
AIDA: An Active Inference-Based
Design Agent for Audio Processing
Algorithms
Albert Podusenko1*†, Bart van Erp1†, Magnus Koudahl1,2† and Bert de Vries1,3

1BIASlab, Department of Electrical Engineering, Eindhoven University of Technology, Eindhoven, Netherlands, 2Nested Minds
Solutions, Liverpool, United Kingom, 3GN Hearing, Eindhoven, Netherlands

In this paper we present Active Inference-Based Design Agent (AIDA), which is an active
inference-based agent that iteratively designs a personalized audio processing algorithm
through situated interactions with a human client. The target application of AIDA is to
propose on-the-spot the most interesting alternative values for the tuning parameters of a
hearing aid (HA) algorithm, whenever a HA client is not satisfied with their HA performance.
AIDA interprets searching for the “most interesting alternative” as an issue of optimal
(acoustic) context-aware Bayesian trial design. In computational terms, AIDA is realized as
an active inference-based agent with an Expected Free Energy criterion for trial design.
This type of architecture is inspired by neuro-economic models on efficient (Bayesian) trial
design in brains and implies that AIDA comprises generative probabilistic models for
acoustic signals and user responses. We propose a novel generative model for acoustic
signals as a sum of time-varying auto-regressive filters and a user response model based
on a Gaussian Process Classifier. The full AIDA agent has been implemented in a factor
graph for the generative model and all tasks (parameter learning, acoustic context
classification, trial design, etc.) are realized by variational message passing on the
factor graph. All verification and validation experiments and demonstrations are freely
accessible at our GitHub repository.

Keywords: active inference, Bayesian trial design, hearing aids, noise reduction, probabilistic modeling, source
separation, speech enhancement, variational message passing

1 INTRODUCTION

Hearing aids (HA) are often equipped with specialized noise reduction algorithms. These algorithms
are developed by teams of engineers who aim to create a single optimal algorithm that suits any user
in any situation. Taking a one-size-fits-all approach to HA algorithm design leads to two problems
that are prevalent throughout today’s hearing aid industry. First, modeling all possible acoustic
environments is simply infeasible. The daily lives of HA users are varied and the different
environments they traverse even more so. Given differing acoustic environments, a single static
HA algorithm cannot possibly account for all eventualities—even without taking into account the
particular constraints imposed by the HA itself, such as limited computational power and allowed
processing delays (Kates and Arehart, 2005). Secondly, hearing loss is highly personal and can differ
significantly between users. Each HA user consequently requires their own, individually tuned HA
algorithm that compensates for their unique hearing loss profile (Nielsen et al., 2015; van de Laar and
de Vries, 2016; Alamdari et al., 2020) and satisfies their personal preferences for parameter settings
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(Reddy et al., 2017). Considering that HAs nowadays often
consist of multiple interconnected digital signal processing
units with many integrated parameters, the task of
personalizing the algorithm requires exploring a high-
dimensional search space of parameters, which often do not
yield a clear physical interpretation. The current most
widespread approach to personalization requires the HA user
to physically travel to an audiologist who manually tunes a subset
of all HA parameters. This is a burdensome activity that is not
guaranteed to yield an improved listening experience for the
HA user.

From these two problems, it becomes clear that we need to
move towards a new approach for hearing aid algorithm design
that empowers the user. Ideally, users should be in control of their
own HA algorithms and should be able to change and update
them at will instead of having to rely on teams of engineers that
operate with long design cycles, separated from the users’ living
experiences.

The question then becomes, how do we move the HA
algorithm design away from engineers and into the hands of
the user?While a naive implementation that allows for tuningHA
parameters with sliders on, for example, a smartphone is trivial to
develop, even a small number of adjustable parameters gives rise
to a large, high-dimensional search space that the HA user needs
to learn to navigate. This puts a large burden on the user,
essentially asking them to be their own trained audiologist.
Clearly, this is not a trivial task and this approach is only
feasible for a small set of parameters, which carry a clear
physical interpretation. Instead, we wish to support the user
with an agent that intelligently proposes new parameter trials.
In this setting, the user is only tasked to cast (positive or negative)
appraisals of the current HA settings. Based on these appraisal,
the agent will autonomously traverse the search space with the
goal of proposing satisfying parameter values for that user under
the current environmental conditions in as few trials as possible.

Designing an intelligent agent that learns to efficiently
navigate a parameter space is not trivial. In the solution
approach in this paper, we rely on a probabilistic modeling
approach inspired by the free energy principle (FEP) (Friston
et al., 2006). The FEP is a framework originally designed to
explain the kinds of computations that biological, intelligent
agents (such as the human brain) might be performing.
Recent years have seen the FEP applied to the design of
synthetic agents as well (Millidge, 2019; van de Laar and de
Vries, 2019; van de Laar et al., 2019; Tschantz et al., 2020). A
hallmark feature of FEP-based agents is that they exhibit a
dynamic trade-off between exploration and exploitation
(Friston et al., 2015; Da Costa et al., 2020; Friston K. et al.,
2021), which is a highly desirable property when learning to
navigate an HA parameter space. Concretely, the FEP proposes
that intelligent agents should be modeled as probabilistic models.
These types of models do not only yield point estimates of
variables, but also capture uncertainty through modeling full
posterior probability distributions. Furthermore, user appraisals
and actions can be naturally incorporated by simply extending
the probabilistic model. Taking a model-based approach also
allows for fewer parameters than alternative data-driven

solutions, as we can incorporate field-specific knowledge,
making it more suitable for computationally constrained
hearing aid devices. The novelty of our approach is rooted in
the fact that the entire proposed systems is framed as a
probabilistic generative model in which we can perform
(active) inference through (expected) free energy minimization.

In this paper we present AIDA,1 an active inference-based
design agent for the situated development of context-dependent
audio processing algorithms, which provides the user with her
own controllable audio processing algorithm. This approach
embodies an FEP-based agent that operates in conjunction
with an acoustic model and actively learns optimal context-
dependent tuning parameter settings. After formally specifying
the problem and solution approach in Section 2 we make the
following contributions:

(1) We develop a modular probabilistic model that embodies
situated, (acoustic) scene-dependent, and personalized
design of its corresponding hearing aid algorithm in
Section 3.1.

(2) We develop an expected free energy-based agent (AIDA) in
Section 3.2, whose proposals for tuning parameter settings
are well-balanced in terms of seeking more information
about the user’s preferences (explorative agent behavior)
versus seeking to optimize the user’s satisfaction levels by
taking advantage of previously learned preferences
(exploitative agent behavior).

(3) Inference in the acoustic model and AIDA is elaborated upon
in Section 4 and their operations are individually verified
through representative experiments in Section 5.
Furthermore, all elements are jointly validated through a
demonstrator application in Section 5.4.

We have intentionally postponed a more thorough review of
related work to Section 6 as we deem it more relevant after the
introduction of our solution approach. Finally, Section 7

FIGURE 1 | A schematic overview of the conventional approach to
hearing aid algorithm tuning. Here the parameters of the hearing aid u are
optimized with respect to some generic user rating model r(y) for a large data
base X of input data x.

1Aida is a girl’s name of Arabic origin, meaning “happy.” We use this name as an
abbreviation for an “Active Inference-based Design Agent” that aims to make an
end user “happy.”
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discusses the novelty and limitations of our approach and Section
8 concludes this paper.

2 PROBLEM STATEMENT AND PROPOSED
SOLUTION APPROACH
2.1 Automated Hearing Aid Tuning by
Optimization
In this paper we consider the problem of choosing values for the
tuning parameters u of a hearing aid algorithm that processes an
acoustic input signal x to output signal y. In Figure 1, we sketch
an automated optimization-based approach to this problem.
Assume that we have access to a generic “signal quality”
model which rates the quality of a HA output signal y = f(x,
u), as a function of the HA input x and parameters u, by a rating
r(x, u) ≜ r(y). If we run this system on a representative set of input
signals x ∈ X , then the tuning problem reduces to the
optimization task

u* � argmax
u

∑
x∈X

r(x, u). (1)

Unfortunately, in commercial practice, this optimization
approach does not always result in satisfactory HA
performance, because of two reasons. First, the signal quality
models in the literature have been trained on large databases of
preference ratings from many users and therefore only model the

average HA client rather than any specific client (Rix et al., 2001;
Kates and Arehart, 2010; Taal et al., 2011; Beerends et al., 2013;
Hines et al., 2015; Chinen et al., 2020). Secondly, the optimization
approach averages over a large set of different input signals, so it
will not deal with acoustic context-dependent client preferences.
By acoustic context, we consider signal properties that depend on
environmental conditions such as being inside, outside, in a car or
at the mall. Generally, client preferences for HA tuning
parameters are both highly personal and context-dependent.
Therefore, there is a need to develop a personalized, context-
sensitive controller for tuning HA parameters u.

