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Point clouds (PCs) provide fundamental tools for digital representation of 3D surfaces,
which have a growing interest in recent applications, such as e-health or autonomous
means of transport. However, the estimation of 3D coordinates on the surface as well as
the signal defined on the surface points (vertices) is affected by noise. The presence of
perturbations can jeopardize the application of PCs in real scenarios. Here, we propose a
novel visually driven point cloud denoising algorithm (VIPDA) inspired by visually driven
filtering approaches. VIPDA leverages recent results on local harmonic angular filters
extending image processing tools to the PC domain. In more detail, the VIPDA method
applies a harmonic angular analysis of the PC shape so as to associate each vertex of the
PC to suit a set of neighbors and to drive the denoising in accordance with the local PC
variability. The performance of VIPDA is assessed by numerical simulations on synthetic
and real data corrupted by Gaussian noise. We also compare our results with state-of-the-
art methods, and we verify that VIPDA outperforms the others in terms of the signal-to-
noise ratio (SNR). We demonstrate that our method has strong potential in denoising the
point clouds by leveraging a visually driven approach to the analysis of 3D surfaces.
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1 INTRODUCTION

Digital representation of real 3D surfaces has a crucial importance in a variety of cutting-edge
applications, such as autonomous navigation (Huang J. et al., 2021), UAV fleets (Ji et al., 2021),
extended reality streaming, or telesurgery (Huang T. et al., 2021). Point clouds represent 3D surfaces
by means of a set of 3D locations of points on the surface. In general, those points can be acquired by
active or passive techniques (Chen et al., 2021; Rist et al., 2021), in presence of random errors, and
they may be associated with color and texture information as well. Point cloud denoising can in
general be applied as an enhancement stage at the decoder side of an end-to-end communication
system, involving volumetric data, for e.g., for extended reality or mixed reality services. Although
lossless compression of point clouds is feasible (Ramalho et al., 2021), color point cloud lossy coding
based on 2D point cloud projection (Xiong et al., 2021) is increasingly relevant both in sensor
networks (de Hoog et al., 2021) and autonomous systems (Sun et al., 2020). Nonlocal estimation
solutions (Zhu et al., 2022) or color-based (Irfan and Magli 2021b) solutions as well as solutions for
point cloud sequences (Hu et al., 2021a) have been proposed.

The extraction of visually relevant features on point cloud is needed for tasks as pattern
recognition, registration, compression and quality evaluation (Yang et al.s, 2020; Diniz et al.,
2021), and semantic segmentation. Point cloud (PC) processing has been widely investigated, and
many of the proposed processing methods are based on the geometric properties (Hu et al., 2021b;
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Erçelik et al., 2021). Still, feature extraction on PC is mostly
focused on information related to the point cloud shape. In
addition, new PC acquisition systems for surveillance (Dai
et al., 2021) or extended reality (XR) (Yu et al., 2021) require
processing tools operating both on geometry and texture. Shape
and texture processing needs development of new tools because
of the non-Euclidean nature of the real surfaces modeled by a
point cloud. In this direction, few studies in the literature
simultaneously leverage both geometry and texture
information. Furthermore, in the context of classical image
processing, several effective tools have been inspired by the
human visual systems (HVSs), which process both texture and
shape, and it is sensitive to angular patterns such as edges, forks,
and corners (Beghdadi et al., 2013). In particular, two-
dimensional circular harmonic functions (CHFs) have been
investigated for visually driven image processing and
specifically for angular pattern detection. CHFs have been
successfully applied to interpolation (Colonnese et al., 2013),
deconvolution (Colonnese et al., 2004), and texture synthesis
(Campisi and Scarano 2002). On the contrary, point cloud
processing lacks HVS-inspired processing tools, which can, in
principle, provide alternative perspectives.

In this article, we leverage a class of point cloud multiscale
anisotropic harmonic filters (MAHFs) inspired by HVS. MAHFs
were recently introduced in our conference article (Conti et al.
(2021)). First, we recall the MAHF definition and describe their
local anisotropic behavior that highlights directional
components of the point cloud texture or geometry. In
addition, we show their applicability to both geometric and
textured PC data. Second, we illustrate how MAHF can be
applied to visually driven PC denoising problems. Denoising is
a crucial preprocessing step for many further point cloud
processing techniques. In real acquisition scenarios, the
perturbations on the PC vertices or on the associated signal
severely affect the PC usability. MAHF is used to drive an
iterative denoising algorithm so as to adapt the restoration to
the local information. The proposed method differs from other
competitors (Zhu et al., 2022 and the references) in linking the
denoising with visually relevant features, as estimated by
suitable anisotropic filtering in the vertex domain. We test
the performance of the visually driven point cloud denoising
algorithm (VIPDA) on synthetic and real data from the public
database (Turk and Levoy 1994; d’Eon et al., 2017). Specifically,
considering different signal-to-noise-ratios by adding Gaussian
noise to the original data, we verify that our method
outperforms state-of-the-art alternatives in denoising data.

