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Efficiently and accurately identifying which microbes are present in a biological sample is
important to medicine and biology. For example, in medicine, microbe identification allows
doctors to better diagnose diseases. Two questions are essential to metagenomic analysis
(the analysis of a random sampling of DNA in a patient/environment sample): How to
accurately identify the microbes in samples and how to efficiently update the taxonomic
classifier as new microbe genomes are sequenced and added to the reference database.
To investigate how classifiers change as they train on more knowledge, we made sub-
databases composed of genomes that existed in past years that served as “snapshots in
time” (1999–2020) of the NCBI reference genome database. We evaluated two
classification methods, Kraken 2 and CLARK with these snapshots using a real,
experimental metagenomic sample from a human gut. This allowed us to measure
how much of a real sample could confidently classify using these methods and as the
database grows. Despite not knowing the ground truth, we could measure the
concordance between methods and between years of the database within each
method using a Bray-Curtis distance. In addition, we also recorded the training times
of the classifiers for each snapshot. For all data for Kraken 2, we observed that as more
genomes were added, more microbes from the sample were classified. CLARK had a
similar trend, but in the final year, this trend reversed with the microbial variation and less
unique k-mers. Also, both classifiers, while having different ways of training, generally are
linear in time - but Kraken 2 has a significantly lower slope in scaling to more data.
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BACKGROUND

DNA sequencing has enabled the investigation of microbial communities using cultivation-
independent, DNA/RNA-based approaches (Brul et al., 2010; Berg et al., 2020; Coenen, 2020).
We can think of these microbial communities as microscopic civilizations, in which bacteria not only
act independently but learn to cooperate and compete with each other, to gain more nutrients and
resources, and that result in advanced time-course patterns of microbial proliferation and death
(Figueiredo et al., 2020). As humans, we must take observations of microbiomes. While imaging is
still too coarse for observing 1011 cells per Gram of colon content (Sender et al., 2016), sampling their
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DNA from next-generation sequencing of microbes is commonly
used, with many other ‘omic techniques emerging that sample
measurements of the metatranscriptome, metaproteome, and
metabolome (Creasy et al., 2021). Microbiomes are found
everywhere on Earth, including soil, water, air, and animal
hosts (Nemergut et al., 2013). Understanding microbiomes is
the first step, with many potential engineering applications to
follow (Woloszynek et al., 2016).

Signal processing has played an important role in
metagenomic identification and taxonomic classification,
which is the supervised labeling of a taxonomic class to a
DNA/RNA sequencing read (Rosen and Moore, 2003; Rosen
et al., 2009; Borrayo, 2014; Alshawaqfeh, 2017; Elworth et al.,
2020). While taxonomic classification is the application that we
cover in this paper, metagenomics is not limited only to this
problem, and emerging techniques are proving useful for
unsupervised “binning” of metagenomics reads (Kouchaki
et al., 2019). Information-theoretic feature selection (Garbarine
et al., 2011) and deep neural network sequence embeddings
(Woloszynek et al., 2019), useful methods from signal
processing, can be performed before metagenomic taxonomic
classification to reduce feature dimensionality and computational
complexity.

