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Medical image segmentation plays an important role in clinical applications, such as
disease diagnosis and treatment planning. On the premise of ensuring segmentation
accuracy, segmentation speed is also an important factor to improve diagnosis efficiency.
Many medical image segmentation models based on deep learning can improve the
segmentation accuracy, but ignore the model complexity and inference speed resulting in
the failure of meeting the high real-time requirements of clinical applications. To address
this problem, an asymmetric lightweight medical image segmentation network, namely AL-
Net for short, is proposed in this paper. Firstly, AL-Net employs the pre-training RepVGG-
A1 to extract rich semantic features, and reduces the channel processing to ensure the
lower model complexity. Secondly, AL-Net introduces the lightweight atrous spatial
pyramid pooling module as the context extractor, and combines the attention
mechanism to capture the context information. Thirdly, a novel asymmetric decoder is
proposed and introduced into AL-Net, which not only effectively eliminates redundant
features, but also makes use of low-level features of images to improve the performance of
AL-Net. Finally, the reparameterization technology is utilized in the inference stage, which
effectively reduces the parameters of AL-Net and improves the inference speed of AL-Net
without reducing the segmentation accuracy. The experimental results on retinal vessel,
cell contour, and skin lesions segmentation datasets show that AL-Net is superior to the
state-of-the-art models in terms of accuracy, parameters and inference speed.

Keywords: deep learning, convolutional neural network,medical image segmentation, lightweightmodel, contextual
encoder, asymmetric decoder

1 INTRODUCTION

Medical image segmentation refers to the process of dividing medical images into several non-
overlapping regions according to some similarity characteristics of medical images. Medical image
segmentation is of great significance for understanding the content of medical images and
discovering lesion objects. It is not only the basis of biomedical image analysis, such as medical
image registration and 3D reconstruction, but also plays an extremely important role in clinical
diagnosis and treatment.

In recent years, with the development of deep learning, medical image segmentation based on
deep learning has made remarkable progress and become a hot topic in the field of medical image
analysis. Many classical semantic segmentation models (Liu et al., 2015; Ronneberger et al., 2015;
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Shelhamer et al., 2015; Chen et al., 2017; Chen et al., 2018; Gu
et al., 2019; Zhou et al., 2019; Zhou et al., 2020; Chen et al., 2021)
usually adopt the idea of extracting pixel-level features, such as
the end-to-end fully convolutional network (FCN) (Shelhamer
et al., 2015) and U-shape Net (U-Net) (Ronneberger et al., 2015).
The above two types of segmentation models are mainly
composed of encoder and decoder. Meanwhile, more and
more contextual feature extraction modules are also employed
in medical image segmentation. Firstly, Medical image
segmentation models usually employ the most popular feature
extractors (Shelhamer et al., 2015); (Gu et al., 2019); (Simonyan
and Zisserman, 2014); (He et al., 2016); (Valanarasu et al., 2021)
as encoders, such as VGG and ResNet, but the improvement of
segmentation accuracy usually leads to the increase of model
complexity. Secondly, context information is indispensable for
image feature extraction. At present, most prominent semantic
feature extraction modules are implemented based on dilated
convolution (Chen et al., 2018); (Gu et al., 2019) and multi-scale
pooling (Liu et al., 2015); (Gu et al., 2019); (Jie et al., 2018). In
order to effectively focus on semantic features, attention
mechanism is widely used to extract semantic information (Li
et al., 2019); (Ni et al., 2019); (Le et al., 2020). Thirdly, medical
image segmentation models are mostly improved on the basis of
U-Net (Ronneberger et al., 2015); (Zhou et al., 2020). U-Net uses
skip connection to effectively supplement low-level features, but
it leads to information redundancy. In addition, on the basis of
ensuring the segmentation accuracy, the segmentation speed is an
important factor in applying the medical image segmentation
model to clinical treatment. However, these models ignore the
inference speed and model complexity to pursue the
segmentation accuracy, they are not suitable for some clinical
applications, such as image-guided surgery, online adaptive
radiotherapy and real-time disease monitoring, which have
high real-time requirements for image segmentation task.

To solve the above problems, we propose a lightweight
asymmetric medical image segmentation network, namely AL-
Net for short. Our main contributions are summarized as follows.

1) We introduce RepVGG-A1 as the encoder of AL-Net to
extract powerful semantic features, and select Lite R-ASPP
as the context information extraction module to ensure that
the model can effectively capture the context features and has
smaller parameters and lower model complexity.

FIGURE 1 | The structure of AL-Net. After the training of AL-Net, each RepVGG block in the encoder is processed by reparameterization technology, so as to
improve the inference efficiency of AL-Net.