2.2 Situated Hearing Aid Tuning With the
User In-The-Loop
In this paper, we will develop a personalized, context-aware
design agent, based on the architecture shown in Figure 2. In
contrast to Figure 1, the outside world (rather than a database)
produces an input signal x under situated conditions that is
processed by a hearing aid algorithm to produce an output signal
y. A particular human hearing aid client listens to the signal y and
is invited to cast at any time binary appraisals r ∈ {0, 1} about the
current performance of the hearing aid algorithm, where 1 and 0
correspond to the user being satisfied and unsatisfied,
respectively. Context-aware trials for HA tuning parameters
are provided by AIDA. Rather than an offline design
procedure, the whole system designs continually under

FIGURE 2 | A schematic overview of the proposed situated HA design loop containing AIDA. An incoming signal x enters the hearing aid and is used to infer the
context of the user c. Based on this context and previous user appraisals, AIDA proposes a new set of parameters u for the hearing aid algorithm. Based on the input
signal, the proposed parameters and the current context, the output y of the hearing aid is determined, which are used together with the context in the hearing aid
algorithm. The parameters u are actively optimized by AIDA, based on the inferred context c from the input signal x and appraisals r from the user in the loop. All
individual subsystems represent parts of a probabilistic generative model as described in Section 3, where the corresponding algorithms follows from performing
probabilistic inference in these models as described in Section 4.
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situated conditions. The HA device itself houses a custom hearing
aid algorithm, based on state inference in a generative acoustic
model. The acoustic model contains two sub-models: 1) a source
dynamics model and 2) a context dynamics model.

Inference in the acoustic model is based on the observed signal
x and yields the output y and context c. Based on this context
signal c and previous user appraisals r, AIDAwill actively propose
new parameters trials u with the goal of making the user happy.
Technically, the objective is that AIDA expects to receive fewer
negative appraisals in the future, relative to not making parameter
adaptations, see Section 3.2 for details.

The design of AIDA is non-trivial. For instance, since there is a
priori no personalized model of HA ratings for any particular
user, AIDA will have to build such a model on-the-fly from the
context c and user appraisals r. Since the system operates under
situated conditions, we want to impose as little burden on the end
user as possible. As a result, most users will only once in a while
cast an appraisal and this complicates the learning of a
personalized HA rating model.

Tomake this desire for very light-weight interactions concrete,
we now sketch how we envision a typical interaction between
AIDA and a HA client. Assume that the HA client is in a
conversation with a friend at a restaurant. The signal of
interest, in this case, is the friend’s speech signal while the
interfering signal is an environmental babble noise signal. The
HA algorithm tries to separate the input signal x into its
constituent speech and noise source components, then applies
gains u to each source component and sums these weighted
source signals to produce output y. If the HA client is happy with
the performance of her HA, she will not cast any appraisals. After
all, she is in the middle of a conversation and has no imperative to
change the HA behavior. However, if she cannot understand her
conversation partner, the client may covertly tap her watch or
make another gesture to indicate that she is not happy with her
current HA settings. In response, AIDA, which may be
implemented as a smartwatch application, will reply
instantaneously by sending a tuning parameter update u to the
hearing aid algorithm in an effort to fix the client’s current
hearing problem. Since the client’s preferences are context-
dependent, AIDA needs to incorporate information about the
acoustic context from HA input x. As an example, the HA user
might leave the restaurant for a walk outside. Walking outside
presents a different type of background noise and consequently
requires different parameter settings.

Crucially, we would like HA clients to be able to tune their
hearing aids without interruption of any ongoing activities.
Therefore, we will not demand that the client has to focus
visual attention on interacting with a smartphone app. At
most, we want the client to apply a tap or make a simple
gesture that does not draw any attention away from the
ongoing conversation. A second criterion is that we do not
want the conversation partner to notice that the client is
interacting with the agent. The client may actually be in a
situation (e.g., a business meeting) where it is not appropriate
to demonstrate that her priorities have shifted to tuning her
hearing aids. In other words, the interactions must be very light-
weight and covert. A third criterion is that we want the agent to

learn from as few appraisals as possible. Note that, if the HA has
10 tuning parameters and 5 interesting values (very low, low,
middle, high, very high) per parameter, then there are 510 (about
10 million) parameter settings. We do not want the client to get
engaged in an endless loop of disapproving new HA proposals as
this will lead to frustration and distraction from the ongoing
conversation. Clearly, this means that each update of the HA
parameters cannot be selected randomly: we want the agent to
propose the most interesting values for the tuning parameters,
based on all observed past information and certain goal criteria
for future HA behavior. In Section 4.2, we will quantify what
most interesting means in this context.

In short, the goal of this paper is to design an intelligent agent
that supports user-driven situated design of a personalized audio
processing algorithm through a very light-weight interaction
protocol.

In order to accomplish this task, we will draw inspiration from
the way how human brains design algorithms (e.g., for speech and
object recognition, riding a bike, etc.) solely through
environmental interactions. Specifically, we base the design of
AIDA on the Active Inference (AIF) framework. Originating
from the field of computational neuroscience, AIF proposes to
view the brain as a prediction engine that models sensory inputs.
Formally, AIF accomplishes this through specifying a
probabilistic generative model of incoming data. Performing
approximate Bayesian inference in this model by minimizing
free energy then constitutes a unified procedure for both data
processing and learning. To select tuning parameter trials, an AIF
agent predicts the expected free energy in the near future, given a
particular choice of parameter settings. AIF provides a single,
unified method for designing all components of AIDA. The
design of a HA system that is controlled by an AIF-based
design agent involves solving the following tasks:

(1) Classification of acoustic context.
(2) Selecting acoustic context-dependent trials for the HA tuning

parameters.
(3) Execution of the HA signal processing algorithm (that is

controlled by the trial parameters).

Task 1 (context classification) involves determining the most
probable current acoustic environment. Based on a dynamic
context model (described in Section 3.1.2), we infer the most
probable acoustic environment as described in Section 4.1.

Task 2 (trial design) encompasses proposing alternative
settings for the HA tuning parameters. Sections 3.2, 4.2
describe the user response model and execution of AIDA’s
trial selection procedure based on expected free energy
minimization, respectively.

Finally, task 3 (hearing aid algorithm execution) concerns
performing variational free energy minimization with respect to
the state variables in a generative probabilistic model for the
acoustic signal. In Section 3.1 we describe the generative acoustic
model underlying the HA algorithm and Section 4.3 describes
the inferred HA algorithm itself.

Crucially, in the AIF framework, all three tasks can be
accomplished by variational free energy minimization in a
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generative probabilistic model for observations. Since we can
automate variational free energy minimization by a probabilistic
programming language, the only remaining task for the human
designer is to specify the generative models. The next section
describes the model specification.

3 MODEL SPECIFICATION

In this section, we present the generative model of the AIDA
controlled HA system, as illustrated in Figure 2. In Section 3.1,
we describe a generative model for the HA input and output
signals x and y respectively. In this model, the hearing aid
algorithm follows through performing probabilistic inference,
as will be discussed in Section 4. Part of the hearing aid
algorithm is a mechanism for inferring the current acoustic
context. In Section 3.2 we introduce a model for agent AIDA
that is used to infer new parameter trials. A concise summary of
the generative model is also presented in Supplementary
Appendix SB and an overview of the corresponding symbols
is given in Supplementary Appendix Table SA1.

Throughout this section, we will make use of factor graphs for
visualization of probabilistic models. In this paper we focus on

Forney-style factor graphs (FFG), as introduced in Forney (2001)
with notational conventions adopted from Loeliger (2004). FFGs
represent factorized functions by undirected graphs, whose nodes
represent the individual factors of the global function. The nodes
are connected by edges representing the mutual arguments of the
factors. In an FFG, a node can be connected to an arbitrary
number of edges, but edges are constrained to have a maximum
degree of two. A more detailed review of probabilistic modeling
and factor graphs has been provided in Supplementary
Appendix SA.