As of 2019, over 80 metagenomic taxonomic classification
tools have been published (Gardner et al., 2019), while
benchmarking efforts try to quantify the most representative
ones (Ye et al., 2019). We have previously shown an in-depth
case study of the naïve Bayes classifier’s (and its incremental
version’s) accuracy and speed over the yearly growth of NCBI
(Zhao et al., 2020). Now, for this study, we study clade-specific
marker hash-based techniques, due to their popularity, efficiency/
speed, and comparable sensitivity/precision when benchmarked
against BLAST-based methods (Wood et al., 2014). These
algorithms have been shown to be competitive algorithms on
several benchmarks on real and simulated data (McIntyre et al.,
2017; Sczyrba et al., 2017; Meyer et al., 2021). In 2017, a
comparison of the two algorithms shows their performances
are relatively similar, with CLARK tending to yield better
relative abundance estimates than Kraken2, which can be due
to more genomes in their curated database (McIntyre et al., 2017).
While there are techniques like sourmash (Brown and Irber, 2016;
Liu and Koslicki, 2022; LaPierre et al., 2020) that can sketch
k-mer compositions, they do not perform well when the reference
genome is missing from the database (dibsi-rnaseq, 2016). While
Kraken2/CLARK has been shown to predict low-abundance false
positives, it has been shown that a larger database can improve
Kraken2 performance (LaPierre et al., 2020). Other techniques,
such as LSHvec (Shi and Chen, 2021), which embeds sequences
after a compression k-mers with a hash, may be able to transform
the some of the limitations of hash-based techniques using deep
learning. Therefore, LaPierre et al. and McIntyre et al.‘s study
invite an investigation into how database composition can affect
methods that use these efficient k-mer presence/absence to
differentiate clades, and this study can give insight into how
more recent hash-based techniques will perform.

It has been previously shown that database size influences the
accuracy of Kraken and its Bayesian extension Bracken (Nasko

et al., 2018). While the study highlights the percentage of
“unclassified” reads goes down as the database grows, it does
not fully examine time to run the algorithms over varying size
databases or how the final relative abundance result changes. As
genomes in the databases increase, the representation of the
organisms in the database may not always be uniform across
the tree of life. Withmutations, clade-identifying k-mers that may
have been previously discriminating between taxa before, may be
missing in updates, reducing the search capacity of these
methods. These identifying k-mers will not be captured simply
by looking at orthologs shared between genomes (Lan et al.,
2014). Therefore, the size of the database and its growth may
affect performance of the kmer-based algorithms in addition to
runtime.

CLARK and Kraken 2
CLARK and Kraken 2 are both well known metagenomic
classifiers, software that “reads” short sequences of DNA and
attempts to accurately identify what organism they came from.
Although CLARK and Kraken 2 are both clade-specific k-mer
hash-based metagenomic classifiers, they operate in different,
almost opposite, ways. Both software, like most classifiers,
decompose the DNA sequences into smaller features called
k-mers to make comparisons easier. Their k-mers are 31
nucleotides long by default. CLARK’s training step takes each
k-mer and cycles through all the genomes in its database to see if
any of them have that sequence. If more than one genome does,
then the k-mer is ignored and the program moves on to the next
one. Now when a query sequence is tested, for each k-mer in the
query, if only one genome matches it, then that genome’s score of
how many k-mers it matches the query is incremented. This
approach prioritizes the calculation of unique k-mers, or k-mers
that are only found in one genome to the query. After all the
k-mers are cycled through, the genome with the highest unique
k-mer score is deemed as the correct match. If the score is too low
or there are genomes that tie, then the sample DNA is marked as
unclassified (Ounit et al., 2015).

On the other hand, when Kraken 2 compares a k-mer in the
query to the genomes in its database, for any k-mer match, the
genome score is incremented by one. Kraken 2 doesn’t skip over
k-mers that are shared by multiple genomes (Wood et al., 2014).
Instead, it takes those into account. This approach prioritizes
common k-mers, specifically the k-mers that the genomes have in
common with the query DNA. The genome with the highest
common k-mer score is deemed the correct match. In the event of
a tie or if the scores do not meet Kraken 2’s default threshold (the
genome has a confidence threshold of 0.65), then the sample
DNA is marked as unclassified (Wood et al., 2019).

