashed line) (middle panel). DSEM
output (solid line) compared to ground truth (dashed line).

TABLE 3 | Testing phase. DR andmean values for SDM, HM, DESM achievedwith
Test 1, 2, 3, 4 performed in Environment 1.

Test/Method SDM DR [%] HM DR [%] DESM DR [%]

Test 1 98.27 98.67 98.13
Test 2 99.6 99.60 98.53
Test 3 97.47 97.73 97.47
Test 4 97.33 98.13 97.07
Mean value 98.17 98.53 97.80

TABLE 4 | Testing phase. DR andmean values for SDM, HM, DESM achievedwith
Test 5, 7, 7, 8 performed in Environment 2.

Test/Method SDM DR [%] HM DR [%] DESM DR [%]

Test 5 99.47 99.33 97.47
Test 6 97.20 96.80 95.20
Test 7 96.67 96.53 95.87
Test 8 98.53 98.13 96.67
Mean value 97.97 97.70 96.30
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suggest that using more calibration datasets collected in several
environments yields intermediate or slightly superior average

detection rates compared to those achieved when using the
calibration datasets of a single environment. Accordingly,
performing a multi-environment calibration appears to be a
good practice to enhance the sensor reliability when
monitoring different indoor scenarios.

5 CONCLUSION

This paper has presented three signal processing strategies for
real-time occupancy sensing in indoor environments applied
to process data acquired by a continuous wave Doppler radar.
A compact prototype has been employed to achieve the goal
and a performance assessment of three detection strategies has
been performed through experimental trials. As revealed by
the tests, all the considered strategies turn out to be very
effective both in terms of detection accuracy and
computation complexity. In light of the achieved results,
CW radar turns out to be a suitable technological solution
that may be conveniently integrated with other types of sensors
to enhance the reliability of presence detection systems. Future
research activity will consider an extensive sensitivity analysis
of the detection strategies with respect to the adopted
calibration datasets, the effect of the slow drift in the
baseband signal and the validation of the prototype at lower
power levels. Moreover, the integration of the proposed signal
processing algorithms to increase further the reliability of the
radar sensor will be also addressed.

DATA AVAILABILITY STATEMENT

The raw data supporting the conclusion of this article will be
made available by the authors, without undue reservation.

AUTHOR CONTRIBUTIONS

Conceptualization, GG, VC, CN, FS, and IC; methodology, GG,
VC, CN, FS, and IC, software, GG, VC, and CN; validation, GG,
VC, CN, SP, and IC; investigation, GG and IC; writing, GG, VC,
CN, SP, FS, and IC. All authors have read and agreed to the
published version of the manuscript.

REFERENCES

Aguasca, A., Acevo-Herrera, R., Broquetas, A., Mallorqui, J., and Fabregas, X.
(2013). ARBRES: Light-Weight CW/FM SAR Sensors for Small UAVs. Sensors
13, 32043216–3216. doi:10.3390/s130303204

Ahmad, J., Larijani, H., Emmanuel, R., Mannion, M., and Javed, A. (2021).
Occupancy Detection in Non-residential Buildings – A Survey and Novel
Privacy Preserved Occupancy Monitoring Solution. Appl. Comput. Inform. 17
(279), 295. doi:10.1016/j.aci.2018.12.001

Alekhin, M., Anischenko, L., and Tataraidze, A. (2013). A Novel Method for
Recognition of Bioradiolocation Signal Breathing Patterns for Noncontact
Screening of Sleep Apnea Syndrome. Int. J. Antennas Propagation 8, 603.
doi:10.1155/2013/969603

Anishchenko, L., Gennarelli, G., Tataraidze, A., Gaysina, E., Soldovieri, F., and
Ivashov, S. (2015). Evaluation of Rodents’ Respiratory Activity Using a
Bioradar. IET Radar, Sonar & Navigation 9, 12961302–1302. doi:10.1049/
iet-rsn.2014.0553

