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Pancreatic cancer is one of the deadliest diseases which has taken millions of lives over the
past 20 years. Due to challenges in grading pancreatic cancer, this study presents an
automated cloud-based system, utilizing a convolutional neural network deep learning (DL)
approach to classifying four classes of pancreatic cancer grade from pathology image into
Normal, Grade I, Grade II, and Grade III. This cloud-based system, named PancreaSys,
takes an input of high power field images from the web user interface, slices them into
smaller patches, makes predictions, and stitches back the patches before returning the
final result to the pathologist. Anvil and Google Colab are used as the backbone of the
system to build a web user interface for deploying the DL model in the classification of the
cancer grade. This work employs the transfer learning approach on a pre-trained
DenseNet201 model with data augmentation to alleviate the small dataset’s
challenges. A 5-fold cross-validation (CV) was employed to ensure all samples in a
dataset were used to evaluate and mitigate selection bias during splitting the dataset
into 80% training and 20% validation sets. The experiments were done on three different
datasets (May Grunwald-Giemsa (MGG), hematoxylin and eosin (H&E), and a mixture of
both, called the Mixed dataset) to observe the model performance on two different
pathology stains (MGG and H&E). Promising performances are reported in predicting
the pancreatic cancer grade from pathology images, with a mean f1-score of 0.88, 0.96,
and 0.89 for the MGG, H&E, and Mixed datasets, respectively. The outcome from this
research is expected to serve as a prognosis system for the pathologist in providing
accurate grading for pancreatic cancer in pathological images.

Keywords: pancreatic cancer, pathology image, deep learning, cloud-based system, transfer learning, cancer
grading

1 INTRODUCTION

Pancreatic cancer is considered one of the most lethal malignant neoplasms in the world. The
pancreas is a long flattened gland sandwiched between the stomach and the spine, located deep in
the abdomen. It is a vital part of the human digestive system. The pancreatic cancer disease is
developed when cells multiply and grow out of control in the pancreas, forming a tumor. This
happens when cells develop a mutation in their DNA. Doctors commonly perform a biopsy to
diagnose cancer when a physical examination or imaging tests like MRI and CT scan are
insufficient. It is a procedure where a tissue sample is extracted from the patient for a
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pathologist to examine under a microscope. There are various
methods to obtain tissue samples, such as by surgery, using a
needle, or with endoscopy.

A cytopathologist is a pathologist or physician who studies and
diagnoses disease or injury on the cellular level. In pancreatic
cancer, grading is essential for planning treatment. The tumor
node metastasis classification of the malignant tumor was
developed by the Union for International Cancer Control and
is recognized widely as the standard for classifying the spread of
cancer. A pathologist runs several analyses to determine the grade
of cancer for a tissue sample. With the advancement of today’s
computer technology, artificial intelligence (AI) has becomemore
and more robust. Many medical and AI researchers have adopted
deep learning (DL), a branch of AI, to develop a model to classify
medical images and detect an abnormality. The healthcare
industry is benefiting immensely from DL with the ability to
analyze data at exceptional speeds without compromising on
accuracy. In digital pathology, DL can identify intricate patterns
in images and help pathologists make quicker and more accurate
diagnoses from pathology images. The combination of pathology
and DL in the medical field could boost diagnosis and treatment
performance.

Pancreatic cancer is one of the most challenging diseases to
diagnose. In fact, it is one of the most misdiagnosed and often
undetected diseases affecting humans. Manual identification of
cancer grades from pathology images is time-consuming, and the
result often takes days after a biopsy. Misdiagnosis commonly
occurs due to human error and lack of expertise in grading
cancer. Such medical malpractice and issues can cause incorrect
treatment or late treatment for cancer patients, increasing the risk
of other sicknesses. Up until now, there was no successful
implementation of AI for classifying pancreatic cancer grades.
In the absence of such an AI system, the aim of this study is to
build a high-performance automated pancreatic cancer grading
system utilizing a DL model for pathology images. The grading
system will be taking a sophisticated convolutional neural
network (CNN) algorithm to develop a model for accurate
prediction of pathology images. The dataset for training a DL
model was obtained from the collaborator of this research and
trained using the DenseNet201 model with the transfer learning
method. The model is integrated in a cloud-based system to ease
the grading process; hence, no installation is needed for the
pathologists to use our system.

The contributions of this study are listed as follows:

• An automated cloud-based system: to predict cancer grades
from pathology images using the integrated DL model to
classify the pancreatic cancer grade. With this system,
pathologists can upload the image to the cloud and run
the prediction right away without having to install any
application.

• A DLmodel based on DenseNet201: to grade the pancreatic
cancer from pathology images automatically into Normal,
Grade I, Grade II, and Grade III.

• Private dataset based on high-resolution High Power
Field (HPF) images: comprises three new datasets of
small patches sized 200 × 200 pixels, with May

Grunwald-Giemsa (MGG), hematoxylin and eosin
(H&E), and a mixture of both staining colors.

The rest of this article is organized as follows: Section 2
reviews the related work on the pancreatic cancer including
the histologic grade of the cancer. Section 3 explains the
methodology, and Section 4 discusses the results. Last, Section
5 concludes the article.

2 BACKGROUND STUDY AND RELATED
WORK

2.1 Background Study
Pancreatic cancer is one of the deadliest diseases, which has taken
millions of lives over the past 20 years. It is a well-known “silent
killer” because the symptom is usually not shown in the early
stage and is oftenmistaken for other diseases (Pereira et al., 2020).
McGuigan et al. (2018) stated that the disease is understudied,
and the improvements in the diagnosis and prognosis of
pancreatic cancer are minor. Digital pathology or whole slide
imaging (WSI) is an image-based environment obtained by
scanning tissue samples from a glass slide. It is a sub-field of
pathology that incorporates the acquisition, management,
sharing, and interpretation of pathology information. A tissue
sample’s high-resolution digital image is captured using a
scanning device to be viewed on a computer screen. This
technology essentially reduces laboratory expenses and helps
pathologists do clinical research, develop medicine, diagnose,
and improve treatment decisions and patient care. Nam et al.
(2020) explained that staining is usually done on tissue samples
before digitalizing the tissue samples to further enhance the
visibility and characteristics of the tissue cells. The most
common staining method for pancreatic tissue samples is by
using H&E solution. Visual inspection of stained biopsy tissue has
long been the standard method for expert pathologists to classify
pancreatic cancer grading. A computer-aided grading can
definitely assist the experts and accelerate the overall diagnosis
process.