Goals
The goals of this paper are to examine the behaviors of
metagenomic classifiers as the information in their databases
increases over time: how much they classify, how they classify,
and how fast they classify. While similar studies have been
previously conducted, they are for other methods and for the
study of Kraken 2, it was limited. For example, Nasko et al. (2018)
examined Kraken’s performance for successive Refseq databases,
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but the metrics were mostly for speed and amount classified (but
not how the distribution of those classified changed). We wish to
gain a more comprehensive insight into the scalability of k-mer
based hash methods of metagenomic classifiers. We also wanted
to compare two well-known classifiers, CLARK and Kraken 2, to
see which one was more efficient and how both of them could
improve to be useful into the future as more genomes are
sequenced and added to their databases. Also, we previously
benchmarked the naive Bayes classifier (Zhao et al., 2020) for its
accuracy to classify (NBC classifies everything so the “amount” is
negligible) and speed, and we will use the same dataset (devised
on a yearly basis) in this study so that it can be fairly compared.

METHODOLOGY

Datasets
The build/train (sub-)databases are derived from the National
Center for Biotechnology Information (NCBI) Reference
Sequence (RefSeq) bacterial genome database (Sayers et al.,
2019) and the NCBI genbank assembly summary file for
bacteria available at ftp://ftp.ncbi.nlm.nih.gov/genomes/
genbank/bacteria/assembly_summary.txt. The test data is taken
from NCBI’s Sequence Read Archive (SRA ID: SRS105153)
(Huttenhower et al., 2012) and is a human gut sample from
the Human Microbiome Project (Nasko et al., 2018). We use
experimental data because it is more likely to contain a true
distribution of novel taxa.

Setup, Build, and Classify
The database snapshots from 1999 to 2020 were designed in
(Zhao et al., 2020). Statistics about the database growth in

genomes and their lineages can be found in that paper’s
Additional File 1: https://www.ncbi.nlm.nih.gov/pmc/articles/
PMC7507296/bin/12859_2020_3744_MOESM1_ESM.pdf. The
genomes from these lists were obtained in Kraken and usually
a subset was found in CLARK’s downloaded database. In the
supplementary additional file 2, we provide the Kraken/CLARK
overlap and the additional genomes in Kraken (that were not
found in CLARK’s database).

Kraken 2
Kraken 2’s default bacteria database was used to find the list of
bacteria genomes. All uncompleted genomes were filtered out,
leaving only the completed ones left in the list. Six lists (1999,
2004, 2009, 2014, 2019, and 2020) were then created, as shown in
Figure 1. Each was filled with genomes that were sequenced in
their respective years or before. For example, A bacteria genome
sequenced in 2010 would be in the 2014, 2019, and 2020 list, but a
genome sequenced in 2020 would only be present in the 2020 list.
For Kraken 2, those genome lists were then used to create library.
fna files that Kraken 2 uses in its databases (Wood et al., 2014).
Those library. fna files were then used to create six sub-databases
for Kraken 2 (1999, 2004, 2009, 2014, 2019, and 2020).

Creating the custom library. fna files required python
programs: summary. py and hive. py. After this set up, each
Kraken 2 sub-database was built and used to classify SRA ID:
SRS105153, a file containing about 70 million reads
(approximately 100-200bp in length per read) from a human
gut sample (Huttenhower et al., 2012).

CLARK
CLARK’s custom sub-databases were built with the same lists as
in Figure 1, but in a slightly different way. The difference is in
how CLARK stored its genomes. When CLARK’s default bacteria
database was downloaded, the genomes were stored in individual
FASTA files. Some files had more than one genome written in it,
but each file’s name corresponded to a GCF accession code. This
made sorting the genomes from the default bacteria database into
the custom databases much easier. After finding all the file paths
for each of the GCF accession numbers, those files would then be
copied into the “Custom/” folder of their corresponding custom
sub-database.

TCB � TB + (CR1 − CR2) (1)
Where TBC is the entire CLARK build time, TB is the runtime of
the initial stage of the build/training time of CLARK. It is then
added to the second stage of the build time which is calculated by
subtracting first run (which is the first stage build + classify
times), CR1, minus solely the classify times, CR2. CR1 is the
runtime for CLARK’s classification script
“classify_metagenomes.sh” when it is run with a particular
database for the first time, and CR2 is the runtime for
CLARK’s classification script when it is run on that same
database after the first time (second, third, etc. time).