Baboli, M., Singh, A., Soll, B., Boric-Lubecke, O., and Lubecke, V. M. (2015). Good
Night: Sleep Monitoring Using a Physiological Radar Monitoring System
Integrated with a Polysomnography System. IEEE Microw. Mag. 16 (34), 41.
doi:10.1109/mmm.2015.2419771

Cerasuolo, G., Petrella, O., Marciano, L., Soldovieri, F., and Gennarelli, G. (2017).
Metrological Characterization for Vital Sign Detection by a Bioradar. Remote
Sensing 9, 996. doi:10.3390/rs9100996

Chao, C. H., Hsu, T. W., and Tseng, C. H. (2015). Giving Doppler More Bounce: A
5.8 GHz Microwave High-Sensitivity Doppler Radar System. IEEE Microwave
Mag. 17 (52), 57. doi:10.1109/MMM.2015.2487919

TABLE 5 | Testing phase. DR andmean values for SDM, HM, DESM achievedwith
Test 1, 2, 3, 4 performed in Environment 1 with detection thresholds of
Environment 2.

Test/Method SDM DR [%] HM DR [%] DESM DR [%]

Test 1 96.93 96.80 96.93
Test 2 96.40 96.53 97.87
Test 3 96.80 96.80 97.47
Test 4 98.40 98.67 98.27
Mean value 97.13 97.20 97.73

TABLE 6 | Testing phase. DR andmean values for SDM, HM, DESM achievedwith
Test 5, 6, 7, 8 performed in Environment 2 with detection thresholds of
Environment 1.

Test/Method SDM DR [%] HM DR [%] DESM DR [%]

Test 5 95.87 96.80 98.13
Test 6 96.40 96.80 98.93
Test 7 95.60 96.00 96.80
Test 8 96.40 96.53 97.60
Mean value 96.07 96.53 97.87

TABLE 7 | Testing phase. Mean value of DR for tests performed in Environment 1
versus calibration type.

Calibration type SDM DR [%] HMDR [%] DSEM DR [%]

Environment 1 98.17 98.53 97.80
Environment 2 97.13 97.20 97.73
Both 98.57 97.63 97.87

TABLE 8 | Testing phase. Mean value of DR for tests performed in Environment 2
versus calibration type.

Calibration type SDM DR [%] HM DR [%] DSEM DR [%]

Environment 1 96.07 96.53 97.87
Environment 2 97.97 97.70 96.30
Both 97.47 97.50 96.57

Frontiers in Signal Processing | www.frontiersin.org March 2022 | Volume 2 | Article 84798013

Gennarelli et al. CW Doppler Radar: Detection Strategies

https://doi.org/10.3390/s130303204
https://doi.org/10.1016/j.aci.2018.12.001
https://doi.org/10.1155/2013/969603
https://doi.org/10.1049/iet-rsn.2014.0553
https://doi.org/10.1049/iet-rsn.2014.0553
https://doi.org/10.1109/mmm.2015.2419771
https://doi.org/10.3390/rs9100996
https://doi.org/10.1109/MMM.2015.2487919
https://www.frontiersin.org/journals/signal-processing
www.frontiersin.org
https://www.frontiersin.org/journals/signal-processing#articles


D.P.C.M. 8/7/(2003). Decree Defining Exposure Limits, Reference Values
and Quality Objectives Protecting the Population from Electric, Magnetic
and Electromagnetic fields Produced at Frequencies from 100 kHz to
300GHz.

Dremina, M. K., and Anishchenko, L. N. (2016). Contactless Fall Detection by
Means of CW Bioradar.”in Progress in Electromagnetic Research Symposium
(PIERS). IEEE. doi:10.1109/piers.2016.7735154

Droitcour, A. D., Boric-Lubecke, O., Lubecke, V. M., Lin, J., and Kovacs, G. T.
(2004). Range Correlation and I/Q Performance Benefits in Single-Chip
Silicon Doppler Radars for Noncontact Cardiopulmonary Monitoring.
IEEE Trans. Microwave Theor. Tech. 52 (838), 848. doi:10.1109/tmtt.2004.
823552

EPRI (1994). Occupancy Sensors: Positive On/off Lighting Control. Palo Alto, CA,
USA: ” Electr. Power Res. Inst.Rep. EPRIBR-100323.