The histologic grade of pancreatic cancer depends on how
normal the cancer cell looks under a microscope. According to
Wasif et al. (2010), the cancer grade is identified by the degree of
differentiation of the tumor, ranging from well differentiated to
poorly differentiated. Grading for tissue samples of the pancreas
uses a scale from Normal (lowest grade) to Grade III (highest
grade). A higher grade means that the cancer cell looks less like a
normal cell. This gives the pathologist insights into how fast the
cancer will grow and whether it will spread. Examples of
pathology images are shown in Figure 1.

2.2 Related Work
The advancement of the DL model enables an automated and fast
discovery of many underlying features that only can be identified
with exhaustive manual analysis by the medical experts. The
transfer learning approach makes DL very robust to many
different applications. For example, during this pandemic, DL
is able to provide early detection of COVID-19–positive cases
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using an optimized transfer learning–based approach for quick
treatment to prevent the spread (Bahgat et al., 2021). In
pathological images, detection and classification of cancerous
cells using DL has been widely used to extract relevant
information such as morphology features on WSI to identify
cancer conditions and classify them into binary or multiple
classes (Bhatt et al., 2021). DL can automate many processes,
but different models will perform differently with different stain
types and biomarkers. DL stands out in terms of accuracy,
computational efficiency, and generalizability in analyzing
pathological images, specifically on segmentation (tumor
region identification), detection (metastasis detection), and
classification (cancer grading and patient prognosis).

Detection and assessment of pancreatic cancer is majorly done
by computed tomography (CT) modality, but it is highly
dependent on the radiologists’ experience. DL can help
distinguish pancreatic cancer accurately on a CT scan, as
studied by Liu et al. (2020) using a CNN. The challenge was
to detect small tumors (less than 2 cm), and the authors proposed
a patch-based detection where the optimal patch size was found
to be 50 by 50 pixels or equivalent to 3.5 by 3.5 cm to detect
pancreatic cancers on CT. Many other studies on pancreatic
cancer grading using CTmodality are available in the literature. A
study by Chu et al. (2021) reviewed advanced visualization
techniques for improving pancreatic cancer detection through
DL. For grading the pancreatic tumor, there are twomain features
that have been identified from previous work: radiomics features
and histogram. Radiomics features are used together with clinical
features for studying specific cancer types named intraductal
papillary mucinous neoplasm malignancy in pancreatic
protocol CT (Hanania et al., 2016), portal venous phase CT
(Permuth et al., 2016; Chakraborty et al., 2018; Attiyeh et al.,
2019; Gu et al., 2019), and arterial phase CT (Gu et al., 2019). For

histogram features, it was used for pancreatic neuroendocrine
tumor grade and also in similar imaging (portal venous phase CT
(Canellas et al., 2018), arterial phase CT (Guo et al., 2019), and
both arterial and portal venous phase CT (Choi et al., 2018;
D’Onofrio et al., 2019)). Histogram features are used together
with texture geometrical features such as size and margin.

Grading of pancreatic cancer from pathological images has not
yet been studied in DL because the cancer itself is not common
(around 3% of all cancers (Society, 2021)) but deadly if
misdiagnosed. This is supported by the latest review article by
the British Journal of Cancer on deep learning in cancer
pathology (Echle et al., 2021) covering various cancer types
but not pancreatic cancer. However, we found a very recent
study on detection and classification of pancreatic
adenocarcinoma in WSIs using DL with EfficientNet-B1
architecture (Naito et al., 2021). This model was pre-trained
using ImageNet, and the analysis for transfer learning of 372
WSIs was done using overlapping fixed-sized tiles of 512 by 512
pixels with a stride of 256 pixels. The f1-score and accuracy
obtained for these endoscopic ultrasonography–guided fine-
needle aspiration cytology specimens are 0.9581 and 0.9417,
respectively. The work has potential as a supportive system for
pathologists to diagnose difficult cases, specifically with regard to
identifying the adenocarcinoma and non-adenocarcinoma tissues
without grading.

For cancer grading in pathological images, the common one is
using the Gleason system as the single most relevant
morphological biomarker for patient stratification in prostate
cancer (Echle et al., 2021). An automated Gleason grading of
prostate biopsies was done by Bulten et al. (2020) on a total of
1243 annotated WSIs using an extended U-Net DL model. The
model was trained on patches extracted from the internal training
dataset (933 WSIs), tuned with the internal tuning dataset (100

FIGURE 1 | Pancreatic cancer grade and corresponding pathology image. (A)MGG: Normal, (B)MGG: Grade I, (C)MGG: Grade II, (D)MGG: Grade III, (E) H&E:
Normal, (F) H&E: Grade I, (G) H&E: Grade II, and (H) H&E: Grade III.
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WSIs), and tested using the internal test dataset (210 WSIs). The
f1-score for the grading results of the internal test set ranges from
0.887 to 0.915 and from 0.825 to 0.898 for the external test set. A
similar study was carried out by Ström et al. (2020) using two
CNN ensembles, each consisting of 30 Inception V3 models pre-
trained on ImageNet and adapted classification layers. The first
ensemble will perform binary classification on image patches into
benign or malignant, and the second ensemble will classify
patches into Gleason patterns 3–5. A total of 6682 slides were
digitized from needle core biopsies, and smaller patches sized 598
by 598 pixels were used at a resolution corresponding to ×10
magnification, resulting in around 5.1 million patches. The study
did not measure the f1-score, but the model achieved an area
under the receiver operating characteristics curve of 0.997 on the
independent test dataset and 0.986 on the external validation
dataset.

A research study by Karimi et al. (2020) on Gleason grading
also employed a DL approach but with two augmentation
techniques applied: image synthesis and image deformation. It
is interesting to note that this study employed generative
adversarial network architecture to synthesize superficially
authentic histology images to a human observer. The image
deformation methods used are jittering, elastic, and rigid
deformation. Different patch sizes and massive data
augmentation are used with a small amount of labeled training
data. An over-sampling algorithm called the balanced batch
generator is applied to address the issue of class imbalance.
Three separate CNNs (CNNSmall, CNNMedium, and
CNNLarge) are utilized for Gleason grading of prostate cancer
of different sizes of histopathology patches. After the CNNs are
trained, a logistic regression model is trained to combine the
decisions of the three CNNs. The method achieved an accuracy of
0.92 in classifying cancerous patches versus benign patches and
an accuracy of 0.86 in classifying low-grade from high-grade
patches.