The structure of the article is as follows. In Section 2, we
review a particular class of HVS-inspired image filters, namely the
circular harmonic filters, which are needed to introduce our point
cloud filtering approach. In Section 3, we present a class of
multiscale anisotropic filters, formerly introduced in Conti et al.
(2021), and we illustrate their relation with visually driven image
filters. In Section 5, we present the visually driven point cloud
denoising algorithm (VIPDA) based on the proposed manifold
filters. In Section 6, we show by numerical simulations that the
VIPDA outperforms state-of-the-art competitors. Section 7
concludes the article.

2 CIRCULAR HARMONIC FUNCTIONS FOR
HVS-BASED IMAGE FILTERING: A REVIEW

Before the introduction of the MAHFs, a step back is necessary in
order to contextualize the research problems by investigating
other filter methods in the Euclidean domain.

In several important applications in the field of image
processing, circular harmonic functions (CHFs) have been
used (Panci et al., 2003; Colonnese et al., 2010). As mentioned
previously, CHFs have been widely applied in image processing
applications because they are able to detect relevant image
features, such as edges, lines, and crosses, i.e., they perform
the analysis in an analogous way to the behavior of the HVS
during the pre-attentive step. It is important to remark here that
the results of the order-1 CHFs are complex images, in which the
module corresponds to the edge magnitude while the phase
describes the orientation. Taken together, this filtering
procedure returns precious information about the structures of
the output image; in fact, it underlines the edges by
simultaneously measuring their intensity and direction. The
interest in CHFs also stems from the fact that they can be
integrated within an invertible filter bank, thereby being
exploited for suitable processing, for e.g., image enhancement,
in the CHF-transformed domain (Panci et al., 2003).

CHFs’ properties relate to the specific way in which they
characterize the information belonging to two points. In fact, they
encode the distance as well as the geometric direction that
joins them.

These aspects are evident in the mathematical formulation of
CHFs. Let us consider the 2D domain of the continuous CHF
described by the polar coordinates (r, ϑ) that, respectively,
represent the distance from the origin and the angle with the
reference x axis. The CHF of order k is the complex filter
defined as:

h k( ) r, ϑ( ) � gk r( )ejkϑ, (1)
where the influence of the radial (r) and the angular (ϑ)
contributions are separated by the two factors. With the aim
of preserving the isomorphism with the frequency space, the
functions gk(r) in Eq. 1 are usually isotropic Gaussian kernels.
The variable k defines the angular structure of the model. For k =
0, the zero-order CHF returns output as a real image, represented
by the low-pass version of the original one. As a general
consideration, when the order k increases, CHFs are able to
identify more and more complex structures on the images, such
as edges (for k = 1), lines (for k = 2), forks (for k = 3), and crosses
(for k = 4). We can see the effect of increasing the k order of the
heat kernel on a sphere in Conti et al. (2021).

Based on the definition of CHF and the introduction of a scale
parameter α, circular harmonic wavelet (CHW) (Jacovitti and
Neri 2000) of order k can be introduced and can be typically
applied in the context of multi-resolution problems.

Finally, it is worth observing that the CHF output has been
shown to be related to the Fisher information of the input w.r.t
rotation and translation parameters. The Fisher information of an
image w.r.t. shift/rotation estimation is associated with the power
of the image first derivative w.r.t. the parameter under concern
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(Friedlander 1984). The CHF in the 2D account for a local
derivative of the signal has been shown to be related to the
Fisher information w.r.t. localization parameters (Neri and
Jacovitti 2004).

In order to show a visual example of the application of CHF on
real data, we consider the “cameraman image,” and we apply first-
order CHF as an example to represent the effect of CHF on a real
image. We report the results in Figure 1, in which we can see the
module in panel A and the phase in panel B.

Stemming on these studies on directional harmonic analysis of
2D signals, we introduce in the following sections the multiscale
anisotropic harmonic filters to be adopted in the non-Euclidean
manifold domain.

3 MULTISCALE ANISOTROPIC HARMONIC
FILTERS

Although the HVS is very complex in nature, its low-level
behavior, as determined by the primary visual cortex, is well
characterized by being bandpass and orientation selective (Wu
et al., 2017). Therefore, the CHF mimics these features on 2D
images, and in this section, we show how to extend this behavior

to manifold filters. Specifically, in this section, we describe a new
class of visually driven filters operating on a manifold in the 3D
space; the preliminary results on such filters appear in Conti
et al.(2021). We extend the presentation in Conti et al. (2021) by
an in-depth analysis of their relation with the CHF and by providing
new results about their applications to point cloud filtering.

Our general idea consists in the extension of CHFs to 2D
manifolds embedded in 3D domains. In this direction, the two
key points to adapt to this new scenario are as follows: 1) we need to
define a smoothing kernel that corresponds to the isotropicGaussian
smoothing in the 2D case; and 2) we have to identify an angular
measurement on the surface of the manifold in the 3D space.

In the following sections, we elaborate on the filters
description first in the case of a 2D manifold defined in a
continuous 3D domain and then in the case of its discretized
version, as represented by a point cloud. The main notation is
reported in Table 1.