Building a database with CLARK is not as straightforward as
with Kraken 2. CLARK does its database building in two parts: the
first part with its actual building script and the second part is built
when the database is first used during classification. CLARK also

FIGURE 1 | A proof-of-concept diagram for your reference.
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does not store the built database in a directory. Instead, if you
want to use a different database or previous database, the build
script must be run again, which includes both a build component
and a classify component. Due to this combination of steps in the
script, CLARK’s build time was calculated (Eq. (1)). This was
done by subtracting the second classification runtime (where only
classification occurred) from the first (where the second part of
database building was done). That difference was then added to
the runtime of the build script (the first part of the building) to get
the full runtime of CLARK’s database building.

Parsing the Results
Kraken 2
For the Kraken 2 classification results, the text files were
parsed line by line to gather information on whether that read
was classified and what it was classified as. This information
was stored into a Python dictionary, as well as a count variable
that kept track of how many reads were classified as a
particular taxa or how many were unclassified (Figure 2).
Traceback was also performed to include counts of every
taxonomic rank. For example, if a read was classified as genus
X, then genus X’s family, class, order, etc. would also be
counted.

CLARK
Since CLARK’s classification results were stored in. csv files,
they were easy to parse. Each row in the “Assignment”
column was read to ascertain what CLARK classified the
read as. Traceback was also performed here, and the
information was stored the same way Kraken 2’s was
(Figure 2).

Relative Abundance, Triangular
Bray-Curtis, and Graphing
Calculating Relative Abundance

RAi � Ci

∑iCi
× 100% (2)

where RAi is the relative abundance for a particular taxonomic
class i. Ci is the number of times that a DNA read from class i is

observed in the sample divided by the number of all observations
(DNA reads) from all classes.

A general equation (Eq. 2) was used to calculate each taxa’s
relative abundance in two different ways. The first way was to
calculate the taxa’s relative abundance within the set of reads that
were given a classification label. This means that each read was
assigned one of {C0, C1, ..., CN-1}, where N is the number of
taxonomic units in a given taxonomic rank in the classification
results, and summed then divided by the total reads on the
taxonomic level (e.g. on the species level, each species is
incremented by the count of each read assigned to that species
and then divided by the total reads that classify on the species
level). In other words, the count of each taxa was divided by the
total number of classified reads, then multiplied by 100 to make it
a percentage.

The second way was to calculate the taxa’s relative abundance
among the total number of reads. To illustrate the labeling of all
reads, an unclassified category was added such that i ∈ {I, . . . , N,
unclassified} so that Cunclassified is accounted for as a bar in the
graph and in the denominator of the relative abundance
calculation. These results were exported to excel file sheets for
each taxonomic rank.

Graphing Relative Abundance
Each taxa’s relative abundance is compared to a 3% threshold,
meaning that any taxa that has a relative abundance above 3% of
the sample is plotted in its own bar. Any taxa that do not meet
these conditions are aggregated into the “Others” bar on their
respective graph. The Percent Classified was calculated from the
percent of unclassified reads and then plotted on top of the bar
graph as a scatter plot.

Calculating Pairwise Bray-Curtis Dissimilarity

∑|ui − vi|
∑|ui + vi| (3)

Where ui is the relative abundance of taxonomic class i in one
comparison sample (e.g. 1999 database) and vi relative abundance
of a taxonomic class i in another sample (e.g. 2004 database).
Each sum is summed over the total number of taxonomic classes.