One of the promising DL networks is GoogLeNet, which has
been used in WSI of kidney renal clear cell carcinoma to classify
six different classes of H&E stained histology sections (normal,
fat, blood, stroma, low-grade granular tumor, and high-grade
clear cell carcinoma) (Khoshdeli et al., 2018). The authors
employed the transfer learning method of GoogLeNet to
compare with a shallow CNN (Vanilla CNN). The experiment
concluded that the GoogLeNet (22 layer) network built by a
repetition of the inception module can learn more diverse
phenotypic signatures than the shallow network. On the other
hand, the Vanilla CNN differentiated tumor samples effectively
but not tumor grades. As a result, the GoogLeNet CNN gives
higher performance (0.99 f1-score) than the shallow CNN (0.92
f1-score). The use of multi-task DL for colon cancer grading has
been demonstrated by (Vuong et al., 2020) with a neural network
consisting of DenseNet121 and two consecutive fully connected
layers (classification and regression layers). Regression is applied
to predict the values of a desired target quantity when the target
quantity is continuous. The multitask learning neural network is
evaluated on colon tissue images from six tissue microarrays and
three WSIs that are stained with H&E scanned at ×40 optical
magnification. Data augmentation techniques are applied on each

image patch using the Aleju library (random cropping, random
Gaussian blurring, random color change, random elastic
transformation, and so on). The Adam optimizer is used in
training using the default parameter for 100 epochs. The result
showed an overall accuracy of 0.8591 with more than 98% of
benign patches (Normal) being correctly classified. An accuracy
of 0.832 is obtained from the Grade I, II, and III tumor patches.

From the existing studies, there are many techniques used by
medical researchers to develop algorithms for diagnosing
diseases. All the different algorithms and DL models show
promising progress and results, but there is a lot left to do
before we are able to build trustable models that are nearly as
accurate as expert pathologists in diagnosing the diseases. In this
study, we will contribute to the pancreatic cancer grading of
pathological images for MGG and H&E stains and present it with
an automated cloud-based system. The main advantage of having
a cloud-based system is that the pathologist does not have to
spend their time on installing or setting up the system but can
easily access our portal and upload the image into the web
interface. The processing will be done immediately, and results
can be obtained in a short time. This pancreatic cancer grading
system is yet to be found in the literature to the best of our
knowledge.

3 METHODOLOGY

A computer-aided prognosis can assist the pathologists in
automating the time-consuming manual identification of
cancer grades from pathology images. As elaborated in the
previous section, pancreatic cancer grading in pathological
images has not yet been studied in computer vision. The
overall methodology of this work on the pancreatic cancer
grading system, named PancreaSys, is illustrated in Figure 2.
The deployment of the system involved a cloud-based platform,
utilizing Anvil for the graphical user interface (GUI) and Google
Colab to process the algorithms. There were two major stages
involved: data acquisition and DLmodel development. Pathology
images of pancreas tissue samples were obtained from the
collaborator and prepared into a dataset where each image
was pre-classified by the pathologist into four classes. The
dataset was then trained and evaluated using a DL network
and integrated into the cloud-based system for online grading
purposes. The cloud-based system allows this work to take
advantage of the robust computing power available in the
market and assist the pathologist to make cancer prediction
and grading through the web-based application.

3.1 Data Acquisition
3.1.1 Pathology Image Procurement
The stain images of pancreatic tissue was obtained from our
collaborator, Clinipath (Malaysia) Sdn. Bhd., and the
classification of each image into subsequence grade classes was
done together with a pathologist from International Medical
University, Malaysia. The images were carefully organized into
a folder of the class they belonged to. A total of four classes were
available in the dataset, which are Normal, Grade I, Grade II, and
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Grade III. Each class consists of images of tissue samples with
MGG and H&E stains. Labeling was done on every image for
validation purposes. There are three types of high-resolution
image dimensions in the dataset (1600 by 1200, 1807 by 835,
and 1807 by 896), but the number of stain images in each class
is unequally distributed. For example, Grade II class has the
highest number of images (58) while the lowest is Normal
class (20). Low number of images in each class, especially in
Normal class, is not suitable for training a DL model because
learning the models requires hundreds to millions of images
to reduce bias in making prediction. Hence, a new dataset was
prepared using the image slicing method to increase the
number of images. Table 1 shows the number of HPF

images, related dimensions, and sliced images procured for
each grade class.

3.1.2 Image Slicing
Many DL models require a low dimension and square image for
training and prediction. One way is to resize the original high-
resolution and rectangular-shaped image into square-shaped, but
this will cause loss of image information because the pixels are
altered. Here, an image slicing method is used to divide the large
high-resolution HPF stain images into smaller non-overlapped
squared patches. The patch size will be around 200 by 200 pixels,
where the exact pixel dimensions are determined using ratio
equations in 1, 2.NC andNR are the number of rows and columns

FIGURE 2 | Flowchart for the development of the PancreaSys grading system. (A) Overall flowchart. (B) Pre-trained model pipeline before and after fine-tuning.
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to slice, IW and IH are the image width and height in pixels,
respectively, and P is the patch size, also in pixels. For the three
types of image dimensions, the slicing ratio, output dimension,
and output number of patches per image are listed in Table 1.

NC � IW/P (1)
NR � IH/P (2)

After slicing the images, many unnecessary patches appeared
such as white background and non-tissue or non-cell related
images that provide no value for training DL model. The first step

to diagnosing is to identify the individual cells. Some of the
patches contain just stain or stain of the fragmented cells. These
kinds of patches were likely to introduce discrepancies and cause
the model to be unable to make a good generalization. Hence,
these patches were discarded from the dataset and only ones with
cell clusters were kept, as illustrated in Figure 3. The slicing
method will produce a larger set of images to suit the DL pre-
trained model requirements. The new set of small patch images is
called a “Sliced Dataset” with a total of 6468 patch images,
produced from 138 original high-resolution HPF stain images,
which is an increase of 468% in the number of images. 50.5% or

TABLE 1 | Dataset distribution: number of images per class and dataset.