3.1 Acoustic Model
Our acoustic model of the observed signal and hearing aid output
consists of a model of the source dynamics of the underlying
signals and a model for the context dynamics.

3.1.1 Model of Source Dynamics
We assume that the observed acoustic signal x consists of a speech
signal (or more generally, a target signal that the HA client wants
to focus on) and an additive noise signal (that the HA client is not
interested in), as

xt � st + nt (2)

FIGURE 3 | A Forney-style factor graph representation of the acoustic source signals model as specified by Eqs 3–11 at time index t. The observation xt is specified
as the sum of a latent speech signal st and a latent noise signal nt. The speech signal is modeled by a time-varying auto-regressive process, where its coefficients θt are
modeled by a Gaussian random walk. The noise signal is a context-dependent auto-regressive process, modeled by Gaussian (GMM) and Gamma mixture models
(ΓMM) for the parameters ζk and τk, respectively. The selection variable of these mixture models represents the context ck. The model for the context dynamics is
enclosed by the dashed box. The composite AR factor node represents the auto-regressive transition dynamics specified by Eq. 3b. The output of the hearing aid yt is
modeled as the weighted sum of the extracted speech and noise signals.
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where xt ∈ R represents the observed signal at time t, i.e., the
input to the HA. The speech and noise signals are represented by
st ∈ R and nt ∈ R, respectively. At this point, the source dynamics
of sn and nt need to be further specified. Here we choose to model
the speech signal by a time-varying auto-regressive model and the
noise signal by a context-dependent auto-regressive model. The
remainder of this subsection will elaborate on both these source
models and will further specify how the hearing aid output is
generated. An FFG visualization of the described acoustic model
is depicted in Figure 3.

Historically, Auto-Regressive (AR) models have been widely used
to represent speech signals (Kakusho and Yanagida, 1982; Paliwal
and Basu, 1987). As the dynamics of the vocal tract exhibit non-
stationary behavior, speech is usually segmented into individual
frames that are assumed to be quasi-stationary. Unfortunately, the
signal is often segmented without any prior information about the
phonetic structure of the speech signal. Therefore the quasi-
stationarity assumption is likely to be violated and time-varying
dynamics aremore likely to occur in the segmented frames (Vermaak
et al., 2002). To address this issue, we can use a time-varying prior for
the coefficients of the AR model, leading to a time-varying AR
(TVAR) model (Rudoy et al., 2011).

θt ~ N θt−1, ωIM( ) (3a)
st ~ N A(θt)st−1, V γ( )( ) (3b)

where θt � [θ1t, θ2t, . . . , θMt]u ∈ RM, st �
[st, st−1, . . . , st−M+1]u ∈ RM are the coefficients and states of an
Mth order TVAR model for speech signal st � eu1 st. We use
N (μ,Σ) to denote a Gaussian distribution with mean μ and
covariance matrix Σ. In this model, the AR coefficients θt are
represented by a Gaussian random walk with process noise
covariance ωIM, with IM denoting the identity matrix of size
(M ×M), scaled by ω ∈ R>0. γ ∈ R>0 represents the process noise
precision matrix of the AR process. Here, we have adopted the
state-space formulation of TVAR models as in Podusenko et al.
(2020), whereV(γ) � (1/γ)e1eu1 creates a covariance matrix with
a single non-zero entry. We use ei to denote an appropriately
sized Cartesian standard unit vector that represents a column
vector of zeros where only the ith entry is 1. A(θ) denotes the
companion matrix of size (M × M), defined as

A(θ) � θu

IM−1 0
[ ]. (4)

Multiplication of a state vector by this companionmatrix, such
as A(θt)st−1, basically performs two operations: an inner product
θut st−1 and a shift of st−1 by one time step to the past.

The acoustic model also encompasses a model for background
noise, such as the sounds at a bar or train station. Many of these
background sounds can be well represented by colored noise
(Popescu and Zeljkovic, 1998), which in turn can be modeled by a
low-order AR model (Gibson et al., 1991; Gannot et al., 1998)

nt ~ N A(ζk)nt−1, V τk( )( ), for t � t−, t− + 1, . . . , t+ (5)
where ζk � [ζ1k, ζ2k, . . . , ζNk]u ∈ RN, nt � [nt, nt−1, . . . , nt−N+1]u ∈ RN

are the coefficients and states of an ARmodel of orderN ∈ N+ for

noise signal nt � eu1 nt. τk ∈ R>0 denotes the process noise
precision of the AR process. In contrast to the speech model,
we assume the processes ζk and τk to be stationary when the user
is in a specific acoustic environment or context. To make clear
that contextual states change much slower that raw acoustic data
signals, we index the slower parameters at time index k, which is
related to index t by

k � t

W
⌈ ⌉. (6)

Here, �·� denotes the ceiling function that returns the largest
integer smaller or equal than its argument, whileW is the window
length. The above equationmakes sure that k is intuitively aligned
with segments of lengthW, i.e., t ∈ [1,W] corresponds to k = 1. To
denote the start and end indices of the time segment
corresponding to context index k, we define t− = (k − 1)W +
1 and t+ = kW as an implicit function of k, respectively. The
context can be assumed to be stationary within a longer period of
time compared to the speech signal. However, abrupt changes in
the dynamics of background noise may occasionally occur. For
example, if the user moves from a train station to a bar, the
parameters of the ARmodel that are attributed to the train station
will now inadequately describe the background noise of the new
environment. To deal with these changing acoustic
environments, we introduce context-dependent priors for the
background noise, using a Gaussian and Gamma mixture model:

ζk~ ∏L
l�1

N μl,Σl( )clk (7a)

τk~ ∏L
l�1

Γ αl, βl( )clk (7b)

The context at time index k, denoted by ck, comprises a 1-of-L
binary vector with elements clk ∈ {0, 1}, which are constrained by∑lclk = 1. Γ(α, β) represents a Gamma distribution with shape and
rate parameters α and β, respectively. The hyperparameters μl, Σl,
αl and βl define the characteristics of the different background
noise environments.

Now that an acoustic model of the environment has been
formally specified, we will extend this model with the goal of
obtaining a HA algorithm. The principal goal of a HA algorithm
is to improve audibility and intelligibility of acoustic signals.
Audibility can be improved by amplifying the received input
signal. Intelligibility can be improved by increasing the Signal-to-
Noise Ratio (SNR) of the received signal. Assuming that we can
infer the constituent source signals st and nt from received signal
xt, the desired HA output signal can be modeled by

yt � uskst + unknt, for t � t−, t− + 1, . . . , t+ (8)
where uk � [usk, unk]u ∈ [0, 1]2 represents a vector of 2 tuning
parameters or source-specific gains for the speech and
background noise signal, respectively. In this expression the
output of the hearing aid is modeled by a weighted sum of the
constituent source signals. The gains control the amplification of
the extracted speech and noise signals individually and thus
allows the user to perform source-specific filtering, also known
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as soundscaping (van Erp et al., 2021). Because of imperfections
during inference of the source signals (see Section 4), the gains
simultaneously reflect a trade-off between residual noise and
speech distortion.

Finding good values for the gains u can be a difficult task
because the preferred parameter settings may depend on the
specific listener and on the acoustic context.

Next, we describe the acoustic context model that will allow
AIDA to make context-dependent parameter proposals.

3.1.2 Model of Context Dynamics
As HA clients move through different acoustic background
settings, such as being in a car, doing groceries, watching TV
at home, etc.) the preferred parameter settings for HA algorithms
tend to vary. The context signal allows to distinguish between
these different acoustic environments.