The Bray-Curtis dissimilarity (Eq. 3) is commonly used in
ecology to measure the differences between the community
compositions of two populations. In this study, we calculate
the Bray-Curtis dissimilarities between the classification results
of the sub-databases. The calculation of the Bray-Curtis
Dissimilarity was done by Scipy’s spatial. distance.braycurtis ()
function, and the equation for it (Eq. 3) came from (Scipy, 2021).
Using it in a pairwise fashion calculated a Bray-Curtis
dissimilarity with every combination of sub-database
(excluding duplicate pairs such as 1999 and 1999). This allows
every sub-database’s classification results to be compared to
each other.

These values were arranged in a grid and used to create a
heatmap of Bray-Curtis dissimilarity. The lower triangular
dissimilarity is left blank because those values are redundant.

FIGURE 2 | The taxa in CLARK and Kraken 2’s results and the number
of reads that were classified as that taxa (count).
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One heatmap shows how the classified part of each sub-database’s
results compare, while the other shows how the entire
classification results of each sub-database compare. On
heatmaps, 0 (zero) represents that the sub-databases are very
similar, while 1 (one) represents that the sub-databases are very
different (Figures 16–19).

RESULTS

Build/Training Time
Both normalizations follow the same trend: Kraken 2’s database
building procedure is faster than CLARK’s. Just by raw numbers,
shown in Figure 3, Kraken 2 had the fastest build time. It was
somewhat complicated to measure CLARK’s build time because
of how its build and classify procedure is not separated in the first
step (Eq. 1).

The raw data was then normalized with the size of each
classifiers’ sub-databases (in gigabytes shown in Figure 4 and
the number of genomes shown in Figure 5). CLARK has an
unusually large build time/GB for the smallest database (1999),
and then the time per GB decreases drastically. Kraken 2’s build
time/GB for the 1999 database is also much larger than its build

time for the other five databases, but it is still 30x shorter than
CLARK’s build time for the 1999 database. Also, Kraken 2’s build
time for the other five databases are less than half that of CLARK’s
in time/GB and even more for time/genome. Overall, even when
normalized to account for the difference in the size of databases
and number of genomes, Kraken 2’s database building procedure
ran several times faster than CLARK’s.

Classification Time
Conversely, CLARK’s procedure is faster at classifying than
Kraken 2’s. Just by raw numbers, shown in Figure 6, CLARK
had the shorter classification time for the 1999, 2004, 2009, and
2014 databases. Its classification time for the 2019 and 2020
databases, however, were longer than Kraken 2’s.

Normalizing the raw data by gigabytes (see Figure 7) and
genomes (see Figure 8), this time-trend remains similar. While
both start out with particularly long runtimes for their
classification procedures, Kraken 2’s is substantially higher and
remains that way, even after the drastic decrease after the 1999
database. But this time their runtimes are much closer in value
than the build/training times. CLARK classifies several times
faster for time/GB, but they are both similar in time/genome.

FIGURE 3 | CLARK and Kraken 2 raw Build Time (seconds).

FIGURE 4 | CLARK and Kraken 2 Build Time normalized by database
size (seconds/Gigabyte).

FIGURE 5 | CLARK and Kraken 2 Build Time normalized by the number
of genomes in the databases (seconds/genome).

FIGURE 6 | CLARK and Kraken 2 raw Classification Time (seconds).
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Overall, the methods are designed to perform the classification
procedure magnitudes faster than the build time, since users
usually want results quickly and are willing to spend a one-time
longer cost up-front.

Classification Results
Since there is no ground truth classification for the gut
microbiome sample, there is no way to check how accurate
CLARK or Kraken 2’s classifications are, but we can examine
how the number of reads classified changes as more genomes are
added to their databases.

CLARK generally had a higher percentage of classified reads
for all sub-databases except 2020, as shown in Figure 9. Even
when Kraken 2 had more genomes in its database to reference,
CLARK’s percent-classified was still higher. In 2004, CLARK
classifies about 5% of sequences while Kraken 2 classifies 1% (see
relative abundance tables in Supplementary Material), and this
difference compounded with the limitations of the databases
causes a significant dissimilarity between the classifiers (shown
later in Figure 20). Also, CLARK’s percentage of classified reads
dropped suddenly and drastically with the 2020 sub-database.