HPF size (patch size) Slicing ratio of
CxR (patches/HPF)

Dataset HPF (patch: sliced, discarded, kept)

Normal Grade I Grade II Grade III

1600 × 1200 (200 × 200) 8 × 6 (48) Mixed 13 (624, 223, 401) 21 (1008, 615, 393) 58 (2784, 1492, 1292) 29 (1440, 785, 655)
MGG 13 (624, 223, 401) 4 (192, 84, 108) 43 (2064, 1081, 983) 19(960, 594, 366)
H&E 0 (0, 0, 0) 17 (816, 531, 285) 15 (720, 411, 309) 10 (480, 191, 289)

1807 × 835 (200 × 208) 9 × 4 (36) Mixed 6 (216, 102, 114) 9 (324, 24, 300) 0 (0, 0, 0) 0 (0, 0, 0)
MGG 0 (0, 0, 0) 0 (0, 0, 0) 0 (0, 0, 0) 0 (0, 0, 0)
H&E 6 (216, 102, 114) 9 (324, 24, 300) 0 (0, 0, 0) 0 (0, 0, 0)

1807 × 869 (200 × 224) 9 × 4 (36) Mixed 1 (36, 11, 25) 1 (36, 15, 21) 0 (0, 0, 0) 0 (0, 0, 0)
MGG 0 (0, 0, 0) 0 (0, 0, 0) 0 (0, 0, 0) 0 (0, 0, 0)
H&E 1 (36, 11, 25) 1 (36, 15, 21) 0 (0, 0, 0) 0 (0, 0, 0)

Total kept patches Per class per dataset Mixed 540 714 1292 655
MGG 401 108 983 366
H&E 139 606 309 286

FIGURE 3 | Process of slicing an image and discarding unwanted patches.
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3267 of 6468 patch images were discarded and left with 3201
images, which will be used for building a training set and a
validation set for the DLmodel. The detailed number of images in
the Sliced dataset per image class is summarized in Table 1. Of all
the images kept, 16.87% (540) were Normal, 22.31% (714) were
Grade I, 40.36% (1292) were Grade II, and 20.46% (655) were
Grade III. For the MGG Stain image kept, 21.58% (401) were
Normal, 5.81% (108) were Grade I, 52.91% (983) were Grade II,
and 19.70% (366) were Grade III. As for the H&E Stain, 10.35%
(139) were Normal, 45.12% (606) were Grade I, 23% (309) were
Grade II, and 21.52% (289) were Grade III. The number of images
per class is still unequally distributed in this Sliced dataset, but
this challenge can be mitigated by employing weighted average
(WA) to evaluate the DL model, which will be explained in the
CNN Deep Learning Model Development section.

3.1.3 MGG, H&E, and Mixed Dataset
Three new datasets were created from the Sliced dataset to
compare DL model performance on different stain colors of
pathology images: MGG Dataset, H&E Dataset, and Mixed
Dataset (with both MGG and H&E stains). The number of
images is tabulated in Table 1 with the numbers of kept
patches highlighted in bold font. Figure 1 shows an example
of MGG stain and H&E stain pathology image.

3.1.4 Training-Validation Splitting and K-Fold
Cross-Validation Set
As part of evaluating the DL model, images in a dataset are
usually separated into training, validation, and testing. However,

due to the limited number of images, the images in each set were
split into training and validation sets only. To reduce the
randomness of image selection during splitting, the K-fold CV
procedure was used to allow all images in the dataset to be used
for both training and validation, with the value of K = 5.
Therefore, five new copies of MGG, H&E, and Mixed datasets
were created and labeled accordingly (e.g., MGG Set 1 up toMGG
Set 5 for MGG Dataset). These datasets are called CV sets, which
were used for developing the DL model. Each set has a different
set of images used for training (80%) and validation (20%). The
model will be trained on five sets each where in the first iteration,
the first fold is used for validation and the rest are for training. In
the second iteration, the second fold is used for validation and the
rest are for training. This process is repeated until each of the 5
folds is used for validation. To evaluate the performance of the
model, a mean value is calculated from each training iteration.

3.1.5 Image Data Augmentation
Due to the challenge of having a small number of images in the
dataset, image data augmentation is implemented to virtually
expand the size of the training set. It is a process of creating a
transformed version of images so there will be many variations of
the same image for the model to learn during the training, but is
not applied on the validation set. Data augmentation can help the
model to generalize well and improve its performance on
predicting the image (in validation set) as well as reducing
overfitting. The transformation parameter involved is
horizontal flip, vertical flip, and -90° to 90° rotation range.
These procedures were done using the ImageDataGenerator()

FIGURE 4 | PancreaSys prediction process from MGG stain image.
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function from the Keras API Library (Keras, 2021), which creates
a new batch of randomly transformed images for every training
epoch. This means that in every epoch, the same number of
images in the training set was used for training, but they were
transformed randomly in the next subsequent epoch. Image
rotations will cause an image to create a white space as it tries
to fit the whole rotated image within the square perimeter. The
white space is filled with symmetric padding of the image by using
the “Reflect” fill mode in the ImageDataGenerator() function.

3.2 CNNDeep LearningModel Development
Deep CNN algorithms are widely used in image classification
applications. The CNN algorithm for this work is to develop a
model for classifying pancreatic cancer grading from pathology
images. A technique called “Transfer learning” is adopted to train
the small dataset. A pre-trained model with 200 convolution

layers named DenseNet201 was selected from the Keras API
Library to develop the best model for classifying the four grade
classes of pancreatic cancer pathology images. DenseNet201 was
chosen based on our preliminary study (Sehmi et al., 2021), which
tested 14 powerful deep CNN models (Xception, VGG16,
VGG19, ResNet50V2, ResNet101V2, ResNet152V2, Inception
V3, InceptionResNetV2, MobileNetV2, DenseNet121,
DenseNet169, DenseNet201, NASNetMobile, and
NASNetLarge), with the top three most performed models
being from the DenseNet family: DenseNet201, DenseNet169,
and DenseNet121, sorted in ascending order. Huang et al. (2017)
developed DenseNet, a densely connected convolutional network,
inspired from ResNet (He et al., 2016) but with an improved
network. In DenseNet, all previous feature maps became the
input of the next layer and able to mitigate a common problem for
a very deep neural network, known as the vanishing gradient. A

FIGURE 5 | Flowchart behind the PancreaSys program when the predict button is clicked.
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DenseNet model is usually made from multiple dense blocks
where each block is stacked with two convolution layers (1×1 and
3×3). The primary difference between DenseNet121,
DenseNet169, and DenseNet201 is the number of blocks and
the number of convolution layers (120, 168, and 200,
respectively). DenseNet201 has the deepest network with the
depth of 709, representing all layers and functions in the model
such as input layer, activation layers, dropout layers,
convolutional layers, pooling layers, flatten layer, and dense
layers.

3.2.1 Fine-Tuning
Fine-tuning is part of the transfer learning process, done by
removing the last layers such as the fully connected layer and the
prediction layer and replacing it with a newer (fine-tuned) layer
for our specific task. Since the pre-trained DenseNet201 model
was trained on ImageNet, this experiment will take advantage of
features that the model has already learned from the previous
ImageNet dataset by loading the weights of ImageNet to the
earlier layer. These weights were then frozen, and the layers
became untrainable. Only the weights of the newly added fine-
tuned layers were trained to classify the pancreatic cancer grade as
shown in Figure 2B.