FIGURE 2 | RepVGG block. RepVGG-A1 is divided into five stages, and
the number of the layers of each stage are 1, 2, 4, 14 and 1, respectively.
Training stage (Left): in the first layer of each stage, down sampling is carried
out through convolution with step size of 2, and there is no identity
branch. Inference stage (Right): AL-Net becomes a single branch after
reparameterization. Only the three layers of one stage are shown here.
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2) We design an asymmetric decoder using skip connection and
convolution operation for medical image segmentation. This
decoder not only fully integrate the low-level features of
images, but also eliminate the feature redundancy to
further improve the segmentation accuracy.

3) We integrate the re-parameterization technology in the
inference stage of AL-Net. Therefore, the inference model
of AL-Net has only 3.45 M parameters, and achieves the best
balance between speed and accuracy on the dataset of retinal
vessel, cell contour and skin image, respectively, which is
better than the existing models.

The structure of the remainder of this paper is organized as
follows. Section 2 introduces the related work of this paper.
Section 3 mainly describes the AL-Net in detail. Section 4
demonstrates the performance of AL-Net. Finally, Section 5
makes the conclusion for this paper.

2 RELATED WORK

In recent years, medical image segmentation based on deep
learning has made great progress. In this section, we mainly
introduce three general components of medical image
segmentation network and the popular lightweight
architecture.

2.1 General Components of Network
Medical image segmentation network usually includes encoder,
decoder and context extractionmodule. In this section, we discuss
these modules in detail.

Encoder: The semantic segmentation model based on deep
learning (Szegedy et al., 2016a; Le et al., 2019; Jns et al., 2020) uses
the encoder to extract high-level semantic information. U-Net
selects the most powerful convolutional neural network VGG
(Simonyan and Zisserman, 2014) as the encoder to capture high-
level semantic information, but VGG limits the richness of image
features due to the simple structure (Ronneberger et al., 2015).
Because more and more powerful convolutional neural networks
are proposed, the medical image segmentation network can
choose a more advanced convolutional neural network as the
backbone to extract more abundant image features (Gu et al.,
2019); (Zhou et al., 2020); (Chen et al., 2021). For example,
Context Encoder Network (CE-Net) (Gu et al., 2019) selects
ResNet-34 (He et al., 2016) as the encoder, because the
parameters of ResNet-34 are moderate and gradient dispersion
can be avoided through residual connection. The backbone of
U-Net++ (Zhou et al., 2020) is ResNet-101 with deeper network
layers. TransUNet (Chen et al., 2021) added transformers to the
encoder to extract more advanced features. However, these
networks have huge structures and many parameters, which
makes the model training and inference process consume a
long time and computational resources. In order to further
reduce the training and inference time of the network within
limited computing resources, a series of lightweight backbones
have emerged, such as Inception (Szegedy et al., 2016a); (Szegedy
et al., 2015); (Szegedy et al., 2016b); (Sergey IoffeSzegedy, 2015),
DenseNet (Huang et al., 2017) and RefineNet (Nekrasov et al.,
2018); (Lin et al., 2017). Although the lightweight structure of the
network is realized using these lightweight backbones, the
segmentation accuracy has made an unexpected sacrifice. Re-
parameterization technology can effectively avoid the
contradiction between model lightweight and segmentation
accuracy. Recently, Ding et al. (Ding et al., 2021) use re-
parameterization technology to realize multi-branch training
and single branch inference, which opens up another way for
the selection of encoder.

Decoder: The decoder is used to recover the spatial
information of images step by step, but the earliest decoder
only performs up-sampling, which will lead to the inability to
recover the spatial information of images. Then, U-Net
(Ronneberger et al., 2015) proposes a U-shaped decoder,
which is composed of up-sampling and skip connection to
supplement the detailed information lost in the encoder stage.
However, the simple connection is easy to cause the loss of

FIGURE 3 | The structure of Lite R-ASPP. H-Sigmoid stands for the
Hard Sigmoid function.

FIGURE 4 | The procedure of reparameterization.
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important semantic information in the process of high-level and
low-level semantic information fusion. To solve this problem,
scholars have proposed a variety of decoders to improve feature
fusion (Ibtehaz and Rahman, 2020); (Alom et al., 2019); (Zheng
et al., 2020). Nabil et al. (Ibtehaz and Rahman, 2020) used the
residual path to replace the skip connection of the U-shaped
decoder in the decoder of multiResUnet, so as to eliminate the
semantic difference caused by the fusion of the low-level features
of the encoder and the high-level features of the decoder. Zhou
et al. (2020) improved the decoding ways of U-Net and proposed
U-Net++ with nested dense skip connection path with deep
monitoring. Alom et al. (2019) added a dual attention
mechanism composed of spatial and channel attention in the
last two layers of the decoder. Zheng et al. (2020) applied
transformer to image segmentation and designed three
different decoders based on the output serialization
characteristics of transformer. However, these works only
focus on improving the segmentation accuracy, ignoring the
issue that many branch structures lead to a significantly slow
inference speed.