While Kraken 2’s classification percentages seemed to increase
steadily in an exponential curve, as shown in Figure 11, CLARK’s
had an unexpected decrease after 2019, as shown in Figure 10.
Figures 10, 11 show that CLARK and Kraken 2 classified reads in
a similar fashion for genus level, in terms of quantity and identity.
Since CLARK classified more than Kraken 2 in 2004, in
Figure 10, it found Bacteroides as the first genus to rise above
the 3% threshold (that we used for visualization). However, for
2020, CLARK only classified about 37% of the sample while
Kraken 2 classified nearly 50% (see relative abundance tables in
Supplementary Material). Also, Bacteroides and Phocaeicola are
the dominant genera detected by both metagenomic classifiers.
By 2020, for Phocaeicola, CLARK and Kraken 2’s general relative
abundance percentages were 10.66% and 13.47% respectively (see
relative abundance tables in Supplementary Material). For
Bacteroides, their percentages were 20.37% and 31.26%
respectively (see relative abundance tables in Supplementary
Material).

In Figures 12, 13, the differences between the genera that
CLARK and Kraken 2 classified are shown. It is also notable to
mention that CLARK and Kraken 2 did not detect Bacteroides to
the same extent using the 1999 and 2004 sub-databases. This is
probably due to CLARK’s ability to detect Bacteroides given the
limited database. Kraken 2 did not detect as many and therefore,
other bacteria genera (e.g. Bacteroidetes such as Porphyromonas)
were found in high abundance. Also in 2004, neither classifier
detected Phocaeicola in any significant amount, probably due to
the absence of that bacteria from the database.

What can be more contentious is the detection of Alistipes and
Faecalibacterium. While Faecalibacterium prausnitzii is detected
in the species level for 2009 and after for Kraken 2 (Figure 15), it
is not detected in the genus level in 2020 (Figure 13). This is due
to Kraken 2’s ability to assign more reads at the genus level than
the species level and while the Faecalibacterium has the same
number of reads in each, it falls below our 3% threshold for the
genus level. In fact, because Kraken 2 classifies less reads, there is
more of a diversity of bacteria meeting this 3% threshold as shown
in Figures 13, 15. However, for the 3 most abundant genera, the
classifications tend to agree more when run on recent databases.

On the species level, shown in Figures 14, 15. CLARK and
Kraken 2’s classification results also differ slightly in what they

FIGURE 7 | CLARK and Kraken 2 Classification Time normalized by the
size of the databases (seconds/Gigabyte).

FIGURE 8 | CLARK and Kraken 2 Classification Time normalized by the
number of genomes in the databases (seconds/genome).

FIGURE 9 | Graph comparing the number of genomes in their
databases with the percent classified for each sub-database for CLARK and
Kraken 2.
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classified. For example, only Bacteroides sp. M10 is found with
Kraken 2, and this may be due to the different species in the
different methods’ databases. However, by 2020, the methods
tend to be in more agreement on the sample composition. It is

also interesting to note that everything that CLARK classifies, it
classifies on all levels (Figures 12, 14), while Kraken 2 has
different percentages classified on each taxonomic level
(Figures 13, 15.)

FIGURE 10 | CLARK’s general relative abundance for Genus Level. Only taxa whose general relative abundance was at least 3% are shown as a colored bar here.
A bar for the Unclassified group is included. The percentage of classified reads for each year are shown as diamond markers.

FIGURE 11 | Kraken 2’s general relative abundance for Genus level. Only taxa whose general relative abundance was at least 3% are shown as a colored bar here.
A bar for the unclassified group is included. The percentage of classified reads for each year are shown as diamond markers.