By referring to Figure 2B, four new layers were added as the
feature extractor from pathology images. It is done after removing
the last layer of the pre-trained models, and the first step is to
flatten the network into a 1D array to form a fully connected
layer. The fully connected layer consists of a dense layer and ReLu
activation function. The dense layer is experimented with 256,
512, and 1024 nodes and is added to allow the network to learn
more additional features. The weight in this layer is initially
randomized with a fixed random seed value of 2020 so that the
result can be reproduced. A dropout layer was added after the
dense layer to regularize the network and prevent the neurons in
the dense layer from converging to the same goal, which can affect
the network learning ability and causes overfitting. The dropout
rate is tested with 0.4, 0.6, and 0.8 to observe the effectiveness.
Finally, another dense layer was added as an output layer with
four nodes and SoftMax activation function to normalize the
probability of prediction for four classes of pancreatic cancer
grade. The output of this layer is a Python list of size 4 where each
index in the list resembles the order of the class (Normal, Grade I,
Grade II, and Grade III). Prediction is based on the index of the
class with the highest probability.

3.2.2 Optimization and Setup
Before we begin to train the neural network, image data
normalization is another step of image pre-processing which is
done together with data augmentation using the
ImageDataGenerator() function. It is a method where the
image pixels are rescaled from a range of [0,255] to [0,1] to
ensure that each input pixel has similar data distribution. A batch
size of size 64 is chosen to allow the computer to train and validate
64 patch samples at the same time. An Adam optimizer with a
default initial learning rate of α = 0.01 and amoment decay rate of
β1 = 0.9 and β2 = 0.999 was used in this experiment to update the
trainable weights of the neural network and reduce losses. Adam

stands for “Adaptive Moment Estimation” where the learning
rate constantly changes after every epoch. Image data
normalization and the Adam optimizer have allowed faster
convergence of gradient descent and achieved a faster learning
rate. The loss function is calculated using categorical cross-
entropy for our four classes classification task. With this setup,
the model is compiled and trained for 100 epochs.

3.2.3 Performance Metrics
Confusion matrix, precision, recall, and f1-score are the metrics
used for evaluating our classification model’s performance. The
confusion matrix is used to evaluate the performance of the
classification model. It provides a clear picture for which classes
are being predicted correctly and incorrectly. It is also used to
count the number of predicted samples for finding precision and
recall. The normalized confusion matrix was also obtained to see
the percentage of the predicted samples clearly. Precision (3)
measures the ratio of the correctly predicted sample to the total
predicted sample. Recall (4) measures the ratio of the correctly
predicted sample to all samples in the actual class. Accuracy
metric is only useful when the classes in a dataset are well
balanced. Due to the challenge of having uneven class
distribution, f1-score (5) is used for measuring the
performance of a model instead of accuracy. F1-score
measures the harmonic mean of precision and recall. It takes
false positive (FP) and false negative (FN) into account while
accuracy is measured when true positive (TP) and true negative
(TN) are more important. Weighted average, WA (6), is
computed by considering the number of images in a class of
imbalanced datasets. It is calculated for precision, recall, and f1-
score of each individual CV set. Since the CV set is used to
evaluate the performance, the mean of all metrics such as
precision, recall, and f1-score are calculated simply by
averaging the WA of each individual result of the CV set. The
equations are listed in 3–6.

Precision � TP

TP + FP
(3)

Recall � TP

TP + FN
(4)

F1 − score � 2 ×
precision × recall( )
precision + recall( ) (5)

WA � ∑k�1
n

Pk ×
Nk∑K( ), (6)

where
n is the total number of classes; k is the individual class; Pk is

the precision, recall, or f1-score of class k; and
N is the total number of images in a class.

3.3 Cloud-Based System Development
3.3.1 System Architecture
The proposed architecture of the PancreaSys cloud-based
system consists of Anvil Cloud and Google Colab platforms.
The Anvil Cloud platform is used to develop the front-end of the
web application using the Python language, with a GUI for the
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pathologist to view and interact with. It is also used to store the
developed web application so the pathologist can effortlessly
load the web application using a browser and not have to go
through a tedious installation process on their device. The
Google Cloud Platform is used to host the secondary back
end of the web application system. This work uses Google
Colab which is hosted on the Google Cloud Platform to
develop the code for deploying the DL model and making
predictions, where image processing will take place. Data
transfer will happen bi-directionally between the user
browser and Anvil Cloud and between Anvil Cloud and
Google Cloud. Anvil Cloud acts as an intermediary between
a user and the secondary back end as it will encrypt the data
uploaded by the user. Data transfer will also happen when the
pathologist uploads an image for prediction and configure the
parameters at the web application. During the upload stage, the
image will go through Anvil Cloud before arriving at Google
Cloud. After prediction, the results are transferred to the
pathologist via Anvil Cloud. Function calling to Anvil will
happen when the pathologist interacts with the web
application, such as uploading images and pressing buttons.
Function calling between Anvil and Google Colab happened
when the image is ready to be sent to Google Colab for
prediction and return the result to Anvil to display result.
The communication between Anvil and Google Colab is
achieved by using Anvil Uplink API.

3.3.2 Web Application System and Design
The main purpose of building a web application is to allow a
pathologist to input an image and make predictions from the
image. However, the DL model was trained on roughly 200 pixels
of squared patches from large images, but the pathologist needs to
input an HPF because it is impractical for them to slice the image
into patches. With an HPF, the prediction will not be accurate if
the input image is exceptionally large and non-squared since it
needs to be resized to a smaller square size and a lot of
information in the image will be altered. Hence, PancreaSys is
designed to help the pathologist to automatically process the large
WSI, using a similar technique to that explained in the Data
Preparation section. The system was designed to slice the input
HPF into squared patches with a slightly modified equation from
Eqs 1, 2 to find the ratio for slicing. The equations are listed in 7,
8, where h is the scaling factor. The scaling factor is introduced
to allow the pathologist to choose the size of patches to see
the result of prediction. In this system, the scaling factor is fixed in
the program to make the system easy to use. The optimum value
of h is chosen as 0.5, 1, and 1.5. Examples of output patch sizes

when the input image dimension is 1600×1200 are shown in
Table 2.