Context extraction module: To maintain the semantic
information extracted in the encoding stage, many modules
for extracting image context information are proposed.
ParseNet fuses global context information from image level to
solve the problem of insufficient actual receptive field (Liu et al.,
2015). DeepLabv2 proposes the atrous spatial pyramid pooling
(ASPP) module to effectively capture contextual features by
expanding receptive fields (Chen et al., 2018). DeepLabv3
combines image level information and employs parallel atrous
convolution layers with different dilated rates to capture multi-
scale information (Chen et al., 2017). Nekrasov et al. (Nekrasov
et al., 2018) designed the chained residual pooling (CRP) module
and used it to capture context features from high-resolution
images and improve the performance of semantic
segmentation. To solve the problem of object size change in
image segmentation, Gu et al. (Gu et al., 2019) proposed dense
atrous convolution (DAC) module and residual multi-kernel
pooling (RMP) module, which rely on the effective receptive
fields to detect objects with different sizes. However, most of these
modules only retain context information. For medical images
with complex background, it is of great significance to focus the

objects with sufficient context information. Hu et al. (Jie et al.,
2018) proposed the squeeze and excitation (SE) module, which
can automatically improve the useful features according to the
importance and suppress the features that contribute less to the
current task, so as to enhance the features and improve the
segmentation performance.

2.2 Lightweight Segmentation
In recent years, the lightweight design of semantic segmentation
network has gradually become a hot topic of image segmentation
task, which has attracted the attention of many scholars.
SegNAS3D (Wong and Moradi, 2019) uses network
architecture search to solve the problem of network structure
optimization in 3D image segmentation, which greatly reduces
the complexity of model. In order to pursue the real-time
performance of the model, Nekrasov et al. (2018) employed
the lightweight RefineNet (Lin et al., 2017) as the backbone
network. ICNet (Zhao et al., 2018) uses image cascade and
branch training to accelerate the convergence of model.
BiSeNet (Yu et al., 2018); (Yu et al., 2021) realized a
lightweight model based on double branch structure, which
uses different paths to extract spatial and semantic
information. In addition, other models use common
components to reduce the amount of computation. For
example, DMFNet (Chen et al., 2019) divides the channels
into multiple groups, and introduces weighted three-
dimensional extended convolution to reduce parameters and
improve the inference efficiency of model. Xception (Chollet,
2017) andMobileNets (Howard et al., 2017); (Sandler et al., 2018)
employed deep separable convolution to effectively improve the
inference speed. Dense-Inception U-Net (Zhang et al., 2020)
combines the lightweight backbone Inception and dense
module to extract high-level semantic information with
lightweight encoder. ShuffleNets (Ma et al., 2018); (Zhang
et al., 2018) proposed group convolution and channel
shuffling, which greatly reduced the computational cost
compared with the advanced models. However, lightweight
segmentation networks for relatively complex medical images
are less than them for natural images.

Some scholars have also designed lightweight segmentation
networks for medical images. However, on the premise of

TABLE 1 | Medical image segmentation datasets for the experiments.

Segmentation objects Images Input size Modality Provider

Retinal vessels 20 605 × 700 OCT STARE
Cell contour 30 512 × 512 Microscopy ISBI 2012
Skin lesions 2,594 512 × 512 Dermatoscope ISIC 2018

TABLE 2 | The results of ablation study for RepVGG-A1.

Encoder IoU (mean ± std) Params (M) Time (ms)

RepVGG-A1 0.8963 ± 0.0142 3.45 34.3
Res-Net34 0.8960 ± 0.0147 21.51 40.8

Bold represents the best result.

TABLE 3 | The results of ablation study for LR-ASPP.

Context extractor IoU (mean ± std) Parameters (M) Time (ms)

LR-ASPP 0.8963 ± 0.0142 3.45 34.3
ASPP 0.8941 ± 0.0160 5.39 42.4

Bold represents the best result.

TABLE 4 | The results of ablation study for A-Decoder.

Decoder IoU (mean ± std) Parameters (M) Time (ms)

A-Decoder 0.8963 ± 0.0142 3.45 34.3
U-Decoder 0.8805 ± 0.0169 3.45 41.1

Bold represents the best result.
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ensuring accuracy, there are few medical image segmentation
networks that achieve both low complexity and high inference
speed. nnU-Net (Isensee et al., 2020) improves the adaptability of
the network by preprocessing the data and post-processing the
segmentation results, but comes at cost of increasing model
parameters. U-Net++ (Zhou et al., 2020) uses small
parameters to achieve good segmentation accuracy, but ignores
the inference time of the model. And lightweight V-Net (Lei et al.,
2020) guarantees segmentation accuracy and fewer parameters by
employing depth-wise convolution and point-wise convolution,
but does not improve the inference time of themodel. In addition,
Tarasiewicz et al. (2021) trainedmultiple skinny networks over all
image planes and proposed Lightweight U-Nets, which obtains
accurate brain tumor delineation from multi-modal MRIs.
PyConvU-Net (Li et al., 2021) replaces all conventional
convolution layers in the U-Net with the pyramidal
convolution, which makes the segmentation accuracy better

and the parameters less. However, the inference speed of
PyConvU-Net still needs to be improved.