3.1 MAHF on Manifolds
We first introduce the multiscale anisotropic harmonic filter
(MAHF) on a continuous manifold M in R3. The first step
consists in the definition of a smoothing kernel, which is
necessary to adapt to Eq. 1 in this scenario. The smoothing
kernel should account on the intrinsic (non-Euclidean) distance
between a point p0 and a different point p on the manifold surface.

To this aim, we resort to the heat kernel that describes the
diffusion of the heat from a point-wise source located at a point p0
on the manifold to a generic other manifold point p, after the time
t. In formulas, the heat kernel Kt: M × M → R is found as the
fundamental solution of the heat propagation equation1 under
the initial condition f0(p) = δ(p − p0).

FIGURE 1 | Results of CHF application on the “cameraman image” (with k = 1). In panel (A), we have the module of the CHF |h(1)|, and in panel (B), we have the
associated phase ∠h(1).

TABLE 1 | Table of main notation.

Notation Description

M Manifold
G Graph associated to the point cloud
A Adjacency matrix
D Degree matrix
L Laplacian matrix
λ, u Eigenvalues and eigenvectors
p0, p Coordinates of point on the continuous manifold
pi, pj Coordinates of point on the discrete manifold
qi Noisy coordinates of points on the discrete manifold
p̂i Reconstructed coordinates after denoising
np, npi

Direction orthogonal to the continuous and discrete manifold
ϕ(k) MAHF of k order on the continuous Manifold
φ(k) MAHF of k order on the discrete Manifold

1Let Δ denote the Laplace–Bertrami operator, i.e., a linear operator computing the
sum of directional derivatives of a function defined on the manifold. The heat
propagation equation is written as:

Δf p, t( ) � −δtf p, t( ), f p, t � 0( ) � f0 p( ), (2)
where f(p, t) is the solution under initial condition f0(p).
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With these positions, given two points p0 and p on the
manifold surface, the heat kernel is expressed as an infinite of
suitable functions on the manifold. Specifically, let χs(p, s � 0, . . .
be the eigenfunctions of the Laplace–Bertrami (sum of directional
derivatives) manifold operator. Therefore, χs: M → R. For any
point pair (p, p0) on the manifold, the heat kernel is written as:

K M( )
t p, p0( ) � ∑∞

s�0
e−tαsχs p( )χs p0( ). (3)

The heat kernel K(M)
t (p, p0) has the interesting property to

represent a smooth function on the M manifold (Hou and Qin
2012), smoothly decreasing as a bell-shaped function at a rate
depending on the parameter t (Conti et al., 2021).

For what concerns angles, several definitions have been
proposed in the context of convolutional neural networks on
the manifold. Specifically, the polar coordinates on the geodesic
can be defined using angular bins. Alternatively, a representation of
points on the plane T , which is the plane tangent to themanifold in
the point p. In this work, we define the angle ϑ(M) in a similar way
to the second approach. As represented in the panel A in Figure 2,

the angle ϑ(M) corresponds to the azimuth in the spherical
coordinates of the point p, when the reference is the system
(t1,t1,n) with the origin centered in p and the n axis is normal
to the tangent plane T .

With these positions, the multiscale anisotropic harmonic
filters (MAHFs) ϕ of k order and centered in p0 are defined as
follows (Conti et al., 2021):

ϕ k( ) p, p0( ) � K M( )
t p, p0( )cos k ϑ M( ) p, p0( )( )︸													︷︷													︸

ϕ k( )
R

+j K M( )
t p, p0( )sin k ϑ M( ) p, p0( )( )︸													︷︷													︸

ϕ k( )
I

, (4)

with K(M)
t (p, p0) defined as in 3 and where we recognize the real

ϕ(k)R and imaginary ϕ(k)I part of the complex function ϕ(k)(p, p0).

3.2 MAHF on Point Clouds
In this subsection, we focus on the definition of MAHF on a 3D
point cloud. Let us consider the graph G associated with the point
cloud and defined as G � (V, E), where V is the set of N point

FIGURE 2 | Graphical representation of angles in the 3D space. In panel (A), we represent the continuous manifold M, in which we highlight the angle ϑ(M) in
orange. In panel (B), we have the discrete manifold on which a graph G is defined. The angle ϑ(G) is plotted in orange.

FIGURE 3 | Application of MAHF to texture (luminance) and shape (point cloud normals).
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cloud vertices pi with i = 1‥N, and E is the set of edges (or links).
The edge weights are represented by the N × N weighted
adjacency matrix A or by the Laplacian graph L = D − A,
being D, the degree matrix, which is a diagonal matrix with
elements on the principal diagonal computed as dii � ∑N

j�1aij. For
3D point clouds, the edge weights are selected such that the
Laplacian L approximates the continuous domain
Laplace–Beltrami operator (Belkin et al., 2009).

Let λn and un, n = 0, . . ., N − 1 denote the eigenvalues and
eigenvectors of L, respectively. In this case, the heat kernel at
the i-th and j-th point cloud points (pi, pj) is obtained as
follows:

K G( )
t pi, pj( ) � ∑N−1

n�0
e−tλnun i[ ]un j[ ], (5)

i.e., it depends on the weighted sum of the products of the i-th
and j-th coefficients of each and every Laplacian eigenvector.
The eigenvectors corresponding to small eigenvalues, i.e., the
low-frequency vectors of the graph Fourier transform defined
on the graph, dominate the sum for large values of the
parameter t.