FIGURE 12 | CLARK’s classified relative abundance for Genus Level. Only taxa whose classified relative abundance was at least 3% are shown as a colored bar
here. Only bars for classified reads are included. The percentage of classified reads traced back to genus level for each year are shown as diamond markers.
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We can see how increasing knowledge added to the training
database changes the classification results over time–using the
Bray-Curtis dissimilarity measure from the ecological
literature to quantify ecosystem dissimilarity. As expected,
the Bray-Curtis dissimilarity shows that the classification

results of the gut microbiome sample generally become less
similar as the time increases between sub-database versions,
shown in Figures 16–19. An exception is the Bray-Curtis
dissimilarity between the 2009 and 2014 sub-databases of
both CLARK and Kraken 2. That dissimilarity is even lower

FIGURE 13 | Kraken 2’s relative abundance for Genus level. Only taxa whose classified relative abundance was at least 3% are shown as a colored bar here. Only
bars for the classified reads are included. The percentage of classified reads traced back to genus level for each year are shown as diamond markers.

FIGURE 14 | CLARK’s relative abundance for Species level. Only taxa whose classified relative abundance was at least 3% are shown as a colored bar here. Only
bars for classified reads are included. The percentage of classified reads traced back to species level for each year are shown as diamond markers.

FIGURE 15 | Kraken 2’s relative abundance for Species level. Only taxa whose classified relative abundance was at least 3% are shown as a colored bar here. Only
bars for the classified reads are included. The percentage of classified reads traced back to species level for each year are shown as diamond markers.
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than the dissimilarity between the 2019 and 2020 sub-
databases (see Bray-Curtis dissimilarity tables in
Supplementary Material).

As we can see in Figure 18, the dissimilarity is greatest
between the CLARK classifications on the genus level between
1999 and any other year, since only a handful of genera were

FIGURE 16 |CLARK’s Bray-Curtis dissimilarity score for Family level. It is
a comparison between each sub-databases’ classification results for CLARK.
It includes comparisons of what CLARK classified as well as what CLARK
didn’t classify for each year. It is interesting that 2009–2014 databases
yield the most similar results on the family level (more similar than 2019–2020).

FIGURE 17 | Kraken 2’s Bray-Curtis dissimilarity score for Family
level. It is a comparison between each sub-databases’ classification
results for Kraken 2. It includes comparisons of what Kraken 2 classified
as well as what it didn’t classify for each year. Unlike CLARK, Kraken
2’s most similar results are from the 1999 and 2004 databases.

FIGURE 18 | CLARK’s Bray-Curtis Dissimilarity score for Genus level. It
is a comparison between each sub-databases’ classification results. It only
includes what CLARK classified. It is interesting that 1999 results are
significantly different from any other years’, while 2009–2014 and
2019–2020 are the most similar.

FIGURE 19 | Kraken 2’s Bray-Curtis Dissimilarity score for Genus level
between each sub-databases’ classification results. The comparison shows
that classified results are more similar for successive databases–although
some are more similar than others (such as 1999–2004 and
2009–2014).
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known and CLARK had a large number of percent classified in
2004 (seen in Figures 10, 12, 14) compared to Kraken 2. For
Kraken 2, since the percent classified did not increase for 2004,
the 1999 and 2004 classification results are very similar, as seen in
Figures 17, 19. This is also true for 2009 to 2014 for genus and
family level classifications for both CLARK nor Kraken 2 (and
result in more similar results than the transition from 2019 to
2020), as seen in Figures 16–19. This similarity reflects how the
change in percent classified (for both CLARK and Kraken 2)
between the 2009 to 2014 database years was the smallest change
seen in all the years (seen in Figures 10–15). This can be due to
the fact that the database additions did not add the gut microbes
that they are in or relatives of those in this metagenomic sample,
and those additions came later.