3 ASYMMETRIC LIGHTWEIGHT NETWORK

To ensure the segmentation accuracy and improve the
segmentation speed, we proposed an asymmetric lightweight
network for medical image segmentation. Figure 1 shows the
network structure of the proposed AL-Net. In Figure 1, AL-Net
consists of three important components, which are encoder,
semantic extraction module and decoder. Compared to other
classical models, the encoder of AL-Net does not involve residual
connection, which makes AL-Net occupy less memory in the
training stage. Meanwhile, AL-Net improves the ability of feature
representation and generalization by designing multi-branch
parallel structure in each convolution layer. The semantic

TABLE 5 | The evaluation of parameters and inference time of six models.

Models Parameters (M) Inference time (ms)

Cell contour Skin lesions Retinal vessels

DeepLabv3+ 59.34 50.6 51.2 53.1
CE-Net 28.99 41.5 42.1 42.4
U-Net++ 9.16 1,530.8 1,542.3 1910.4
PyConvU-Net 3.7 45.7 47.2 50.4
Baseline 3.45 38.7 38.5 39.5
AL-Net 3.45 34.3 34.6 36.2

Bold represents the best result.

FIGURE 5 | The segmentation results of five models for retinal vessels images.
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extraction module is usually a pyramid structure, and the
semantic extraction module employed by AL-Net are LR-
ASPP (Howard et al., 2019). Compared with other pyramid
modules, it can not only capture different-sized objects by the
multi-core effective receptive field, but also combine the attention
mechanism tomore effectively deal with the low-contrast medical
image segmentation task. In addition, LR-ASPP also uses a large
pooling kernel with a large stride and only one 1 × 1 convolution,
which save some computation and make AL-Net more
lightweight. In order to effectively map the low-resolution
features of the encoding stage to the pixel-level classification
features with the original resolution in the decoding stage, we are
inspired by the DeepLabV3+ and U-Net, and design a decoder
with asymmetric structure and apply it to AL-Net, which is more
suitable for medical image segmentation. This decoder uses 3 × 3
convolutions on the basis of U-shaped decoder instead of using

skip connections directly, which can not only fully integrate the
low-level semantic information, but also effectively eliminate the
redundant features of images. It is more conducive to extract
accurately object contours of medical images. In addition, in the
inference stage of AL-Net, we employ the re-parameterization
technology and optimize the multi-branch structure of encoder to
single-branch structure, which improves the inference speed of
AL-Net.

3.1 Encoder Module
The encoder plays an important role in image segmentation and
feature extraction. The early medical image segmentation
network, such as U-Net, chose VGG as encoder, which is
always composed of convolution, ReLU and pooling. With the
development of deep learning technology, the encoders of
medical image segmentation network usually choose better
modules, such as Inception, ResNet and DenseNet, which
make the medical image segmentation model more and more
complex. Although complex models may have higher accuracy
than simple models, the multi-branch structure of complex
models makes the model difficult to implement, and increases
the inference time and memory utilization. In order to guarantee
the segmentation accuracy and reduce the model complexity, the
encoder of AL-Net employs the RepVGG-A1, which has the same
ability of feature representation as Res-Net34 but has fewer
parameters. RepVGG block is shown in Figure 2. The
RepVGG-A1 is designed for the image classification task of

TABLE 6 | The accuracy evaluation of six models on the retinal vessels dataset.

Models Acc (mean ± std) IoU (mean ± std)

DeepLabv3+ 0.9710 ± 0.0060 0.6704 ± 0.0474
CE-Net 0.9649 ± 0.0056 0.6374 ± 0.0404
U-Net++ 0.9716 ± 0.0099 0.6614 ± 0.0841
PyConvU-Net 0.9130 ± 0.0085 0.6031 ± 0.0752
Baseline 0.9673 ± 0.0067 0.6525 ± 0.0412
AL-Net 0.9728 ± 0.0065 0.6851 ± 0.0577

Bold represents the best result.

FIGURE 6 | The segmentation results of five models for cell contour images. The red and yellow boxes respectively represent the segmentation differences of five
models in the same position.
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ImageNet, and there are few classes for medical image
segmentation task. Therefore, there is channel redundancy when
RepVGG-A1 is utilized as the backbone of AL-Net. We decrease
the channels of the backbone of AL-Net without significantly
reducing performance. Specially, the stride convolution is used
by the RepVGG to replace the pooling operation, which avoids the
possibility of losing the spatial information of images. In addition,
the RepVGG can employ re-parameterization technology to
transform multi-branch structure into single-branch structure to
improve the inference speed effectively.