The hidden context state variable ck at time index k is a 1-of-L
encoded binary vector with elements clk ∈ {0, 1}, which are
constrained by ∑lclk = 1. This context is responsible for the
operations of the noise model in Eq. 7. Context transitions are
supported by a dynamic model

ck ~ Cat(Tck−1), (9)
where the elements of transition matrix T, are defined as Tij =
p(cik = 1|cj,k−1 = 1), which are constrained by Tij ∈ [0, 1] and∑L

j�1Tij � 1. We model the individual columns of T by a Dirichlet
distribution as

T1: L,j ~ Dir(αj), (10)
where αj denotes the vector of concentration parameters
corresponding to the jth column of T. The context state is
initialized by a categorical distribution as

c0 ~ Cat(π) � ∏L
l�1

πcl0
l such that ∑L

l�1
πl � 1, (11)

where the vector π � [π1, π2, . . . , πL]u contains the event
probabilities, whose elements can be chosen as πl = 1/L if the
initial context is unknown. An FFG representation of the context
dynamics model is shown in the dashed box in Figure 3.

3.2 Active Inference-Based Design Agent’s
User Response Model
The goal of AIDA is to continually provide the most “interesting”
settings for the HA tuning parameters uk, where interesting has been
quantitatively interpreted by minimization of Expected Free Energy.
But howdoesAIDAknowwhat the client wants? In order to learn the
client’s preferences, she is invited to cast at any time her appraisal rk ∈
{∅, 0, 1} of current HA performance. To keep the user interface very
light, we will assume that appraisals are binary, encoded by rk = 0 for
disapproval and rk = 1 indicating a positive experience. If a user does
not cast an appraisal, we will just record a missing value, i.e., rk =∅.
The subscript k for rk indicates that we record appraisals at the same
rate as the context dynamics.

If a client submits a negative appraisal rk = 0, AIDA interprets this
as an expression that the client is not happy with the current HA

settings uk in the current acoustic context ck (and vice versa for
positive appraisals). To learn client preferences from these appraisals,
AIDA holds a context-dependent generative model to predict user
appraisals and updates thismodel after observing actual appraisals. In
this paper, we opt for a Gaussian Process Classifier (GPC) model as
the generative model for binary user appraisals. A Gaussian Process
(GP) is a very flexible probabilistic model andGPCs have successfully
been applied to preference learning in a variety of tasks before (Chu
and Ghahramani, 2005; Houlsby et al., 2011; Huszar, 2011). For an
in-depth discussion on GPs, we refer the reader to Rasmussen and
Williams (2006). Specifically, the context-dependent user response
model is defined as

vk(·)~ ∏L
l�1

GP(ml(·), Kl(·, ·))clk (12a)

rk~ Ber(Φ(vk(uk))) . if rk ∈ {0, 1} (12b)
In Eq. 12a, vk(·) is a latent function drawn from a mixture of

GPs withmean functionsml(·) and kernelsKl(·, ·). Evaluating vk(·)
at the point uk provides an estimate of user preferences. Without
loss of generality, we can setml(·) = 0. Since ck is one-hot encoded,
raising to the power clk serves to select the GP that corresponds to
the active context. Φ(·) denotes the Gaussian cumulative
distribution function, defined as Φ(x) � 1��

2π
√ ∫x

−∞ exp(−t2/2)dt.
This map in Eq. 12b casts vk(uk) to a Bernoulli-distributed
variable rk.

4 SOLVING TASKS BY PROBABILISTIC
INFERENCE

This section elaborates on solving the three tasks of Section 2.2: 1)
context classification, 2) trial design and 3) hearing aid algorithm
execution. All tasks can be solved through probabilistic inference in
the generative model specified by Eqs 2b–b12b in Section 3. In this
section, the inference goals are formally specified based on the
previously proposed generative model.

For the realization of the inference tasks we will use variational
message passing in a factor graph representation of the generative
model. Message passing-based inference is highly efficient,
modular and scales well to large inference tasks (Loeliger
et al., 2007; Cox et al., 2019). With message passing, inference
tasks in the generative model reduce to automatable procedures
revolving around local computations on the factor graphs.

A thorough discussion on message passing and related topics
is omitted here for readability, but made available in
Supplementary Appendix SA to serve as reference.

4.1 Inference for Context Classification
The acoustic context ck describes the dynamics of the background
noise model through Eqs 5, 7. For determining the current
environment of the user, the goal is to infer the current context
based on the preceding observations. Technically we are interested in
determining the marginal distribution p(ck | x1: t+ ), where the index
range over t of x takes into account the relation between t and k as
defined in Eq. 6. In our online setting, we wish to calculate this
marginal distribution iteratively by solving
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p(ck | x1: t+ )︸�����︷︷�����︸
posterior

∝ ∫p(zt− : t+ ,Ψk, xt− : t+ | zt−−1, ck)︸������������︷︷������������︸
observationmodel

p(ck,T | ck−1)︸������︷︷������︸
context dynamics

· p(ck−1, zt−−1 | x1: t−−1)︸���������︷︷���������︸
prior

dzt−−1: t+ dΨk dck−1 dT.

(13)
The observation model is fully specified by the model

specification in Section 3, similarly as the context dynamics.
The prior distribution is a joint result of the iterative execution of
both Eqs 13, 18, where the latter refers to the HA algorithm
execution from Section 4.3. The calculation of this marginal
distribution renders intractable and therefore exact inference of
the context is not possible. This is a result of 1) the intractability
resulting from the autoregressive model as described in the
previous subsection and of 2) the intractability that is a result
of performing message passing with mixture models. In Eq. 7 the
model structure contains a Normal and Gamma mixture model
for the AR-coefficients and process noise precision parameter,
respectively. Exact inference with these mixture models quickly
leads to intractable inference through message passing, especially
when multiple background noise models are involved. Therefore,
we need to resort to a variational approximation where the output
messages of these mixture models are constrained to be within the
exponential family.

Although variational inference with the mixture models is
feasible (Bishop, 2006; van de Laar, 2019; Podusenko et al.,
2021b), it is prone to converge to local minima of the Bethe
free energy (BFE) for more complicated models. The variational
messages originating from the mixture models are constrained to
either Normal or Gamma distributions, possibly losing important
multi-modal information, and as a result they can lead to
suboptimal inference of the context variable. Because the
context is vital for the above underdetermined source
separation stage, we wish to limit the amount of (variational)
approximations during context inference. At the cost of an
increased computational complexity, we will remove the
variational approximation around the mixture models and
instead expand the mixture components into distinct models.
As a result, each distinct model now contains one of the mixture
components for a given context and now results in exact messages
originating from the priors of ξk and τk. Therefore we only need to
resort to a variational approximation for the auto-regressive
node. By expanding the mixture models into distinct models
to reduce the number of variational approximations, calculation
of the posterior distribution of the context p(ck | x1: t+ ) reduces to
an approximate Bayesian model comparison problem, similarly
as described in van Erp et al. (2021). Supplementary Appendix
SC1 gives a more in-depth description on how we use Bayesian
model comparison for solving the inference task in Eq. 13.

4.2 Inference for Trial Design of Hearing Aid
Tuning Parameters
The goal of proposing alternative HA tuning parameter settings
(task 3) is to receive positive user responses in the future. Free
energy minimization over desired future user responses can be

achieved through a procedure called Expected Free Energy (EFE)
minimization (Friston et al., 2015; Sajid et al., 2021).

EFE as a trial selection criterion induces a natural trade-off
between explorative (information seeking) and exploitative
(reward seeking) behavior. In the context of situated HA
personalization, this is desirable because soliciting user
feedback can be burdensome and invasive, as described in
Section 2.2. From the agent’s point of view, this means that
striking a balance between gathering information about user
preferences and satisfying learned preferences is vital. The EFE
provides a way to tackle this trade-off, inspired by neuro-scientific
evidence that brains operate under a similar protocol (Friston
et al., 2015; Parr and Friston, 2017). The EFE is defined as Friston
et al. (2015).

Gu[q] � Eq(r,v|u) ln
q(v | u)
p(r, v | u)[ ], (14)

where the subscript indicates that the EFE is a function of a trial u.
The EFE can be decomposed into Friston et al. (2015).

Gu[q] ≈ − Eq(r|u) lnp(r)[ ]︸������︷︷������︸
Utility drive

−Eq(r,v|u) ln
q(v | u, r)
q(v | u)[ ]︸���������︷︷���������︸

Information gain

, (15)

which contains an information gain term and a utility-driven
term. Minimization of the EFE reduces to maximization of both
these terms. Maximization of the utility drive pushes the agent
towards matching predicted user responses q(r|u) with a goal
prior over desired user responses p(r). This goal prior allows
encoding of beliefs about future observations that we wish to
observe. Setting the goal prior to match positive user responses
then drives the agent towards parameter settings that it believes
make the user happy in the future. The information gain term in
Eq. 15 drives agents that optimize the EFE to seek out responses
that are maximally informative about latent states v.