Finally, in Figure 20, we show the Bray-Curtis dissimilarity
between CLARK and Kraken 2 for each year and taxonomic level.
Interestingly, both make the same classifications in 1999 and are
pretty similar. In 2004, the dissimilarity is mainly because
CLARK classifies many more percentages of sequences than
Kraken 2 (which the Bray-Curtis measure takes into
consideration). CLARK classifying more sequences makes the
methods more discordant at higher levels of taxonomic tree in
2009. Since the family level has many more classes than order,
class, phyla, the Bray-Curtis values are very high for cases where
taxa exists in one classifier but not the other, and this is much less
likely with less classes at higher taxonomic levels. Taxa that are
uniquely classified by each method also contribute to
dissimilarity, but they are not the main contributors to the
large dissimilarity value. Interestingly, after 2004, in time, both
methods then become more concordant with increasing

knowledge, with some deviation in species and more
concordance on the phylum level. Now, in the latest 2020
database update, the results are slightly more discordant than
in 2009, despite having many more taxa classes, showing that the
methods are able to agree when the relevant gut taxa that is
“truly” in the sample is added to the database.

DISCUSSION

CLARK’s method of only comparing unique k-mers from a read
to its target genomes may have been what aided its classification
time but hindered its classification percentage. Because CLARK
ignores any k-mer in a read that is shared between two or more
targets (genomes in its database), it can work through data more
quickly. This method seems to allow it to eliminate unlikely
matches more efficiently. However, this also seems to make it
harder to match k-mers uniquely to genomes that are closely
related (ie. species level). The elimination of targets that have one
of the read’s k-mers in common could cause CLARK to eliminate
many genomes from being possible matches, most likely ending
up with no more targets to compare and resulting in an
unclassified read. This could explain why CLARK’s
classification percentage decreased between the 2019 and 2020
databases so drastically: as more and more similar species were
added, it became harder and harder for CLARK to match unique
k-mers to them.

Despite CLARK having more genomes in its database to get
through, it still classified faster than Kraken 2 under normalized
circumstances. This could be due to how it decides which genome
best matches the read. CLARKmay be classifying faster because it
only has to keep track of the unique k-mers in a read and compare
its targets to those, while ignoring the common k-mers. While
Kraken 2 has to keep track of all the common k-mers for every
genome it is comparing.

In the future, a further study should be conducted with
carefully designed mock communities or simulated
communities with CAMISIM (Fritz et al., 2019) to make sure
a carefully balanced novel/known set is contained in the training/
test sets. However, much is still not known about the underlying
k-mer distribution of novel organisms and their frequency.

CONCLUSION

In this paper, we compose a framework in which to compare
metagenomic taxonomic classifiers, in terms of their
computational time and classification agreement on a real
metagenomic sample. We studied hash-based methods and
found that a technique that eliminates common k-mers,
CLARK, classifies more and faster (at a cost of longer training
time) when trained on smaller and more diverse databases.
However, the percent of the sample that it can classify starts
to degrade for large databases. Kraken 2, on the other hand, gains
percent classified and significantly takes less time building and
classifying with more training data. Both methods’ agreement on
classification labels tend to converge as the database knowledge in

FIGURE 20 | The Bray-Curtis dissimilarity between the classified results
of CLARK and Kraken 2 for each taxonomic level over time (increasing
database size). Since only 4 organisms from 4 different phyla were classified in
1999, the similarity of the results is close. In 2004, a distinct issue is that
CLARK classified significantly more reads than Kraken 2, which skewed the
dissimilarity to be significant for all taxonomic levels. In 2009, the methods are
more concordant, and for the rest of the years, the species-level classification
is different while the phylum classification is more similar. The methods are
pretty similar on all taxonomic levels once again in 2020.
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each grows, and the database differences can cause some divergence
between the two methods’ classifications. The recommendation
from our study is that Kraken 2 tends to scale better with more
data. However, we recommend for future studies to extend this study
and compare many methods’ scalability in terms of time, percent
classified, and agreement with the experimental framework that we
introduce here.
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