3.2 Context Extractor Module
The context extraction module is used to extract contextual
semantic information and generate more high-level feature
maps. Currently popular context extraction modules, such as
ASPP, can enrich spatial information, but do not have a specific
direction of feature response. Medical images have the
characteristics of high complexity, lack of simple linear features,
and the gray of the background and objects are similar. Therefore,
compared with natural images, it is more necessary for medical
images to optimize the channel dimension. In this paper, the Lite
R-ASPP firstly discards the atrous convolution that spends a lot of
computational cost. Then, Lite R-ASPP can realize the information
integration between channels by simplifying the four branches into
two branches. Lite R-ASPP employs the global average pooling to
prevent over fitting by regularizing the structure of the whole
network. The global context information and semantic features are
extracted by global average pooling to realize the global distribution
on the feature channel. The feature is compressed into an attention
vector. Finally, hard sigmoid with faster computational speed is
employed as the activation function to realize the weight
normalization, so as to recalibrate the semantic dependencies of
the original features in the channel dimension, and highlight the
key features and filter the background information. In addition,
Lite R-ASPP uses only 1 × 1 convolution, which effectively reduces
the parameters. Lite R-ASPP is shown in Figure 3.

3.3 Decoder Module
In the popular architecture of image segmentation networks, the
decoder only has a simple upsampling process, which may lead to
the loss of spatial information. To address this issue, U-Net uses
skip connection to fuse the feature maps in the encoding and
decoding stage to obtain richer spatial information. However, this
connection mode produces many redundant low-level features.
To solve this problem, we design an asymmetric decoder, namely

A-Decoder. Firstly, A-Decoder still fully integrates the low-level
features in the encoding stage to supplement the high-resolution
information and recover more edge information of objects in
medical images. However, instead of using skip connection for
symmetrical structure directly, 3 × 3 convolution is used after
fusing low-level features, which effectively reduces redundant
features. Then, it is fused with the high-level features from the
context extraction module to refine the contour information of
objects. Finally, A-Decoder apply a 1 × 1 convolution to reduce
the number of channels. A-Decoder is shown in Figure 1. In
addition, A-Decoder can effectively reduce the fusion times of
skip connections and supplement the same amount of spatial
information with less computation. A-Decoder can be
expressed as:

out � (Flow + Fhigh)pC(1) (1)
Flow � (F1 + F2 + F3 + F4)pC(3)pC(3)pC(1) (2)

Fhigh � Up16(Up2(F5))pC(1) (3)
Where F1, F2, F3 and F4 stand for the output of encoders in the
different stages, respectively. F5 represents the output of semantic
extraction module. C(3) and C(1) stand for 3 × 3 and 1 × 1
convolution, respectively. Up2 and Up16 represent 2x up-
sampling and 16x up-sampling, respectively.

3.4 Loss Function
We utilize loss function to supervise the training process of AL-
Net. Binary cross entropy is defined as a measure of the difference
between two probability distributions for a given random variable
or set of events. It is widely used in classification and
segmentation tasks, and segmentation is a kind of pixel-level
classification. Therefore, binary cross entropy loss function works
well in the segmentation tasks. In addition, Dice coefficient is an
ensemble similarity measure, which usually used to calculate the
similarity of two samples. Dice coefficient can maximize the
segmentation objects, thus preventing the learning process
from falling into the local minimum. To effectively segment
objects in medical images, AL-Net employs a composite loss
function that combines Dice coefficient and binary cross entropy.
The loss function employed by AL-Net is shown in Equation (4):

Lloss � LDice + LBCE (4)
LBCE is defined in Eq. 5:

LBCE � −1
n
∑ n

i�1Xilogσ(Yi) + (1 − Xi)log(1 − σ(Yi)) (5)

Where, X and Y represent ground truth and prediction results,
respectively; Xi and Yi stand for the ith element of X and Y,
respectively. σ stands for the Sigmoid function. n represents the
total number of elements of X. The Dice Loss is defined as:

LDice � 1 − 2
|X ∩ Y|
|X| + |Y| (6)

Where, |X ∩ Y| is the element number of the intersection of X and
Y. |X| and |Y| represent the element numbers of X and Y,
respectively.

TABLE 7 | The performance evaluation of six models for cell contour
segmentation.

Models Acc (mean ± std) IoU (mean ± std)

DeepLabv3+ 0.9315 ± 0.0165 0.8793 ± 0.0137
CE-Net 0.9144 ± 0.0176 0.8587 ± 0.0188
U-Net++ 0.9219 ± 0.0186 0.8661 ± 0.0156
PyConvU-Net 0.9124 ± 0.0146 0.8563 ± 0.0162
Baseline 0.9350 ± 0.0161 0.8789 ± 0.0151
AL-Net 0.9406 ± 0.0148 0.8963 ± 0.0142