To select the next set of gains u to propose to the user, we need
to find

u* � arg min
u

min
q

Gu[q]( ). (16)

Intuitively, one can think of Eq. 16 as a two step procedure
with an inner and an outer loop. The inner loop finds the
approximate posterior q using (approximate) Bayesian
inference, conditioned on a particular action parameter u. The
outer loop evaluates the resulting EFE as a function of u and
proposes a new set of gains to bring the EFE down. For our
experiments we consider a candidate grid of possible gains. For
each candidate we compute the resulting EFE and then select the
lowest scoring proposal as the next set of gains to be presented to
the user.

The probabilistic model used for AIDA is a mixture GPC. For
simplicity we will restrict inference to the GP corresponding to
the MAP estimate of ck. Between trials, the corresponding GP
needs to be updated to adapt to the new data gathered from the
user. Specifically, we are interested in finding the posterior over
the latent user preference function.
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p(v* | u1: k, r1: k−1) � ∫p(v* | u1: k−1, uk, v)p(v | u1: k−1, r1: k−1)dv.
(17)

where we assume AIDA has access to a dataset consisting of
previous queries u1:k−1 and appraisals r1:k−1 and we are querying
the model at uk. While this inference task in the GPC is
intractable, there exist a number of techniques for
approximate inference, such as variational Bayesian methods,
Expectation Propagation, and the Laplace approximation
(Rasmussen and Williams, 2006). Supplementary Appendix
SC2 describes the exact details of the inference realization of
the inference tasks of AIDA.

4.3 Inference for Executing the Hearing Aid
Algorithm
The main goal of the proposed hearing aid algorithm is to
improve audibility and intelligibility by re-weighing inferred
source signals in the HA output signal. In our model of the
observed signal in Eqs 2–7 we are interested in iteratively
inferring the marginal distribution over the latent speech and
noise signals p(st, nt|x1:t). This inference task is in literature
sometimes referred to as informed source separation (Knuth,
2013). Inferring the latent speech and noise signals tries to
optimally disentangle these signals from the observed signal
based on the sub-models of the speech and noise source. This
requires us to compute the posterior distributions associated
with the speech and noise signals. To do so, we perform
probabilistic inference by means of message passing in the
acoustic model of Eqs 2–7. The posterior distributions can
be calculated in an online manner using sequential Bayesian
updating by solving the Chapman-Kolmogorov equation
(Särkkä, 2013).

p(zt,Ψk | x1: t)︸������︷︷������︸
posterior

∝ p(xt | zt)︸����︷︷����︸
observation

∫p(zt | zt−1 ,Ψk)︸������︷︷������︸
state dynamics

p(zt−1 ,Ψk | x1: t−1)︸��������︷︷��������︸
prior

dzt−1 , for t � t− , t− + 1, . . . , t+

(18)

where zt and Ψk denote the sets of dynamic states and static
parameters zt = {θt, st, nt} and Ψk = {γ, τk, ζk}, respectively. Here,
the states and parameters correspond to the latent AR and TVAR
models of Eqs 3, 5. Furthermore, we assume that the context does
not change, i.e., k is fixed. When the context does change Eq. 18
will need to be extended by integrating over the varying
parameters. Unfortunately, the solution of Eq. 18 is not
analytically tractable. This happens because of 1) the
integration over large state spaces, 2) the non-conjugate prior-
posterior pairing, and 3) the absence of a closed-form solution for
the evidence factor (Podusenko et al., 2021a). To circumvent this
issue, we resort to a hybrid message passing algorithm that
combines structured variational message passing (SVMP) and
loopy belief propagation for the minimization of Bethe free
energy (Şenöz et al., 2021). Supplementary Appendix SA
describes these concepts in more detail.

For the details of the SVMP and BP algorithms, we refer the
reader to Supplementary Appendix SA, Dauwels (2007), and
Şenöz et al. (2021). Owing to the modularity of the factor graphs,
the message passing update rules can be tabulated and only need
to be derived once for each of the included factor nodes. The
derivations of the sum-product update rules for elementary factor
nodes can be found in Loeliger et al. (2007) and the derived
structured variational rules for the composite AR node can be
found in Podusenko et al. (2021a). The variational updates in the
mixture models can be found in van de Laar (2019) and
Podusenko et al. (2021b). The required approximate marginal
distribution of some variable z can be computed by multiplying
the incoming and outgoing variational messages on the edges
corresponding to the variables of our interest as q(z)∝ �](z) ·
]
←(z).

Based on the inferred posterior distributions of st and nt, these
signals can be used for inferring the hearing aid output through
Eq. 8 to produce a personalized output which compromises
between residual noise and speech distortion.

5 EXPERIMENTAL VERIFICATION AND
VALIDATION

In this section, we first verify our approach for the three design
tasks of Section 2.2. Specifically, in Section 5.1 we evaluate the
context inference approach by reporting the classification
performance of correctly classifying the context corresponding
to a signal segment. In Section 5.2we evaluate the performance of
our intelligent agent that actively proposes hearing aid settings
and learns user preferences. The execution of the hearing aid
algorithm is verified in Section 5.3 by evaluating the source
separation performance. To conclude this section, we present a
demonstrator for the entire system in Section 5.4.

All algorithms have been implemented in the scientific
programming language Julia (Bezanson et al., 2017).
Probabilistic inference in our model is automated using the
open source Julia package ReactiveMP2 (Bagaev and de
Vries, 2022). All of the experiments presented in this section can
be found at our AIDA GitHub repository.3

5.1 Context Classification Verification
To verify that the context is appropriately inferred through
Bayesian model selection, we generated synthetic data from
the following generative model:

ck ~ Cat(Tck−1) (19a)
with priors

c0~ Cat(π) (20a)
T1: L,j~ Dir(αj), (20b)

2ReactiveMP (Bagaev and de Vries, 2022) is available at https://github.com/
biaslab/ReactiveMP.jl
3The AIDA GitHub repository with all experiments is available at https://github.
com/biaslab/AIDA
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where co is chosen to have length L = 4. The event probabilities π
and concentration parameters αj are defined as π =
[0.25,0.25,0.25,0.25]u and αj = [1.0,1.0,1.0,1.0]u, respectively.
We generated a sequence of 1,000 frames, each containing 100
samples, such that we have 100 × 1,000 data points. Each frame is
associated with one of the four different contexts. Each context
corresponds to an AR model with the parameters presented in
Table 1.

For verification of the context classification procedure, we
wish to identify which model best approximates the observed
data. To do that, four models with the same specifications as
were used to generate the dataset were employed. We used
informative priors for the coefficients and precision of AR
models. Additionally, we extended our set of models with an
AR(5) model with weakly informative priors and a Gaussian
i.i.d. model that can be viewed as an AR model of zeroth
order, i.e., AR(0). The individual frames containing 100
samples each were processed individually and we
computed the Bethe free energy for each of the different
models. The Bethe free energy is introduced in
Supplementary Appendix SA4. By approximating the
true model evidence using the Bethe free energy as
described in Supplementary Appendix SC1, we
performed approximate Bayesian model selection by
selecting the model with the lowest Bethe free energy.
This model then corresponds to the most likely context

hat we are in. We highlight the obtained inference result
in Figure 4.

We evaluate the performance of the context classification
procedure using approximate Bayesian model selection by
computing the categorical accuracy metric defined as

acc � tp + tn

N
(21)

where tp, tn are the number of true positive and true negative
values, respectively. N corresponds to the number of total
observations, which in this experiment is set to N = 1,000. In
this context classification experiment, we have achieved a
categorical accuracy of acc = 0.94.