NC � IW/P( ) × h (7)

NR � IH/P( ) × h (8)
After the image was sliced in the background, PancreaSys will

predict each individual patch, with a list of prediction probability
for the four classes. This probability value will be referred to as the
confidence value in predicting that class. The next step after
making prediction is to overlay a bounding box together with the
class name and its confidence level on the patches. A contrasting
color of the text and bounding box was chosen to depict different
classes. The color of the bounding box for each class is green
(Normal), orange (Grade I), magenta (Grade II), and red (Grade
III). There will be a selection for which patches will get overlayed
depending on the minimum confidence threshold. If the
confidence level is lower than the threshold, the patches will
not be overlayed. Last, the patches will then merge back together
to form a single image. At this stage, the new image is an altered
version from the original image where the colored bounding box
will indicate the region which the model is confident to predict.
An example of the PancreaSys prediction process is shown in
Figure 4.

When designing the GUI in Anvil for web application, several
factors need to be considered to achieve good user experience.
The GUI is designed to be simple and easy to use. In the main
page of the web application, several important input elements in
the GUI must be included, such as button to upload an image, to
choose the size of patches for prediction, a slider to choose the
confidence threshold, and finally, a button to begin making
prediction. The main page GUI will also show basic
information such as the uploaded image and other selected
configuration values. After prediction, a new page showing the
detailed predicted result will be loaded, together with the merged
image, a histogram to show frequency of predicted classes, and
also the overall predicted grade.

When the pathologist clicks the predict button, Anvil will send
the uploaded image to the Google Colab back end to make
prediction. The flow chart after the prediction button is
pressed is shown in Figure 5. At this stage, the primary back
end in the Anvil side will check if there is an input image and
whether the secondary back end (Google Colab) is running. If
both conditions are not satisfied, the user will see an error.
Otherwise, Anvil Uplink API will send a signal to the running
Google Colab program and transfer the uploaded image. Google
Colab will wait until Anvil sends a signal to retrieve the image

TABLE 2 | Example of image slicing output with the scaling factor.

Input dimension Scaling factor, h Slicing ratio
(column×row)

Output dimension Patch size Output patches
per image

1600 × 1200 0.5 4 × 3 400 × 400 Large 12
1 8 × 6 200 × 200 Medium 48
1.5 12 × 9 133 × 133 Small 108
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together with the configuration information. Once received, the
program in Google Colab will begin slicing the image before
making prediction. Then, colored bounding boxes and text will be
super imposed on the patches depending on user configuration

setting. The program will also count how many images were
predicted in each class and then merge all patches back into
a single image before sending the results to the Anvil server.
Anvil will retrieve the results and choose a class with the

FIGURE 6 | PancreaSys web application GUI: (A) main page (after an input image is uploaded); (B) result page (after prediction).
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highest frequency (majority vote) to display the overall class
prediction.

4 RESULTS AND DISCUSSIONS

In this section, the user of PancreaSys is referred to as the
pathologist, and the DenseNet201 model was trained for the
system prediction using the Mixed Dataset. Figure 6 shows the
PancreaSys web application GUI after the pathologist has uploaded
an input image. The right pane will preview the uploaded image,
and the resolution or dimension of the image is displayed in the left
pane, below the upload button. There are two interactable
configuration settings inside the same pane, which are the
prediction patch size and prediction confidence threshold.
When the pathologist chooses the prediction patch size, it will
display the ratio of slicing and the number of output patches the
system will predict. Figure 6B shows the result page after the
pathologist pressed the “PREDICTGRADE” button. Google Colab
will be running inside the Virtual Machine of Google Cloud
Platform, where the DL model is deployed and the input image
from the web application is processed for prediction and result.

In the result page (Figure 6B), three types of results are
displayed. The prominent output is an image with merged
patches that shows Grade III in a red bounding box and its
confidence level. There is a histogram that shows the frequency of
patches predicted to the respective classes and an indicator that
tells the class of the majority prediction, which in this case is
Grade III. The pathologist can press the restart button to return to
the main page and make a new prediction with different images
or different configuration settings.

4.1WebConfiguration Settings Comparison
A sample of a full-size pathology image from the Normal class
is selected to demonstrate the prediction result with different
configuration settings available in the web application.

4.1.1 Comparison Between Prediction Patch Sizes
In this comparison, the confidence threshold is set at 0.95. The patch
sizes of large, medium, and small will be compared. Figure 7
demonstrates the result of using the three patch sizes, respectively.
The size of the patches is calculated using (Eqs 7, 8) to evenly slice the
original image with different scaling factors.Table 3 shows the results
from the different patch sizes. It can be seen that the prediction can
still be done accurately on different patch sizes even though themodel
was trained on the medium-sized patch samples.

4.1.2 Comparison Between Different Confidence
Thresholds
In this comparison, the patch size is set to “small.” The confidence
threshold of 0.95, 0.7, and 0 will be analyzed. Comparing with
Figures 7C–E, as the confidence threshold is reduced from 0.95 to
0.7 and 0, respectively, we can clearly see that the system will
reveal more patches superimposed with colored bounding boxes
in the output image with a different grade class and lower
confidence level. This configuration exists for the pathologist
to see in case the model could not show prediction on certain
regions with high confidence. The lower confidence prediction
will be inaccurate as it is also showing the prediction of the
background region which does not have information about the
cell tissue. Hence, it is best to keep the confidence threshold high
in order to avoid the model frommaking inaccurate prediction on
the whole full-sized image.

FIGURE 7 | Patch size and confidence threshold (CT): (A) Large with 0.95 CT, (B) Medium with 0.95 CT, (C) Small with 0.95 CT, (D) Small with 0.7 CT, and (E)
Small with 0 CT.
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4.2 Data Augmentation and Effect on Model
Performance
This experiment was done only with the first CV set of Mixed
Dataset, to observe how data augmentation impacts a model
training performance after 100 epochs. The graph result of
model loss and accuracy is shown in Figure 8 for both with
and without data augmentation. Looking at the graphs without
data augmentation, it is evident that overfitting has occurred,
where the model accuracy of the training set is much higher than
that of the validation set, with the difference in model loss being
−0.95 and accuracy being 14.45%. This shows that the model is
doing very well on the training set but not on the validation set.
The increase of the gradient in model loss indicates that the
model is unable to learn enough features from the training data.
With data augmentation, the graphs show consistent model loss
and accuracy, where the gap is closer and validation accuracy
has been improved by 2.67% and validation loss has been
reduced by −0.63. The difference with training results are
also lessened, −0.23 for model loss and 8.62% for model
accuracy.