As the continuous case, in the discrete scenario, we define the
angle ϑ(G) as the azimuth of the T tangent plane to pi, as
graphically represented in Figure 2B.

Similar to the continuous case, the multiscale anisotropic
harmonic filters (MAHFs) φ of k order and centered in pi are
defined as:

φ k( ) pi, pj( ) � K G( )
t pi, pj( )cos k ϑ G( ) pi, pj( )( )︸													︷︷													︸

φ k( )
R

+j K G( )
t pi, pj( )sin k ϑ G( ) pi, pj( )( )︸													︷︷													︸

φ k( )
I

, (6)

with K(G)
t (pi, pj) defined as in Eq. 5 and where we recognize the

real φ(k)
R and imaginary φ(k)

I parts of the complex function
φ(k)(pi, pj).

4 VISUALLY DRIVEN POINT CLOUD
FILTERING: MAHF AS ANISOTROPIC
ANALYSIS OF TEXTURE AND SHAPE IN
POINT CLOUDS

Let us consider a real-valued D-dimensional signal on the point
cloud vertices s(pi) ∈ RD, i = 0, . . ., N − 1. Applying k-th-order
MAHF for the vertex domain signal on graph filtering obtains the
output point cloud signal r(pi) as:

r pi( ) � ∑N−1

j�0
φ k( ) pi, pj( )s pj( ). (7)

The filtering realized by the MAHFs performs an
anisotropic harmonic angular filtering of the signal defined
on the point cloud. The period of the harmonic analysis
decreases as the filter order increases, and MAHF of
different orders k are matched to different angular patterns
of the input signal s(pi) i = 0, . . ., N − 1.

MAHF applies to both texture and shape signals, depending
on the choice of the input signal s(pi) i = 0, . . ., N − 1. For video
point clouds, the signal s(pi) can represent the luminance and the
chrominances observed at the point pi. If this is the case, the
MAHF output highlights texture patterns on the surface. On the
other hand, the signal s(pi) i = 0, . . .,N − 1 can be selected so as to
represent geometric information. A relevant case is when the
signal represents the normal to the point cloud surface at each
vertex pi as follows:

FIGURE 4 | Examples of two neighborhoods of different sizes Ki and Kj (left) around points characterized by different values of the mean square value of the MAHF
output ‖ν(qi)‖2 (right). The considered point cloud is a low-resolution version of the Stanford bunny in Turk and Levoy 1994).

Frontiers in Signal Processing | www.frontiersin.org March 2022 | Volume 2 | Article 8425705

Cattai et al. VIPDA: A Visually Driven

https://www.frontiersin.org/journals/signal-processing
www.frontiersin.org
https://www.frontiersin.org/journals/signal-processing#articles


s pi( ) � nx pi( )
ny pi( )
nz pi( )

⎡⎢⎢⎢⎢⎢⎣ ⎤⎥⎥⎥⎥⎥⎦ � n pi( ), i � 0, . . . , N − 1. (8)

The application of MAHF to the signal defined as in Eq. 8 will
be exploited in the following derivation of VIPDA.

To sum up, the MAHFs can be applied to different kinds of
data defined on point clouds, and they provide a way to
extract several point-wise shape and texture point cloud
features for different values of the order k. A schematic
representation of MAHF application to texture
(luminance) and shape (point cloud normals) information
is illustrated in Figure 3.

5 VISUALLY DRIVEN POINT CLOUD
DENOISING ALGORITHM

In this section, we illustrate the VIPDA approach, based on
application of the aforementioned MAHF to the problem of
PC denoising.

Let us consider the case in which the point cloud vertices are
observed in presence of an additive noise. Thereby, the observed
coordinates are written as

qi � pi + wi, i � 0, . . . , N − 1, (9)
where wi is an i.i.d. random noise. The denoising provides an
estimate p̂i of the original locations pi. Let us remark that this
problem is different from recovery of a signal defined at the
vertices, which will be addressed in the future work.

Point cloud denoising algorithms typically leverage 1) data
fidelity (Irfan and Magli 2021a), 2) manifold smoothness (low-
rankedness) (Dinesh et al., 2020), and 3) local or cooperative
averaging (Chen et al., 2019) objectives.

Here, the local manifold smoothness is accounted by adapting
the estimator p̂i to the local shape variability as estimated at the
first algorithm stage. Specifically, the MAHF is applied to the
point cloud estimated normals n(0)(qj) as:

ν 0( ) qi( ) � ∑N−1

j�0
φ k( ) qi, qj( )n 0( ) qj( ). (10)

Thereby, each point qi is assigned a weight related to the
normal variations in its neighborhood. The key idea is that when
fast variations of the normal are observed around qi, the surface
smoothness is reduced, and the set of neighboring points to be
exploited to compute the estimate p̂i should be reduced
accordingly. Therefore, the size Ki of the neighborhood of the
point qi to be used in the estimation stage is selected based on the
MAHF-filtered signal ν(qi). Specifically, Ki is selected as a
function of the mean square value of the MAHF output, namely

FIGURE 6 | VIPDA overview.