5.2 Trial Design Verification
Evaluating the performance of the intelligent agent is not trivial.
Because the agent adaptively trades off exploration and exploitation,
accuracy is not an adequate metric. There are reasons for the agent to
veer away from what it believes is the optimum to obtain more
information. As a verification experiment we can investigate how the
agent interacts with a simulated user. Our simulated user samples
binary appraisals rk based on the HA parameters uk as

rk ~ Ber
2

1 + exp (uk − u*)TΛuser(uk − u*)( )⎛⎝ ⎞⎠, (22)

where u* denotes the optimal parameter setting, uk is the set of
parameters proposed by AIDA at time k, Λuser is a diagonal
weighing matrix that controls how quickly the probability of
positive appraisals decays with the squared distance to u*. The
constant 2 ensures that when uk = u*, the probability of positive
appraisals is 1 instead of 0.5. For our experiments, we set u* =
[0.8,0.2]u and the diagonal elements ofΛuser to 0.004. This results
in the user preference function p(rk = 1|uk) as shown in Figure 5.

The kernel used for AIDA is a squared exponential kernel,
given by

TABLE 1 | The parameters of autoregressive processes that are used for
generating a time series with simulated context dynamics.

AR order ζ τ−1

1 −0.308 1.0
2 0.722 −0.673 2.0
3 −0.081 0.079 −0.362 0.5
4 −1.433 -0.174 0.757 0.466 1.0

FIGURE 4 | True and inferred evolution of contexts from frames 200 to 300. Each frame consists of 100 data points. Circles denote the active contexts that were
used to generate the frame. Crosses denote the model that achieves the lowest Bethe free energy for a specific frame.
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K(u, u′) � σ2 exp −‖u − u′‖22
2l2

{ }, (23)

where l and σ are the hyperparameters of this kernel. Intuitively, σ
is a static noise parameter and l encodes the smoothness of the
kernel function. Both hyperparameters were initialized to σ = l =
0.5, which is uninformative on the scale of the experiment. We let
the agent search for 80 trials and update hyperparameters every
fifth trial using conjugate gradient descent as implemented in
Optim.jl (K Mogensen and N Riseth, 2018). We constrain
both hyperparameters to the domain [0.1, 1] to ensure stability of
the optimization. As we will see, for large parts of each
experiment AIDA only receives negative appraisals. The
generative model of AIDA is fundamentally a classifier and
unconstrained optimization can therefore lead to degenerate
results when the data set only contains examples of a single
class. For all experiments, the first proposal of AIDA was a
randomly sampled parameter from the admissible set of
parameters, because the AIDA has no prior knowledge about
the user preference function. This random initial proposal, lead to
distinct behavior for all simulated agents.

We provide two verification experiments for AIDA. First, we
will thoroughly examine a single run in order to investigate how
AIDA switches between exploratory and exploitative behavior.
Secondly, we examine the aggregate performance of an ensemble
of agents to test the average performance. To assess the
performance for a single run, we can examine the evolution of
the distinct terms in the EFE decomposition of Eq. 15 over time.
We expect that when AIDA is primarily exploring, the utility
drive is relatively low while the information gain is relatively high.
When AIDA is primarily engaged in exploitation, we expect the
opposite pattern. We show these terms separately in Figure 6.

Figure 6 shows that there are distinct phases to the
experiment. In the beginning (k < 5) AIDA sees a sharp
decrease in utility drive and information gain terms. This

indicates a saturation of the search space such that no points
present good options. This happens early due to uninformative
hyperparameter settings in the GPC. After trial 5, these
hyperparameters are optimized and the agent no longer thinks
it has saturated the search space, which can be explained by the
jumps in Figure 6 from trial 5 to 6. From trial 6 throughout 15 we
observe a relatively high information gain and relatively low
utility drive, meaning that the agent is still exploring the search
space for parameter settings which yield a positive user appraisal.
The agent obtains its first positive appraisal at k = 16, as denoted
by the jump in utility drive and drop in information gain. This
first positive appraisal is followed by a period of oscillations in
both terms, where the agent is refining its parameters. Finally
AIDA settles down to predominantly exploitative behavior
starting from 41st trial. To examine the first transition, we can
visualize the EFE landscape at k = 5 and k = 6, the upper row of
Figure 7.

Recall that AIDA is minimizing EFE. Therefore, it is looking
for the lowest values corresponding to blue regions and avoiding
the high values corresponding to red regions. Between k = 5 and
k = 6 we perform the first hyperparameter update, which
drastically changes the EFE landscape. This indicates that
initial parameter settings were not informative, as we did not
cover the majority of the search space within the first 5 iterations.
The yellow regions at k = 6 indicates regions corresponding to
previous proposals of AIDA that resulted into negative appraisals.
We can visualize snapshots of the exploration phase starting from
k = 6 in a similar manner. The second row of Figure 7 displays the
EFE landscape at two different time instances during the
exploration phase. It shows that over the course of the
experiment, AIDA gradually builds a representation over the
search space. In trial 16 this takes the form of patterns of
connected regions that denote areas that AIDA believes are
unlikely to results in positive appraisals.

Once AIDA receives its first positive appraisal at k = 16, it
switches from exploring the search space to focusing only on the
local region. If we examine Figure 6, we see that at this time the
information gain term is still reasonably high. This indicates a
subtle point: once AIDA receives a positive appraisal, it starts with
local exploration around where the optimum might be located.
However, the agent was located near the boundary of the
optimum and next receives a negative appraisal. Therefore in
trials 18 to 22 AIDA queries points which it deems most
informative. At time 23 the position of AIDA in the search
space (black dot in the third row of Figure 7) returns to the
edge of the user preference function in Figure 5. This causes
AIDA to receive a mixture of positive and negative appraisals in
the following trials, leading to the oscillations seen in Figure 6.
Finally, we can examine the landscape after AIDA has confidently
located the optimum and switched to purely exploitative
behavior. This happens at k = 42 where the utility drive goes
to 0 and the information gain concentrates around −1.

The last row of Figure 7 shows that once u* is confidently
located, AIDA disregards the remainder of the search space in
favour of providing good parameter settings. Finally, if the user
continues to supply data to AIDA, it will gradually extend the
potential region of samples around the optimum. This indicates

FIGURE 5 | Simulated user preference function p(rk = 1|uk). The coloring
corresponds to the probability of the user giving a positive appraisal for the
search space of gains uk � [usk , unk]u.
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that if a user keeps requesting updated parameters, AIDA will
once again perform local exploration around the optimum. This
further indicates that AIDA accommodates gradual retraining as
user’s hearing loss profile changes over time.

Having thoroughly examined an example run and investigated
the types of behavior produced by AIDA, we can now turn our
attention to aggregate performance over an ensemble of agents.
To that end we repeat the experiment 80 times with identical
hyperparameters, but with different initial proposals. The metric
we are most interested in is how quickly AIDA is able to locate the
optimum and produce a positive appraisal.

Figure 8 shows a heatmap of when each agent obtains positive
responses. Positive responses are indicated by yellow squares and
negative responses by black squares. Each row contains results for
a single AIDA-agent and each column indicates a time step of the
experiment. Consistent with the results for a single agent, we see
that each experiment starts with a period of exploration. A large
number of rows also show a yellow square within the first 35
trials, indicating that the optimum was found. Interestingly, no
agents receive only positive responses, even after locating the
optimum. This follows from AIDA actively trading off
exploration and exploitation. When exploring, AIDA can
select parameters that are suboptimal with respect to eliciting
positive user responses, to gather more information. Figure 8 also
shows a histogram indicating when each agent obtains its first
positive appraisal. The very right column shows agents that failed
to locate the optimum within the designated number of trials. In
total, 66/80 agents correctly solve the task, corresponding to a
success rate of 82.5%. Disregarding unsuccessful runs, on average,
AIDA obtains a positive response in 37.8 trials with a median of
29.5 trials.

5.3 Hearing Aid Algorithm Execution
Verification
To verify the proposed inference methodology for the hearing aid
algorithm execution, we synthesized data by sampling from the
following generative model:

θt ~ N θt−1, ωIM( ) (24a)
st ~ N A(θt)st−1, V γ( )( ) (24b)

nt ~ N A(ζ)nt−1, V τ( )( ) (24c)
xt � st + nt, (24d)

with priors

θ0 ~ N (0,ωIM) (25a)
ζ ~ N (0, IN) (25b)

γ ~ Γ(1.0, 1e − 4) (25c)
τ ~ Γ(1.0, 1.0) (25d)
ω � 1e − 4 (25e)

where M and N are the orders of TVAR and AR models,
respectively, and where M ≥ N holds, as we assume that the
noise signal can bemodeled by a lower AR order in comparison to
the speech signal. We use an uninformative prior for the output of
the hearing aid yt as in Figure 3 to prevent interactions from that
part of the graph. We generated 1,000 distinct time series of
length 100. For each generated time series, the (TV)AR ordersM
and N were sampled from the discrete domains [4, 8] and [1, 4],
respectively. We resampled the priors that initially resulted into
unstable TVAR and AR processes.