Bold represents the best result.
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3.5 Re-Parameterization
AL-Net is a convolutional neural network with multi-branch
structure. This structure is beneficial to model training and
improve the segmentation accuracy, but it will lead to a long
inference time. In the inference stage, reparameterization
technology can couple multiple branches into a single branch,
which can speed up the inference procedure of AL-Net without
sacrificing accuracy. Generally, the encoder has the greatest
impact on the performance of image segmentation model. The
encoder of AL-Net consists of three branches: identity branch, 1 ×
1 convolution and 3 × 3 convolution. In the procedure of
reparameterization, the identity branch can be regarded as a
degenerative 1 × 1 convolution and 1 × 1 convolution can be
regarded as a degenerative 3 × 3 convolution. Thus, 3 × 3
convolution, 1 × 1 convolution and the batch standardization
layer in the training model can be reconstructed into a 3 × 3
convolution in the inference model. After reparameterization, the
encoder of AL-Net becomes a single branch structure with only
3 × 3 convolution layer. The procedure of reparameterization for
each block is shown in Figure 4. The reparameterized AL-Net can
effectively reduce the amount of parameters and shorten the
segmentation time.

4 EXPERIMENTS

In this section, we first introduce the datasets, experimental setup
and evaluation criteria. Then, the ablation studies for AL-Net are
carried out on the cell contour segmentation datasets. Finally, AL-
Net is compared with other state-of-the-art segmentation models

in terms of parameters, segmentation speed and accuracy, and the
results on three datasets of retinal vessels, cell contour and skin
lesions are shown and discussed.

4.1 Datasets
In order to evaluate the performance of AL-Net, we conducted
segmentation experiments on three medical image datasets,
which are shown in Table 1. These datasets are derived from
the most common medical imaging modalities, including
microscopy, dermatoscope and optical coherence tomography.

1) Retinal vessels. This dataset is a color fundus image dataset for
retinal vessel segmentation (Hoover and Goldbaum, 2003),
which includes ten lesion images and ten healthy images. The
size of each image is 605 × 700.

2) Cell contour. This dataset is obtained by transmission electron
microscopy from the serial segment of the ventral nerve zone
of Drosophila melanogaster, with a total of 30 images. Each
image has complete cell and membrane labels, and the size of
each image is 512 × 512 (Cardona et al., 2010).

3) Skin lesions. This dataset is provided by ISIC 2018 (Tschandl
et al., 2018); (Allan, 2019) for melanoma detection, including
2,594 images of skin lesion. The size of each image is 2,166 ×
3,188, which is resampled to 512 × 512 in this experiment.

Two steps of data augmentation are carried out for these
datasets to avoid the risk of over fitting caused by little data.
Firstly, each image is expanded to eight times of the original
image by turning horizontally, vertically and diagonally,
respectively. Then, each image is translated up, down, left and

FIGURE 7 | The segmentation results using six models for skin lesions images.
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right, respectively. The above data augmentation methods cannot
change the data distribution, meanwhile can avoid over-fitting in
the training process and effectively improve the generalization
ability of the model.

The division of training dataset and test dataset of cell contour
and skin lesions segmentation dataset is consistent with the
official description. Retinal vessel segmentation dataset is
randomly divided into the training dataset and test dataset
according to 7:3. The training dataset and test dataset are
separately expanded using the data augmentation methods
described above. Then, the validation dataset is divided from
the training dataset, and the proportion of training dataset,
validation dataset and test dataset is 5:2:3. In the experiment,
the training dataset is used for model training, the test dataset is
used to evaluate the model, and the validation dataset is used to
evaluate the model performance in the process of model training
to obtain the best model.

4.2 Experimental Setup
All models involved in the experiment are implemented on the
cloud service platform, which is equipped with NVIDIA Tesla
P100 GPU with 16 GB memory. PyTorch is chosen as the
framework of deep learning. In AL-Net, Adam is used as the
optimizer. The initial learning rate is set to 5e-3 and the batch size
is set to 4. In addition, we use the automatic attenuation strategy
of the learning rate, where the step size is 1 and the attenuation
factor γ is 0.95. The maximum epoch is set to 150 in all
experiments, and the training processes of all models are
terminated when epoch is 150.

4.3 Evaluation Measures
We evaluate the performance of AL-Net from three aspects:
model complexity, inference speed and segmentation accuracy.
The model complexity is measured by the parameters of the
model, and the inference speed is evaluated by the inference time
of the model for a single image. For the sake of fairness, the
inference time is the average time of performing ten segmentation
processes for each sample after hardware preheating. We choose
the accuracy (Acc) and intersection union ratio (IoU) to evaluate
the segmentation accuracy of all models.

Accuracy refers to the ratio of object results in all prediction
results, which is shown in Eq. 7:

Acc � TP + TN
TP + TN + FP + FN

(7)

IoU represents the similarity or overlap between the predicted
object and the ground truth, which is computed as follows:

IoU � TP
TP + FP + FN

(8)

Where TP, TN, FP and FN represent the number of true positive,
true negative, false positive and false negative, respectively. The
value range of Acc and IoU is [0, 1]. The closer the values of Acc
and IoU are to 1, the better the segmentation result.