Esposito, C., Natale, A., Palmese, G., Berardino, P., Lanari, R., Perna, S., et al.
(2020). “On the Capabilities of the Italian Airborne FMCW AXIS InSAR
System,” in Remote Sensing Microwave engineering (New York: John Wiley
&sons), 12, 539. doi:10.3390/rs12030539

Fernández, J. R. M., and Anishchenko, L. (2018). Mental Stress Detection Using
Bioradar Respiratory Signals. Biomed. signal Process. Control 43 (244), 249.
doi:10.1016/j.bspc.2018.03.006

Geisheimer, J. L., Marshall, W. S., and Greneker, E. (2001). “A Continuous-Wave
(CW) Radar for Gait Analysis,” in Proceedings of the IEEE Thirty-Fifth Asilomar
Conference on Signals, Systems and Computers, Pacific Grove, CA, USA. doi:10.
1109/acssc.2001.987041

Gennarelli, G., Ludeno, G., and Soldovieri, F. (2016). Real-time through-wall
Situation Awareness Using a Microwave Doppler Radar Sensor. Remote Sensing
8, 621. doi:10.3390/rs8080621

Hornsteiner, C., and Detlefsen, J. (2008). Characterisation of Human Gait Using a
Continuous-Wave Radar at 24 GHz. Adv. Radio Sci. 6, 67–70. doi:10.5194/ars-
6-67-2008

Li, C., Cummings, J., Lam, J., Graves, E., and Wu, W. (2009). Radar Remote
Monitoring of Vital Signs. IEEE Microwave Mag. 1047 (1), 56. doi:10.1109/
mmm.2008.930675

Li, C., and Lin, J. (2014).Microwave Noncontact Motion Sensing and Analysis (New
York: Wiley).

Li, C., Lubecke, V. M., Boric-Lubecke, O., and Lin, J. (2013). A Review on Recent
Advances in Doppler Radar Sensors for Noncontact Healthcare Monitoring.
IEEE Trans. Microwave Theor. Techn. 61, 2046–2060. doi:10.1109/tmtt.2013.
2256924

Lin, J. C. (1979). Microwave Apexcardiography. IEEE Trans. Microw. Theor. Tech.
27 (618), 620. doi:10.1109/tmtt.1979.1129682

Lin, J. C. (1975). Non-invasive Microwave Measurement of Respiration. Proc. IEEE
63, 557–565. doi:10.1109/proc.1975.9992

Lubecke, V. M., Boric-Lubecke, O., Host-Madsen, A., and Fathy, A. E. (2007).
Through-the-wall Radar Life Detection and Monitoring. ProcIEEE/MTT-S
International Microwave Symposium, 769–772. doi:10.1109/mwsym.2007.
380053

Meta, A., Hoogeboom, P., and Ligthart, L. P. (2007). Signal Processing for FMCW
SAR. IEEE Trans. Geosci. Remote Sensing 45, 35193532–3532. doi:10.1109/tgrs.
2007.906140

Otero, M. (2005). Application of a Continuous Wave Radar for Human Gait
Recognition. Proc. SPIE 5809, 538–548. doi:10.1117/12.607176

Pozar, D. M. (2011). Microwave engineering (New York: John Wiley &sons)
Steiner, J. P. (2009). XCTTM Technology from Lutron: The New Standard in

Sensing, Coopersburg, PA.
Tang, H. J., Kaur, S., Fu, L., Yao, B. M., Li, X., Gong, H. M., et al. (2014). Life Signal

Detection Using an On-Chip Split-Ring Based Solid State Microwave Sensor.
Appl. Phys. Lett. 105, 133703. doi:10.1063/1.4897220