The generated time series were used in the following
experiment. We first created a probabilistic model with the
same specifications as the generative model in Eq. 24.
However, we used non-informative priors for the states and
parameters of the model that corresponds to the TVAR
process in Eq. 24b. To ensure the identifiability of the
separated sources, we used weakly informative priors for the
parameters of the AR process in Eq. 24c. Specifically, the mean of
the prior for ζ was centered around the real AR coefficients that
were used in the data generation process. The goals of the
experiment are 1) to verify that the proposed inference
procedure recovers the hidden states θt, st and nt for each
generated dataset and 2) to verify convergence of the BFE as
convergence is not guaranteed, because our graph contains loops
(Murphy et al., 1999). For a typical case, the inference results for
the hidden states st and nt are shown in Figure 9A.

The Figure 9B shows the tracking of the time-varying
coefficients θt. This plot does not show the correlation
between the inferred coefficients, whereas this actually
contains vital information for modeling an acoustic signal.
Namely, the coefficients together specify a set of poles, which

FIGURE 6 | Evolution of the utility drive and negative information gain after throughout a single experiment.
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FIGURE 7 | Snapshot of EFE landscape at different time points as a function of gains us and un. The black dot denotes the current parameter settings and the green
dot denotes u*.
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influence the characteristics of the frequency spectrum of the
signal. An interesting example is depicted in Figure 10. We can
see that the inference results for the latent states st and nt are
swapped with respect to the true underlying signals. This
behavior is undesirable in standard algorithms when the
output of the HA is produced based on hard-coded gains.

However, the presence of our intelligent agent can still find
the optimal gains for this situation. The automation of the
hearing aid algorithm and intelligent agent will relieve this
burden on HA clients.

As can be seen from Figure 11, the Bethe free energy averaged
over all generated time series monotonically decreases. Note that

FIGURE 8 | (A) Heatmap showing ensemble performance over 80 agents. Positive and negative responses are indicated with yellow and black squares,
respectively. (B) Histogram showing time indices where the agents receive their first positive response. The right most column indicates agents that failed to obtain a
positive appraisal. In total, 66/80 agents solve the task, corresponding to a success rate of 82.5%.

FIGURE 9 | (A) Inference results for the hidden states st and nt of coupled (TV) AR process on dataset 999. (left) The generated observed signal xt with underlying
generated signals st and nt. (center) The latent signal st and its corresponding posterior approximation. (right) The latent signal nt and its corresponding posterior
approximation. The dashed lines corresponds to the mean of the posterior estimates. The transparent regions represent the corresponding remaining uncertainty as
plus-minus one standard deviation from the mean. (B) Inference results for the coefficients θt of dataset 999. The solid lines correspond to the true latent AR
coefficients. The dashed lines correspond to the mean of the posterior estimates of the coefficients and the transparent regions correspond to plus-minus one standard
deviation from the mean of the estimated coefficients.
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even though the proposed hybrid message passing algorithm
results in a stationary solution, it does not provide convergence
guarantees.

5.4 Validation Experiments
For the validation of the proposed HA algorithm and AIDA, we
created an interactive web application4 to demonstrate the joint
system. Figure 12 shows the interface of the demonstrator.

The user listens to the output of the hearing aid algorithm by
pressing the “output” button. The buttons “speech” and “noise”
correspond to the beliefs of AIDA about the constituent signals of
the HA input. Note that in reality the user does not have access to

this information and can only listen to HA output. After listening
to the output signal, the user is invited to assess the performance
of the current HA setting. The user can send positive and negative
appraisals by pressing the thumb up or thumb down buttons
respectively. Once the appraisal is sent, AIDA updates its beliefs
about the parameters’ space and provides new settings for the HA
algorithm to make the user happy. As AIDA models user
appraisals using a GPC, we provide an additional button that
forces AIDA to optimize the parameters of GPC. This could be
useful when AIDA has already collected some feedback from the
user that contains both positive and negative appraisals.

The demonstrator works in two environments: synthetic and
real. The synthetic environment allows the user to listen to a
spoken sentence with two artificial noise sources, i.e., either
interference from a sinusoidal wave or a drilling machine. In

FIGURE 10 | Inference results for the hidden states st and nt of coupled (TV) AR process on dataset 42. In this particular case it can be noted that the inferred states
are swapped with respect to the true underlying signals. However, the accompanying intelligent agent is able to cope with these kinds of situations, such that the HA
clients do not experience any problems as a result.

FIGURE 11 | Evolution of the Bethe free energy for the coupled autoregressive model averaged over all generated time series. The iteration index specifies the
number of marginal updates for all edges in the graph.

4A web application of AIDA is available at https://github.com/biaslab/AIDA-app/
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FIGURE 12 | Screenshot of the interactive web application of AIDA. The dashboard consists of four distinct cells. The top cell Environment allows the user to
change the interfering noise signal from a generated noise signal (synthetic) to a real noise signal. Furthermore it contains a reset button for resetting the application. The
Hearing Aid cell provides an interactive plot of the input, separated speech, separated noise, and generated output waveform signals. Each waveform can be played
when the corresponding button is pressed. The NEXT button loads a new audio file for evaluation. The thumbs-up and thumbs-down buttons correspond to
providing AIDA with positive and negative appraisals, respectively. The brain button starts optimization of the parameters of GPC. The EFE Agent cell reflects the agent’s
beliefs about optimal parameters for the user as an EFE heatmap. The Classifier cell shows the Bethe free energy (BFE) score for the different models, corresponding to
the different contexts. For the real noise signal, the algorithm automatically determines whether we are surrounded by babble noise, or by noise from a train station.
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the synthetic environment the hearing aid algorithm exploits the
knowledge about acoustic contexts, i.e., it uses informative priors
for the AR model that corresponds to noise. The real
environment uses the data from NOIZEUS speech corpus.5 In
particular, the real environment consists of 30 sentences
pronounced in two different noise environments. Here the
user is either experiencing surrounding noise at a train station
or babble noise. In the real environment, the HA algorithm uses
weakly informative priors for the background noise which
influences the performance of the HA algorithm. Both the HA
algorithm and AIDA determine the acoustic context based on the
Bethe free energy score, which is also shown in the demonstrator.
The context with the lower Bethe free energy score corresponds to
the selected acoustic context.

6 RELATED WORK

The problem of hearing aid personalization has been explored in
various works. In Nielsen et al. (2015) the HA parameters are tuned
according to a pairwise user assessment tests, during which the user’s
perception is encoded using Gaussian processes. The intractable
posterior distribution corresponding to the user’s perception is
then computed using a Laplace approximation with Expected
Improvement as the acquisition function used to select the next
set of gains. Our agent improves upon Nielsen et al. (2015) in two
concrete ways. Firstly, AIDA places a lower cognitive load on the user
by not requiring pairwise comparisons. This means the user does not
need to keep in her memory what the HA sounded like at the
previous trial but only needs to consider the current HA output.
AIDA accomplishes this without requiringmore trials for training. In
fact, since AIDAdoes not require pre-training but can be trained fully
online under in-situ conditions, AIDA requires less data to locate
optimal gains. Secondly, AIDA can be trained and retrained in a
continual learning fashion. In case the users preferences change over
time, for instance by a change in the hearing loss profile, AIDA can
smoothly accommodate the user as long as she continues to provide
the agent with feedback. Using EFE as acquisition functionmeans the
agent will engage in local exploration once the optimum is located,
leading the agent to naturally learn shifts in the users preferences by
balancing exploration and exploitation. In Alamdari et al. (2020),
personalization of the hearing aid compression algorithm is framed in
terms of deep reinforcement learning. On the contrary, in our work
we take inspiration from the active inference frameworkwhere agents
act tomaximizemodel evidence of their underlying generativemodel.
Importantly, this does not require us to explicitly specify a loss
function that drives exploitative and epistemic behavior. In the recent
work of Ignatenko et al. (2021), the hearing aid preference learning
algorithm is implemented through sequential Bayesian optimization
with pairwise comparisons. Their hearing aid system comprises two
subsystems representing a user with their preferences and the agent
that guides the learning process. However, Ignatenko et al. (2021)
focus only on exploration throughmaximizing information gain with

a parametric model. The EFE additionally adds a goal directed term
that ensures the agentwill stay near the optimumonce located, even if
other parameter settings provide more information. Extending the
model of Ignatenko et al. (2021) to employ the full EFE is an exciting
potential direction for future work. Finally neither Nielsen et al.
(2015) nor Ignatenko et al. (2021) takes context dependence into
account.