FIGURE 5 | Schematic representation of the VIPDA iteration. We report
the original point p̂(l−1)

i obtained at the (l − 1) iteration, with the normal to the
tangent plane n(l−1) with p̂(l−1)

i . At the iteration (L), the position of the point is
updated obtaining the point ~p(l)

i .

Frontiers in Signal Processing | www.frontiersin.org March 2022 | Volume 2 | Article 8425706

Cattai et al. VIPDA: A Visually Driven

https://www.frontiersin.org/journals/signal-processing
www.frontiersin.org
https://www.frontiersin.org/journals/signal-processing#articles


Ki � K ‖ν qi( )‖2( ),
whereK is an integer function defined on R. This is exemplified in
Figure 4 (left), which illustrates a point cloud (namely a low-
resolution version of the Stanford bunny in Turk and Levoy
(1994)) and two neighborhoods of different sizes Ki and Kj

around points characterized by different values of the mean
square value of the MAHF output, namely ‖ν(qi)‖2, plotted in
Figure 4 (right).

After the size of the estimation window at each point is given,
the denoising algorithm iteratively alternates 1) the computation
of a candidate estimate of the point location based on spatially
adaptive averaging over the Ki-size neighborhood of the i-th
vertex and 2) the update of the current estimate, along the
direction of the normal to the surface.

In formulas, at the l-th iteration, the candidate estimate of the
i-th point cloud vertex is computed as

~p l( )
i � α0p̂

l−1( )
i + ∑

j∈η i;Ki( )
αjp̂

l−1( )
j ,

where η(i; Ki) denotes the set of Ki nearest neighbors of the i-th
point cloud vertex. Then, the estimate is updated as

p̂ l( )
i � p̂ l−1( )

i + ρl0n
l−1( ) p̂ l−1( )

i( )n l−1( ) p̂ l−1( )
i( )T ~p l( )

i − p̂ l−1( )
i( ),

where ρ0 ∈ (0, 1] is a parameter controlling the update rate
throughout the iterations. Finally, the normals n(l)(p̂(l)i ) are
recomputed on the estimated point cloud p̂(l)i , i � 0, . . . , N − 1.

To sum up, the MAHF is applied once for all at the beginning
of the iterations. For each vertex, the set of neighboring points is
identified. Then, a candidate new point is computed as a weighted
average of the neighbor and of the point itself. Then, the point
estimated at the previous iteration is updated only by projection
of the correction on the direction of the normal to the surface, as
illustrated in Figure 5.

FIGURE 7 | Results of the application of MAHF (k = 1) on a two-valued signal (in panel (A)). We compute the MAHF, and we report the square of the module of the
output in panel (B).

FIGURE 8 | Results of the application of CHF (k = 1) on a discrete bidimensional step function in panel (A). We compute the output of the MAHF, and we report the
square of the module in panel (B) and the phase in panel (C).
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The normals to the surface are recomputed. The algorithm is
terminated after few iterations (1-3 in the presented simulation
results).

The algorithm is summarized as follows:
Input:Noisy point clouds coordinates qi, i = 0, . . ., N − 1; heat

kernel spread t; update rate control parameter ρ0.
Output:Denoised point clouds coordinates p̂i, i � 0, . . . , N −

1.
Inizialization:
Computation of the heat kernel.K(G)

t (pi, pj), j � 0, . . . , N − 1,
i � 0, . . . , N − 1
Computation of the normals n(0) and of their filtered

version. ν(pi) � ∑N−1
j�0 φ(1)(qi, qj)n(0)(qj)

Computation of Ki � K(‖ν(qi)‖2) and of the Ki nearest
neighborhood η(i; Ki)

Iteration: for l = 1, . . ., L − 1
Computation of the candidate estimate ~p(l)i � α0p̂

(l−1)
i +∑

j∈η(i;Ki)
αj p̂(l−1)j , with αj = (α0)/Ki

Update of the current estimate. p̂(l)i � p̂(l−1)i +
ρl[n(l−1)(p̂(l−1)i )][n(l−1)(p̂(l−1)i )]T(~p(l)i −p̂(l−1)i )

Update of the normals n(l)(p̂(l)i ).
An overview of the VIPDA algorithm stages appears in

Figure 6.

5.1 Remarks
As far as the computational complexity of VIPDA is concerned, a
few remarks are in order. First, VIPDA implies an initial MAHF-
filtering stage that implies the eigendecomposition. For the
computation in 5, the use of all the elements of the
eigendecomposition has a really high computational cost for

large N. To solve this limitation, Chebychev polynomial
approximation by Huang et al. (2020); Hammond et al. (2011)
can be applied in order to rewrite Eq. 5 as a polynomial in L. For
the sake of concreteness, we have evaluated the time associated
with each stage of the algorithm, implemented in Matlab© over a
processor using this approximation for the Bunny cloud with N =
8,146. The net time for the computation of the heat kernel
K(G)

t (pi, pj), j � 0, . . . , N − 1, i � 0, . . . , N − 1 sums up to
TKt � 40.7[s], the computation of the filtered normals ν(pi)
requires up to T] = 9.6[s], and the computation of the L = 3
or 4 iterations requires TL = 1.8[s]. Overall, the iterative denoising
algorithms require TVIPDA = 60.74, which is comparable with
state-of-the-art methods (e.g., the execution time on the same
machine for the method in Dinesh et al., 2020 is about 70[s]).