4.3 Fine-Tuning Result of the Pre-Trained
DenseNet201
The depth, parameters, and size of the pre-trained network model
were affected, and the trainable parameters in the model network
were introduced after the fine-tuning process. These trainable
parameters represent the updatable weights of the model after
each iteration of optimization. After fine-tuning, the
DenseNet201 model produced more trainable parameters,
which are 57%, 72%, and 84% of total parameters for 256,
512, and 1024 dense nodes, respectively. The number of total

parameters and model size increases tremendously with the
increase in dense layer nodes. Initial number of parameters
before fine-tuning is 20,242,984 with a size of 80 MB. The new
fine-tuned network model shows a significant increase in the total
number of parameters and model size because the original pre-
trained model does not have any heavy layers in their fully
connected (last) layer for training ImageNet dataset whereas
there are an additional two layers of depth on the fine-tuned
model. The total parameters and model size after fine-tuning for
256, 512, and 1024 dense nodes are 42,407,748 (346.7 MB),
66,493,508 (622.3 MB), and 114,665,028 (1173.6 MB) for each
of them.

Different dropout rates and dense layer nodes have also
affected the model performance. Tested with Mixed Dataset,
the mean f1-score results are illustrated in Table 4. Based on
the result, the most optimum setting is found to be a dropout
rate of 0.4 with 256 dense nodes, as the higher number of
dense nodes will incredibly increase the model size, but with

TABLE 3 | Prediction results using different patch sizes and different confidence thresholds (CTs).

Frequency per
patch size

Normal Grade I Grade II Grade III Majority Ground truth

Large (CT: 0.95) 10 0 0 0 Normal Normal
Medium (CT: 0.95) 33 0 0 0 Normal Normal
Small (CT: 0.95) 34 1 0 0 Normal Normal
Small (CT: 0.7) 40 0 8 9 Normal Normal
Small (CT: 0) 50 3 18 37 Normal Normal

FIGURE 8 | DenseNet201 model learning performance: (A) Without data augmentation. (B) With data augmentation.

TABLE 4 | Fine-tuning results: mean f1-score for different dropout rates and
dense layer nodes, based on Mixed Dataset.

Dropout rate Dense nodes Mean f1-score Model size (MB)

0.4 1024 0.90 1173.6
0.4 512 0.89 622.3
0.4 256 0.89 346.7
0.6 1024 0.89 1173.6
0.6 512 0.89 622.3
0.6 256 0.87 346.7
0.8 1024 0.85 1173.6
0.8 512 0.83 622.3
0.8 256 0.77 346.7
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FIGURE 9 | DenseNet201 model confusion matrix for each k-fold CV set: (A) Fold 1 (MGG dataset), (B) Fold 2 (MGG dataset), (C) Fold 3 (MGG dataset), (D) Fold 4
(MGG dataset), (E) Fold 5 (MGG dataset), (F) Fold 1 (H&E dataset), (G) Fold 2 (H&E dataset), (H) Fold 3 (H&E dataset), (I) Fold 4 (H&E dataset), (J) Fold 5 (H&E dataset),
(K) Fold 1 (Mixed dataset), (L) Fold 2 (Mixed dataset), (M) Fold 3 (Mixed dataset), (N) Fold 4 (Mixed dataset), and (O) Fold 5 (Mixed dataset).
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FIGURE 10 |DenseNet201model loss and accuracy with 100 epochs for each k-fold CV set: (A) Fold 1 (MGG dataset), (B) Fold 2 (MGG dataset), (C) Fold 3 (MGG
dataset), (D) Fold 4 (MGG dataset), (E) Fold 5 (MGG dataset), (F) Fold 1 (H&E dataset), (G) Fold 2 (H&E dataset), (H) Fold 3 (H&E dataset), (I) Fold 4 (H&E dataset), (J)
Fold 5 (H&E dataset), (K) Fold 1 (Mixed dataset), (L) Fold 2 (Mixed dataset), (M) Fold 3 (Mixed dataset), (N) Fold 4 (Mixed dataset), and (O) Fold 5 (Mixed dataset).
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just a slight improvement of its performance. The following
analysis of the DenseNet201 will be using this optimum set of
parameters.

4.4 Analysis of Model Performance
This section presents the performance result of transfer
learning for the DenseNet201 model, which was trained with
three datasets: the MGG Dataset, H&E Dataset, and Mixed
Dataset, with 5-fold CV. After training the DenseNet201, the
evaluation was done by first obtaining the confusion matrix
with a single CV set, one by one from CV1 to CV5. For each fold
per dataset, both the confusion matrix and its normalized result
are presented in Figure 9 (on the left and the right,
respectively). Figure 10 shows the CV results for each 5-fold
of all datasets.

Further evaluation metrics such as precision, recall, and f1-
score for each CV set were obtained, and theWA for each metrics
was calculated. The mean performance is then calculated after
training all 5-fold CV sets. The detailed performance result on
individual MGG, H&E, and Mixed Dataset are presented in
Table 5.

For theMGGdataset, Grade II cancer seems to be classified better
than other grades, measuring recall above 0.94 for all five folds. The
cause behind this is the size of Grade II images dominating 53% of
the dataset. Grade I cancer has the lowest recall rate ranging from
0.45 to 0.76, due to the small amount of images, that is, 5.8% of the
dataset. TheWA can fairly measure the class imbalance of theMGG
dataset, with a mean value of 0.88 for all precision, recall, and f1-
score. In the H&E dataset, it is dominated by Grade I cancer with
45.2% images of the whole dataset, and the recall rate is 0.97–0.99.

The grade with the least number of images is the Normal class with
only 10.4% of the dataset, but the recall rate is perfect at 1.0 for all CV
sets. The cause is due to a highly distinguishable appearance of this
class (refer Figure 1E) compared to other cancer grades. Despite the
imbalance class images in the H&E dataset, it can perform well in all
CV sets for all performance metrics, measuring from 0.86 to 1.0, and
its meanWAof 0.96. For theMixed dataset, it is expected to perform
in between the MGG and H&E datasets because it contains the two
stains’ combination. The mixture, however, did not affect Grade I
prediction, as it affects the MGG dataset, with the recall rate ranging
from 0.87 to 0.92. The mean WA is 0.89, which is 0.01 higher than
that of the MGG dataset. Since the mean WA of the H&E dataset is
0.96, this value is observed to be biased toward theMGGdataset. The
reason behind this is that the MGG dataset contributed 58% of the
Mixed dataset, that is, 16% more than the H&E dataset.