4.4 Ablation Study
In this paper, we design a lightweight segmentation network
for medical images on the premise of ensuring the
segmentation accuracy, which mainly includes three
contributions. First, RepVGG-A1, which realizes lightweight
design using the re-parameterization technology, is selected as
the backbone of AL-Net. Secondly, we integrate LR-ASPP
which is a lightweight context information extraction
module into AL-Net. Thirdly, we design a decoder with
asymmetric structure in term of the characters of medical
images. To validate the efficiency of three contributions, we
conduct the ablation study on the test dataset of cell contour
images.

4.4.1 Ablation Study for RepVGG-A1
Encoder plays an important role in extracting features for the
image segmentation model. High performance encoder is of great
significance to image segmentation model. Since we choose
RepVGG-A1 as the encoder of AL-Net, we compare it with
Res-Net34 to validate the performance of RepVGG-A1.
RepVGG-A1 and Res-Net34 are respectively used as encoders
of AL-Net. The results of segmentation accuracy and speed are
shown in Table 2.

In Table 2, the IoU value of these models is similar, but the
parameters of AL-Net using RepVGG-A1 in the inference stage is

TABLE 8 | Performance evaluation of six models on the skin lesions dataset.

Models Acc (mean ± std) IoU (mean ± std)

DeepLabv3+ 0.9155 ± 0.1041 0.7677 ± 0.1520
CE-Net 0.9305 ± 0.0711 0.7760 ± 0.1371
U-Net++ 0.9058 ± 0.1073 0.7255 ± 0.2011
PyConvU-Net 0.8847 ± 0.1650 0.6941 ± 0.1573
Baseline 0.9310 ± 0.0946 0.7935 ± 0.1657
AL-Net 0.9312 ± 0.0890 0.7947 ± 0.1533

Bold represents the best result.

FIGURE 8 | Speed-accuracy trade-off comparison of six models on
three test datasets.

Frontiers in Signal Processing | www.frontiersin.org May 2022 | Volume 2 | Article 8429259

Du et al. AL-Net

https://www.frontiersin.org/journals/signal-processing
www.frontiersin.org
https://www.frontiersin.org/journals/signal-processing#articles


3.45 M, which is only 1/6 of AL-Net using Res-Net34. Moreover,
the inference time of AL-Net using RepVGG-A1 is 34.3 ms,
which is faster than that of AL-Net using Res-Net34. To sum
up, compared with Res-Net34, our encoder has higher accuracy,
faster speed and smaller parameters.

4.4.2 Ablation Study for LR-ASPP Block
The context extraction module is an important component to
enhance the ability of the feature representation of the model. We
employed LR-ASPP as the semantic feature extractor of AL-Net
and compared it with the classical context extraction module,
such as ASPP. The results are shown in Table 3.

In Table 3, the parameters of AL-Net using LR-ASPP is only
3.45 M, which is nearly 1/3 less than that of AL-Net using ASPP.
Compared to AL-Net using ASPP, the inference time for each
image is also shortened from 42.4 to 34.3 ms, and the
segmentation accuracy is effectively improved. The main
reason is that LR-ASPP has fewer branches and combines the
attention mechanism, which is more suitable for medical images
than ASPP.

4.4.3 Ablation Study for A-Decoder
In order to improve the performance of AL-Net, we also
designed an asymmetric decoder A-Decoder, which is
compared with the popular symmetric U-Decoder. The
results are shown in Table 4.

It can be seen from Table 4 that the inference speed of the AL-
Net with A-Decoder is 34.3 ms, which is 16.5% faster than that of
the model with U-Decoder, and the IoU is increased from 0.8805
to 0.8963. This is due to the fact that A-Decoder not only retains
sufficient low-level semantic information with less feature fusion,
but also skillfully employs 3 × 3 convolution and refines low-level
features to improve performance of the model.

4.5 Comparison With Other Methods
In this section, we compare AL-Net with three semantic
segmentation models with excellent performance in recent
years (DeepLabv3+, CE-Net, PyConvU-Net and U-Net++) and
its baseline (replacing the encoder of U-Net with RepVGG-A1) in
terms of speed and accuracy. We analyze the parameters and
speed of these models, and report the experimental results in
terms of their accuracy.

4.5.1 Inference Speed
Inference speed is an important basis for evaluating the
performance of medical image segmentation model, especially
in practical application. We use the above six models to test the
inference speed on the datasets of retinal vessel, cell contour and
skin lesions segmentation, respectively. For the sake of fairness,
all experiments are conducted in the same environment, and we
record the average inference time of ten executions. The
experiment results are shown in Table 5.