Wang, J., Wang, X., Zhu, Z., Huangfu, J., Li, C., and Ran, L. (2013). 1-D
Microwave Imaging of Human Cardiac Motion: An Ab-Initio
Investigation. IEEE Trans. Microwave Theor. Techn. 61, 2101–2107.
doi:10.1109/tmtt.2013.2252186

Yatman, G., Üzumcü, S., Pahsa, A., and Mert, A. A. (2015). Intrusion Detection
Sensors Used by Electronic Security Systems for Critical Facilities and
Infrastructures: a Review. WIT Trans. Built Environ. 151 (131), 141. doi:10.
2495/safe150121

Yavari, E., Song, C., Lubecke, V., and Lubecke, O. B. (2014). Is There Anybody in
There? Intelligent Radar Occupancy Sensors. IEEE Microw. Mag. 15 (57), 64.
doi:10.1109/mmm.2013.2296210

Conflict of Interest: The authors declare that the research was conducted in the
absence of any commercial or financial relationships that could be construed as a
potential conflict of interest.

Publisher’s Note: All claims expressed in this article are solely those of the authors
and do not necessarily represent those of their affiliated organizations, or those of
the publisher, the editors and the reviewers. Any product that may be evaluated in
this article, or claim that may be made by its manufacturer, is not guaranteed or
endorsed by the publisher.

Copyright © 2022 Gennarelli, Colonna, Noviello, Perna, Soldovieri and Catapano.
This is an open-access article distributed under the terms of the Creative Commons
Attribution License (CC BY). The use, distribution or reproduction in other forums is
permitted, provided the original author(s) and the copyright owner(s) are credited
and that the original publication in this journal is cited, in accordance with accepted
academic practice. No use, distribution or reproduction is permitted which does not
comply with these terms.

Frontiers in Signal Processing | www.frontiersin.org March 2022 | Volume 2 | Article 84798014

Gennarelli et al. CW Doppler Radar: Detection Strategies

https://doi.org/10.1109/piers.2016.7735154
https://doi.org/10.1109/tmtt.2004.823552
https://doi.org/10.1109/tmtt.2004.823552
https://doi.org/10.3390/rs12030539
https://doi.org/10.1016/j.bspc.2018.03.006
https://doi.org/10.1109/acssc.2001.987041
https://doi.org/10.1109/acssc.2001.987041
https://doi.org/10.3390/rs8080621
https://doi.org/10.5194/ars-6-67-2008
https://doi.org/10.5194/ars-6-67-2008
https://doi.org/10.1109/mmm.2008.930675
https://doi.org/10.1109/mmm.2008.930675
https://doi.org/10.1109/tmtt.2013.2256924
https://doi.org/10.1109/tmtt.2013.2256924
https://doi.org/10.1109/tmtt.1979.1129682
https://doi.org/10.1109/proc.1975.9992
https://doi.org/10.1109/mwsym.2007.380053
https://doi.org/10.1109/mwsym.2007.380053
https://doi.org/10.1109/tgrs.2007.906140
https://doi.org/10.1109/tgrs.2007.906140
https://doi.org/10.1117/12.607176
https://doi.org/10.1063/1.4897220
https://doi.org/10.1109/tmtt.2013.2252186
https://doi.org/10.2495/safe150121
https://doi.org/10.2495/safe150121
https://doi.org/10.1109/mmm.2013.2296210
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/signal-processing
www.frontiersin.org
https://www.frontiersin.org/journals/signal-processing#articles

	CW Doppler Radar as Occupancy Sensor: A Comparison of Different Detection Strategies
	1 Introduction
	2 CW Radar Architecture and Prototype
	2.1 Radar Architecture and Signal Model
	2.2 Radar Prototype

	3 Detection Strategies
	3.1 Standard Deviation Method
	3.2 Histogram Method
	3.3 Doppler Spectrum Energy Method

	4 Experimental Tests
	4.1 Preliminary Tests
	4.2 Sensor Calibration
	4.3 Experimental Assessment—Environment 1
	4.4 Experimental Assessment—Environment 2
	4.5 Robustness Analysis

	5 Conclusion
	Data Availability Statement
	Author Contributions
	References