Friston Karl J. et al. (2021) introduces Active Listening (AL),
which performs speech recognition based on the principles of active
inference. In Friston Karl J. et al. (2021), they regard listening as an
active process that is largely influenced by lexical, speaker and
prosodic information. Friston Karl J. et al. (2021) distinguishes
itself from conventional audio processing algorithms, because it
explicitly includes the process of word boundary selection before
word classification and recognition, and that they regard this as an
active process. Word boundaries are selected from a group of
candidate word boundaries, based on Bayesian model selection, by
choosing the word boundary that optimizes the VFE during
classification. In the future, we see the potential of incorporating
the AL approach into AIDA. Active inference is successfully applied
in the work Holmes et al. (2021) that studies to model selective
attention in a cocktail party listening setup.

The audio processing components of AIDA essentially
perform informed source separation (Knuth, 2013), where
sources are separated based on prior knowledge. Even though
blind source separation approaches (Xie et al., 2012; Laufer and
Gannot, 2021) always use some degree of prior information, we
do not focus on this direction and instead we actively try to model
the underlying sources based on variations of auto-regressive
processes. For audio processing applications source separation
has often been performed in the log-power domain (Frey et al.,
2001; Rennie et al., 2006; Rennie et al., 2009). However, the
interaction of the signals in this domain is no longer linear. The
intractability that results from performing exact inference in this
model is often resolved by simplifying the interaction function
(Radfar et al., 2006; Hershey et al., 2010). Although this approach
has shown to be successful in the past, its performance is limited
because of the negligence of phase information.

7 DISCUSSION

We have introduced a design agent that is capable of tuning the
context-dependent parameters of a hearing aid algorithm by
incorporating user feedback. Throughout the paper, we have
made several design choices whose implications we shortly review
in this section.

The audio model introduced in Section 3.1 describes the
dynamics of the speech signal perturbed by colored noise. Despite
the fact that the proposed inference algorithm allows for the
decomposition of such signals into speech and noise components,
there are a few limitations that must be highlighted. First, the
identifiability of the coupled AR model depends on the selected
priors. Non-informative priors can lead to poor source estimation
(Kleibergen andHoek, 1995;Hsiao, 2008). To tackle the identifiability
issue, we use informative context-dependent priors. In other words,
for each context, we use a different set of priors that better describe

5The NOIZEUS database is available at https://ecs.utdallas.edu/loizou/speech/
noizeus/
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the dynamics of the acoustic signal in that context. Secondly,
throughout our experiments we used fixed orders of TVAR and
AR models. In reality, we do not have prior information about the
actual order of the underlying signals. Therefore, to continuously
update our models of the underlying sources we need to perform
active order selection, which can be realized using Bayesian model
reduction (Friston and Penny, 2011; Friston et al., 2018). Thirdly, our
model assumes that the hearing aid device only has access to a
monaural input, which means that the observed signal originates
from single microphone. As a result we do not use any spatial
information about an acoustic signal that could have been obtained
usingmultiplemicrophones. This assumption ismostly influenced by
our desire to focus on the concept of designing a novel class of hearing
aid algorithms rather than building real-world HA engine.
Fortunately, the proposed framework allows for the easy
substitution of source models with more versatile models that
might be better suited for speech. For instance, one can use
several microphones, as commonly done in beamforming (Ozerov
and Fevotte, 2010), or use a frequency decomposition for improving
the source separation performance (Frey et al., 2001; Rennie et al.,
2006, 2009). Inevitably, a more complex model will also likely result
in a higher computational burden. Hence, the implementation of this
algorithm on an embedded device remains a challenge.

The power of the agent comes from the choice of the objective
function. Since the objective is independent of the generativemodel, a
straightforward approach to improving the agent is to adapt the
generativemodel. In particular, a GPC is a nonparametricmodel with
very few assumptions on the underlying function. Placing constraints
on the preference function, such as was done in Cox and de Vries
(2017) and Ignatenko et al. (2021), is likely to improve data efficiency
of the agent. Arguably, a core move of Cox and de Vries (2017) and
Ignatenko et al. (2021) is to acknowledge that user preferences are
likely to be peaked around one or a few optima. Even if the true
preference function has multiple modes, assuming a single peak for
the agent is safe since it only needs to locate one of the modes to
provide good parameter settings. Making this assumption allows the
authors to work with a parametric model over user preferences.
Working with a less flexible model predictably leads to higher data
efficiency, which can aid performance of the agent. Given that the
target demographic for AIDA consists ofHAusers, it is of paramount
importance that the agent is able to learn an adequate representation
of user preferences in as few trials as possible to avoid
inconveniencing the user.

During model specification in Section 3.2, we make some
assumptions on the control variable uk and user appraisals rk.
First, we set the domain of the elements of control variable uk to
[0, 1]. Note that this is an arbitrary constraint which we use for
illustrative purposes. The domain can be easily rescaled without
loss of generality. For example, in our demonstrator, we use the
default domain of uk ∈ [0,2]2. Secondly, we opt for binary user
appraisals, i.e., rk ∈ {∅, 0, 1}. This design choice follows from the
requirement of allowing users to communicate covertly to AIDA.
Binary user appraisal can more easily be linked to for example
covert wrist movements when wearing a smartwatch to update
the control variables. With continuous user appraisals, e.g. rk ∈ [0,
1], or pairwise comparison tests the convergence of AIDA can be
greatly improved as these appraisals yield more information per

appraisal. However, providing AIDA with these appraisals
requires more attention, which is undesirable in certain
circumstances, for example during business meetings.

Real-world testing of AIDA has not been included in our work.
The performance evaluation with human HA clients is not
straightforward. To evaluate the performance of AIDA, we
need to conduct a randomized controlled trial (RCT), where
HA clients should be randomly assigned to either an
experimental group or a control group. While the current
intelligent AIDA agent can interact with users in real-time, the
source separation framework is currently limiting the actual real-
time performance. Under the current model assumptions,
i.e., two auto-regressive filters under a variational
approximation, we obtain a pretty good source separation
performance at the cost of computational complexity. Hence,
the complete framework is not suitable for the proper RCT
setting. Nonetheless, we provide a demo that simulates AIDA
and can be tested freely. In future work, we shall focus on
specifying source models that exhibit cheap computations
allowing us to run the source separation algorithms in real-time.

8 CONCLUSION

This paper has presented AIDA, an active inference design agent for
novel situation-aware personalized hearing aid algorithms. AIDA and
the corresponding hearing aid algorithm are based on probabilistic
generativemodels that model the user and the underlying speech and
context-dependent background noise signals of the observed acoustic
signal, respectively. Through probabilistic inference by means of
message passing, we perform informed source separation in this
model and use the separated signals to perform source-specific
filtering. AIDA then learns personalized source-specific gains
through user interaction, depending on the environment that the
user is in. Users can give a binary appraisal after which the agent will
make an improved proposal, based on expected free energy
minimization for encouraging both exploitative and epistemic
behavior. AIDA’s operations are context-dependent and uses the
context from the hearing aid algorithm, which is based on Bayesian
model selection. Experimental results show that hybrid message
passing is capable of finding the hidden states of the coupled AR
model that are associated with the speech and noise components.
Moreover, Bayesian model selection has been tested for the context
inference problemwhere each source is modelled by AR process. The
experiments on preference learning showed the potential of applying
expected free energyminization for finding the optimal settings of the
hearing aid algorithm. Although real-world implementations still
present challenges, this novel class of audio processing algorithms has
the potential to change the leading approach to hearing aid algorithm
design. Future plans encompass developing AIDA towards real-time
applications.
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