Second, VIPDA is iterative, and it is not suited for
parallelization. This observation stimulated the definition of an
alternative version of the algorithm, namely VIPDAfast, boiling
down to a single iteration and suitable for parallelization. This is
achieved by a simplified application of the VIPDA key concept,
that is, the adaptation of the size of the estimation neighborhood
to the MAHF-filtered output. In the single iteration algorithm
VIPDAfast, each point is straightforwardly estimated on a patch
whose size is as a given function of the MAHF output at that
point. Since all the estimates are obtained directly from the noisy
sample, the algorithm may be parallelized on different subsets of
points. The numerical simulation results will show that
VIPDAfast, suited for parallelization, approximates the
performance of the complete iterative VIPDA, especially on
relatively smooth point clouds. VIPDAfast is expected to
reduce the execution time in a way proportional to the
number of available concurrent threads.

FIGURE 9 |MAHF applied on the point cloud normals for different data: (A) red and black and (B) long dress. In the insets of each panel, we have original images.
Here, MAHFs are applied to the normals npi to the point cloud surface. We compute the square module of the MAHF output ‖ν(pi)‖2.
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Finally, a remark on the noise model is in order. Indeed, the
VIPDA at each iteration performs a local averaging, which tackles
Gaussian noise and, in a suboptimal way, also impulsive noise.
Still, the core of VIPDA allows 1) to adaptively select the
neighborhood of the vertex to be used in the estimate and 2)
to apply the correction to the noise component orthogonal to the
mesh surface. These two principles can also be applied when the
actual estimate is realized by different nonlinear operators tuned
to the actual noise statistics by Ambike et al. (1994). Therefore,
VIPDA can be extended to deal with different kinds of noise by
replacing the average operator with a suitable nonlinear one, this
is left for further study.

6 SIMULATION RESULTS

In this section, we present simulation results associated with the
application of MAHF on synthetic and real PC, and we measure
the performances of VIPDA. In particular, in subsec.6.1, we
illustrate the MAHF behavior, also in comparison with CHF, and
in subsec.6.2 we assess the performance of VIPDA, also in
comparison with state-of-the-art denoising algorithms.

6.1 MAHF-Based Point Cloud Filtering
In this subsection, we present some examples on the application of
MAHF on different point clouds. In this article, we introduce a point
cloud filteringmethod inspired byHVS, and we show its potential to

both geometric and texture PC data. The proposed class of filters
presents a local anisotropic behavior that highlights directional
components of the point cloud texture or geometry. The filter
output can be leveraged as input to various adaptive processing tasks.

First, we consider the case of a point cloud obtained by
equispaced sampling of a planar surface, over which a
discontinuous signal is defined. This case is illustrated in
Figure 7A), in which we see the point cloud in which a two-
valued signal is defined; the signal is characterized by a discontinuity
in the middle. Then, MAHF filtering (with k = 1) is applied. In
Figure 7B, we report the square of the module of the related MAHF
output. As expected, the MAHF highlights the vertices in
correspondence with the signal discontinuity. In order to
compare MAHF with CHF behavior, we take into account an
analogous scenario for CHF filtering, namely we consider an
image representing a discrete bidimensional step function, which
is represented in Figure 8A. We apply the k = 1 CHF to the image,
and we separately plot its module and phase in the panel Figures 8B,
C, respectively. The output of the k = 1 MAHF and CHF filters
highlights the areas in correspondence with the discontinuity of the
signal. Thereby, we recognize that the k = 1 MAHF filter
straightforwardly extends to the planar point cloud domain, the
behavior observed applying the k = 1 CHF filter on image data.
Indeed, we remark that theMAHF and CHF filters definitions in the
point cloud domain and image domain, respectively, are analogous,
and it is expected that the MAHF can retrieve structured
discontinuities of the signals defined on a point cloud.

FIGURE 10 |MAHF applied on luminance images for two point clouds: (A) red and black and (B) long dress.We report the original luminance images in the insets of
each panel. In this case, MAHFs are applied to the luminance s(pi). We compute the square module of the MAHF output, which corresponds to r(pi).
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After exemplifying the relation between MAHF and CHF, we
apply MAHF to open access point clouds. For this study, we
consider two point clouds belonging to the 8iVSLF dataset (d’Eon
et al., 2017). Specifically, we consider the point clouds red and black
and long dress (d’Eon et al., 2017), which are the 3D point clouds
illustrated in the insets of panels A and B in Figure 9. Each point
cloud vertex is associated to the red, green, and blue components of
the surface color as seen using a multi-camera rig. The original
point clouds red and black and long dress have been resampled to a
number of points equal to N = 9,622 and N = 9,378, respectively.