In Table 5, the parameters of AL-Net is only 3.45 M, which is
equivalent to baseline and much smaller than other models. The
parameters of AL-Net is only 1/25 of that of DeepLabv3+, which
is 5.71 M less than that of U-Net++. In addition, the inference

time of AL-Net for input images with different sizes is
significantly shorter than that of other models. For the input
image with size 512 × 512 on the cell contour dataset, the
inference time of AL-Net is 34.3 ms, which is 44.6 times
shorter than U-Net++. For the skin lesions dataset, the
inference time of AL-Net is 34.6 ms, which is 1.5 times faster
than DeepLabv3+. For each image with size 700 × 605 on the
retinal vessel dataset, the inference time of AL-Net is 36.2 ms,
which is shorter than other models. Because U-Net++ has only
9.16 M parameters but many branches, which reduces the
parallelism of the model, the inference time of U-Net++ is
much longer than other models. However, AL-Net achieves
the high inference speed due to the single branch structure in
the inference stage. AL-Net is also faster than DeepLabv3+ and
CE-Net. There are two main reasons. One is that the decoder of
AL-Net has a simple single branch structure in the inference
stage, and the other is that the encoder of AL-Net has fewer fusion
operations, which saves a lot of time.

4.5.2 Accuracy Analysis
In this section, we will show some visualization examples and
experimental results of segmentation accuracy on retinal vessels,
cell contours and skin injury segmentation datasets.

Retinal vessels: the segmentation results on the retinal vessel
dataset are shown in Figure 5. In Figure 5, the segmentation
results of AL-Net are closest to the ground truth, and there are
inaccurate segmentation boundaries in the segmentation results
of other models. For example, the segmentation results of
DeepLabv3+ are the coarsest and cannot interpret the details
of retinal vessels. U-Net++ cannot completely segment the ends
of blood vessels. Baseline and CE-Net lead to over segmentation
and incorrectly segment objects from background. The accuracy
evaluation results of the above six models on the retinal vessels
dataset are shown in Table 6. The Acc and IoU of AL-Net is
0.9728 and 0.6851, respectively, which is better than other
models. In conclusion, the performance of AL-Net for retinal
vessels segmentation is significantly better than other models.

In the retinal vessels dataset, AL-Net first benefits from the
semantic extraction module, which combines the channel
attention module, so that AL-Net can not only capture the
high-level context information, but also optimize the channel
dimension. Secondly, compared with other models, the advantage
of AL-Net comes from the decoder. There is only one layer of
low-level information combined with DeepLabv3+, which is far
from enough for medical images. Baseline, U-Net++, PyConvU-
Net and CE-Net simply transmit low-level features to the decoder
through skip connection. However, the decoder of AL-Net
integrates low-level features and applies 3 × 3 convolution to
refine the features, which makes AL-Net more suitable for
segmenting small objects and plays a gain effect on
segmenting retinal vessels.

Cell contour: Figure 6 shows the segmentation results of six
models on the cell contour segmentation dataset. In Figure 6, the
segmentation results of AL-Net are more consistent with the
ground truth, and the segmentation results of other models are
discontinuous at the foreground edge. In addition, the
segmentation results of U-Net++ are also disturbed by
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complex noise. The accuracy evaluation of these models is shown
in Table 7. In Table 7, the value of Acc and IoU of AL-Net is
0.9406 and 0.8963, respectively, which are better than other
models. Meanwhile, the standard deviation of AL-Net is also
smaller than other models. To sum up, AL-Net can improve
effectively the accuracy of segmentation results, which is suitable
for extracting cell contour.

Skin lesions: The visualization and accuracy evaluation of
segmentation results on the skin lesions dataset using six
models are shown in Figure 7 and Table 8, respectively. In
Figure 7, compared with other models, the segmentation results
of AL-Net are obviously closer to the ground truth. InTable 8, the
Acc and IoU of AL-Net are 0.9312 and 0.7947, respectively, which
is significantly improved compared with other models. Therefore,
AL-Net outperforms other state-of-the-art models for skin
lesions image segmentation.

Figure 8 shows the evaluation of the inference speed and
accuracy of the six models for three different datasets. As can be
seen from Figure 8, AL-Net has the faster inference speed and the
higher performance than the other models for the three datasets,
which more intuitively proves the efficiency and effectiveness of
AL-Net.

5 CONCLUSION

Aiming at the problems of large parameters and slow inference
speed of medical image segmentation model, an asymmetric
lightweight semantic segmentation network AL-Net is
proposed in this paper. The encoder of AL-Net is trained
through multi-branch structure to extract powerful medical
image features. The context extraction module of AL-Net
captures the context features and recalibrates the feature
response in the channel direction by explicitly modeling the
interdependence between channels, which is more suitable
for segmenting medical images. The decoder of AL-Net not
only makes full use of the low-level semantic information,

but also combines 3 × 3 convolution to effectively eliminate
redundant features. Finally, the reparameterization technology
simplifies the inference procedure of AL-Net and improves the
inference speed of AL-Net. The total parameters of AL-Net are
only 3.45 M. Meanwhile, compared with the state-of-the-art
models, AL-Net has achieved the best accuracy and the fastest
speed on three datasets of retinal vessel, cell contour and skin
lesions.
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