The results for model loss and accuracy of DenseNet201 when
training each 5-fold CV set with 100 epochs are illustrated in
Figure 10. The average model accuracy for the MGG dataset is
0.96 for the training set but went down to 0.88 for the validation set,
where the difference is −0.08. The average model loss is 0.113 for the
training set and increased from 0.301 to 0.414 for validation. This
shows that images in the MGG dataset are difficult to learn,
regardless of the high training accuracy. For the H&E dataset, the
results are more promising, with 0.99 average model accuracy and
0.024 average model loss for the training set. For the validation set, a
reduction of 0.03 is observed for average model accuracy, and an
increment of 0.155 for average model loss, making them 0.96 and
0.179, respectively. Looking back atFigure 1, the differences between
the images of these two datasets are visually similar to our human
eyes, but somehow the DenseNet201 model performed differently

TABLE 5 | Precision, recall and f1-score for 5-fold CV set of MGG, H&E, and Mixed Dataset, with WA and mean for the 5-fold CV set.

Dataset/class Precision Recall F1-score

CV1 CV2 CV3 CV4 CV5 CV1 CV2 CV3 CV4 CV5 CV1 CV2 CV3 CV4 CV5

MGG Dataset

N 0.95 0.93 0.99 0.94 0.95 0.89 0.97 0.93 0.94 0.94 0.92 0.95 0.95 0.94 0.94
G-I 0.77 0.85 1.00 0.79 0.70 0.45 0.50 0.55 0.52 0.76 0.57 0.63 0.71 0.63 0.73
G-II 0.87 0.87 0.91 0.86 0.90 0.94 0.94 0.95 0.94 0.94 0.91 0.90 0.93 0.90 0.92
G-III 0.79 0.83 0.80 0.85 0.84 0.77 0.71 0.88 0.73 0.71 0.78 0.76 0.84 0.79 0.77
WA 0.87 0.87 0.91 0.87 0.89 0.87 0.88 0.91 0.87 0.88 0.87 0.87 0.90 0.87 0.88
Mean 0.881 9 0.881 9 0.878 6

H&E Dataset

N 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
G-I 0.98 1.00 0.99 0.97 0.97 0.99 0.99 0.98 0.99 0.97 0.98 1.00 0.98 0.98 0.97
G-II 0.93 0.94 0.87 0.95 0.86 0.87 0.94 0.89 0.95 0.92 0.90 0.94 0.88 0.95 0.89
G-III 0.92 0.93 0.88 0.98 0.95 0.95 0.95 0.90 0.93 0.90 0.93 0.94 0.89 0.96 0.92
WA 0.96 0.97 0.94 0.97 0.94 0.95 0.97 0.94 0.97 0.95 0.95 0.97 0.94 0.97 0.94
Mean 0.956 5 0.957 1 0.956 1

Mixed Dataset

N 0.94 0.88 0.89 0.96 0.94 0.94 0.98 0.97 0.98 0.94 0.94 0.93 0.93 0.97 0.94
G-I 0.93 0.97 0.98 0.96 0.95 0.90 0.87 0.89 0.92 0.85 0.91 0.92 0.93 0.94 0.90
G-II 0.85 0.85 0.89 0.88 0.87 0.90 0.92 0.91 0.94 0.92 0.88 0.88 0.90 0.91 0.89
G-III 0.83 0.86 0.82 0.91 0.83 0.78 0.75 0.82 0.81 0.82 0.80 0.80 0.82 0.85 0.82
WA 0.88 0.88 0.90 0.92 0.89 0.88 0.88 0.90 0.92 0.89 0.88 0.88 0.90 0.91 0.89
Mean 0.893 5 0.893 3 0.891 5

N, Normal; G-I, Grade I; G-II, Grade II; G-III, Grade III.
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when learning them. It might perform better if was trained with
higher and balanced number of images in the dataset. For the
training set of the Mixed dataset, the performance of average model
accuracy and loss are slightly lower than that of the MGG dataset,
which are 0.95 and 0.136, respectively, with a difference of −0.01 and
+0.023, respectively. However, for the validation set, the Mixed
dataset performs as expected, that is, in between theMGG and H&E
datasets. The average model accuracy of 0.89 and 0.317 model loss is
observed, still biased toward MGG dataset performance due to its
higher number of images in the Mixed dataset.

For comparison with our DenseNet-based grading system, we
made an analysis with other DLmodels in ImageNet to see how they
compare with DenseNet201 in terms of performance. The models
are VGG19, NASNetLarge, InceptionV3, NASNetMobile,
MobileNetV2, Xception, and ResNet152V2, fed with the three
datasets as trained for our system. The results of the mean f1-
score are shown in Table 6, sorted in ascending order based on
Mixed Dataset. Overall, all models are capable of accurately grading
theH&Edataset, where they scored above 0.9 except forVGG19, just
slightly lower at 0.87. This could be due to the small VGG neural
network architecture and small fully connected layers making it
unable to learn complex features and patterns in pathology images.
TheMGGdataset is a bit challenging for themodels to grade because
of their limited number of images, specifically for Grade I. Looking at
the results for Mixed Dataset, VGG19 scored a bit low at 0.65,
followed by NASNetLarge at 0.80. The Inception V3model that was
used in the study by Ström et al. (2020) for Gleason grading of
prostate biopsies scored 0.83, similar to NASNetMobile, and the
subsequent models’ scores show an increment of either 0.01 or 0.02.
As a concluding remark, the DenseNet201 model implemented in
our system still has the highest score, showing that it is the best
model for grading pancreatic cancer in pathological images.

5 CONCLUSION

Deep learning has helped in improving the analysis and prognosis
of many diseases in the medical field. This study presented a new
automated cloud-based system, named PancreaSys, to assist the
pathologist in classifying pancreatic cancer grades from high
power field pathological images. The system comprises the
DenseNet201 model for the prediction, utilizing Anvil and
Google Colab platforms as its backbone. The cloud-based
PancreaSys takes a high-resolution image as input using a web
user interface and sliced them into smaller patches sized 200 by

200 pixels. The patches are then classified into their respective
grades using DenseNet201 and are stitched back to produce one
whole image before sending the final result to the pathologist.
Promising f1-score measures are reported: 0.88 and 0.96 for each
MGG and H&E dataset, respectively, and 0.89 for the Mixed
dataset. To the best of our knowledge, no similar work on a
pancreatic cancer grading system has been reported in the
literature.

Improvements to the proposed system include using the state-
of-the-art deep learning model, increasing the image dataset, and
using color augmentation to improve the model’s learning rate on
different color variation. Furthermore, a recent synthetic image
generation such as a generative adversarial network can be
designed to synthesize more pancreatic cancer pathology images
with supervision from the experts before the training process. At
this stage, this research can help to provide the pathologists a
reliable diagnosis for the pancreatic cancer grade using a simple
web interface, without any installation. We hope that the system
will perform better with accuracy close to 1.0 in order to serve as a
second opinion to the pathologist in the future.
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