First of all, we apply MAHF to the normals npi, i � 0, . . . ,N − 1
to the point cloud surface2, and we compute the squaremodule of the

MAHF output, namely the estimated ‖ν(pi)‖2, i = 0, . . ., N − 1 in
Figure 9. We graphically represent it in gray-scale pseudo-colors in
Figure 9. The largest values of ‖ν(pi)‖2, i = 0, . . .,N − 1 are associated
to the vertices characterized by curvature changes in each point cloud.

Then, for each point cloud, we analyze the filtering of the color
information. At each vertex pi, i = 0, . . ., N − 1, we compute the
luminance given by the available RGB values, and we apply
MAHF by considering the luminance as the real-valued input
signal s(pi), i = 0, . . ., N − 1 over the point cloud graph. The
MAHF output r(pi) � ∑N−1

j�0 φ(k)(pi, pj)s(pj), i � 0, . . . , N − 1
is then computed. We present the square module r(pi) of the
MAHF filter output in Figure 10 for the two point clouds under
study. In this case, this method is able to highlight luminance
variations on the graph, and it spots out details in the images such
as the arms in panel A or the feet in panel B of Figure 10.

6.2 VIPDA Performances
After illustrating the application of MAHF to point cloud filtering
on shape and texture information by means of examples on real
data, we address the assessment of VIPDA in this subsection.

To this aim, we first illustrate the application of VIPDA over
synthetic data. Specifically, we consider the point cloud related to
the Stanford bunny (Turk and Levoy 1994), resampled at N =
8,146. The noisy coordinates qi of the points on the PC are
obtained as in Eq. 9. In the simulations, a Gaussian noise wi is
added to the original coordinates pi. The intensity of the additive

FIGURE 11 | Results of VIPDA at each step. We consider a point cloud related to the Stanford bunny (Turk and Levoy 1994) which is represented with its original
coordinates pi in panel (A). Then, a Gaussian noise wi is added with SNR = 38, and the noisy points qi on the point cloud are represented in panel (B). The colors
associated to the color bar correspond to the difference between noisy and original coordinates ‖pi − qi‖2. In panel (C),we report the output of the MAHF ‖ν(qi)‖2 applied
to the estimated normals nqi . In panel (D), we have results of VIPDA. We have p̂i points belonging to the denoised PC, and the colors relate to the difference
between reconstructed and original coordinates ‖p̂i − qi‖2.

TABLE 2 | Table of SNR with Stanford bunny point cloud.

SNRnoisy SNR(Dinesh et al. 2020) SNRaverage SNRiter SNRiterPARA

35 35.07 35.42 35.89 35.94
38 38.28 38.28 38.92 38.96
40 40.69 40.15 40.97 40.98
48 46.69 46.49 48.62 48.62

Highest values for each SNR are highlighted in bold.

2The point cloud normals are computed using the ©Matlab by the implementation
of the method in Hoppe et al. (1992).
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noise is measured by the signal-to-noise ratio (SNR), which is a
parameter varied in the following analyses, and it is computed as:

SNRnoisy � 10 log10
1
N∑N−1

i�0 ‖pi‖2
1
N∑N−1

i�0 ‖pi − qi‖2
. (11)

We plot the original point cloud in Figure 11A, in which the
pseudo-color is associated to the third coordinate of qi, i = 0, . . .,
N − 1 (coordinate w.r.t. the z-axis). In Figure 11B, we plot the
noisy point cloud obtained for SNRnoisy = 38dB. The pseudo-
colors of the point cloud represent the square module of the
difference between the noisy coordinates ‖pi − qi‖2, i = 0, . . .,N − 1
and the original ones computed as ‖pi − qi‖2. In this manner, the
point color (represented in a color scale from blue for zero values
and red for the maximum values) reflects how much each point is
corrupted by the additive Gaussian noise.

Then, we apply the MAHF to the estimated normals n(qi), i =
0, . . ., N − 1 of the noisy point cloud, and we compute the square
value of the MAHF output at each vertex, namely ‖ν(qi)‖2, i = 0,
. . .,N − 1. The so-obtained values are illustrated in Figure 11C, as
pseudo-colors at the vertices. We recognize that the largest values
are observed in correspondence to vertices in areas of normal
changes. These results exemplify that the MAHFs are able to
capture the variability of the signals.

Finally, we apply VIPDA to the filtered point cloud, and we
show the denoised point cloud in Figure 11D. Here, we have the
p̂i points reconstructed by VIPDA, and we define the signal
associated to each new point as the error computed between the
original coordinates p and the reconstructed ones as ‖pi − p̂i‖2.
From a visual analysis, we recognize that the points in D are closer
to original ones in Awith respect to absence of denoising in B; this
effect is more visible at the boundary of the point cloud. A more
quantitative result is provided by the following SNR computation:

Specifically, we design a signal-dependent feature graph
Laplacian regularizer (SDFGLR) that assumes surface normals
computed from point coordinates are piecewise smooth with
respect to a signal-dependent graph Laplacian matrix.

Finally, we perform analyses based on the SNR and compare
our method with different alternatives. In this direction, we first

consider the algorithm proposed in Dinesh et al., (2020), in which
authors perform a graph Laplacian regularization that starts from
the hypothesis that the normals to the surface at the point cloud
vertices are smooth w.r.t graph Laplacian. For sake of comparison,
we also study the average case, in which we analyze the PC results
from the local average of its spatial coordinates. Finally, we
consider the VIPDA and the VIPDAfast algorithms. In the
simulations, K(‖ν(qi)‖2) is set equal to a bi-level function,
depending on whether ‖ν(qi)‖2 is above the threshold θ or not.
We set t = 10 and α0 = 0.9 on all the data and θ � 0.06,K ∈ {3, 9}
on synthetic data and θ � 0.08,K ∈ {3, 15} on real data.

In order to perform the computations, we first consider the
Stanford bunny point cloud, and we select different levels of SNR,
namely SNRnoisy = 35, 38, 40, 48dB. Then, we take into account
different denoising algorithms and report the SNR achieved on
the denoised point cloud in Table 2. For each method, we
compute the SNR as the distance between the reconstructed
coordinates and the original ones as

SNR � 10 log10
1
N∑N−1

i�1�0‖pi‖2
1
N∑N−1

i�0 ‖pi − p̂i‖2
.

Our results show that our denoising method outperforms the
alternatives. The method with the parallelization even increases the
performances w.r.t. the iterative one. This is due to the particular
nature of the point cloud, in which the flat areas and the high
curvature areas are relatively easy to distinguish, and the method
coarsely operating on the two point sets achieves the best results.
This is more clearly highlighted on point clouds acquired on real
objects as illustrated in the following: We consider the two other
point clouds (Red and Black and LongDress) for two fixed levels of
noise with SNR at 40dB and 48dB. The results are, respectively,
reported in Tables 3, 4. SNR values show that the proposed
VIPDA, either in its original or fast version, performs better
than state-of-the-art competitors in denoising point cloud
signals corrupted by Gaussian noise. Finally, we consider a
smooth point cloud, namely a sphere with N = 900 points. Also
on this smooth point cloud, where the MAHF gives a uniform
output and the patch size is fixed, VIPDA achieves an SNR

TABLE 3 | Table of SNR with fixed SNR of noisy data at 40 dB with different point clouds, i.e., Stanford bunny, long dress and red and black, and spherical meshes.

Point cloud SNR(Dinesh et al. 2020) SNRaverage SNRVIPDA SNRVIPDAfast

Stanford bunny 40.69 40.15 40.97 40.98
Red and black 40.03 40.49 40.48 40.50
Long dress 39.99 40.49 40.63 40.63
Sphere 39.97 39.49 40.46 40.46

Highest values for each SNR are highlighted in bold.

TABLE 4 | Table of SNR with fixed SNR of noisy data at 48 dB with several point clouds, i.e., Stanford bunny, long dress and red and black, and spherical meshes.

Point cloud SNR(Dinesh et al. 2020) SNRaverage SNRVIPDA SNRVIPDAfast

Stanford Bunny 46.69 46.49 48.62 48.62
Red and black 48.05 47.72 48.26 48.27
Long dress 48.03 47.70 48.58 48.57
Sphere 48.09 38.25 48.26 48.26

Highest values for each SNR are highlighted in bold.
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improvement. The correction by VIPDA is restrained to the
normal direction and leads to a smooth surface. Thereby,
VIPDA achieves a SNR improvement also on smooth surfaces,
and an improvement due to the reduction of the normal noise
component is observed even in the limit case of a planar mesh.

It is important to mention that the performance of all the
methods, including the proposed method, degrades severely if the
SNR decreases. This is due to the fact that, in correspondence with
low SNR, the positions of the vertices are displaced such that the
positions of the noisy points may even exchange with respect to the
original ones, and this phenomenon is not recovered even though
the MAHF on the signal is recomputed at each iteration. A possible
solution to this would be to initially denoise the Laplacian associated
to the point cloud graph by leveraging a spectral prior, as in Cattai
et al. (2021), or by jointly exploiting the shape and texture
information; this latter point is left for future studies.

To sum up, these findings demonstrate the potential of the
proposed VIPDA approach for point cloud denoising and pave
the way for designing new processing tools for signals defined
over non-Euclidean domains.

7 CONCLUSION

This work has presented a novel point cloud denoising approach,
the visually driven point cloud denoising algorithm (VIPDA).
The proposed method differs from other competitors in linking
the denoising with visually relevant features, as estimated by
suitable anisotropic angular filters in the vertex domain.

VIPDA leverages properties inspired by those of the human
visual system (HVS), and it is viable for application on the texture
and geometry data defined over a point cloud. The VIPDA
approach leads to smooth denoised surfaces since it iteratively
corrects the noise component normal to the manifold underlying
the point cloud by projecting the observed noisy vertex toward
the plane tangent to the underlying manifold surface. The
performance of VIPDA has been numerically assessed on real
open access data and compared with state-of-the-art alternatives.

The proposed algorithm is effective in denoising real point
cloud data, and thereby it makes point cloud modeling more
suitable for real applications. Our findings pave the way to HVS-
inspired point cloud processing, both for enhancement and
restoration purposes, by suitable anisotropic angular filtering.
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