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The use of speech source localization (SSL) and its applications offer great possibilities for
the design of speaker local positioning systems with wireless acoustic sensor networks
(WASNs). Recent works have shown that data-driven front-ends can outperform
traditional algorithms for SSL when trained to work in specific domains, depending on
factors like reverberation and noise levels. However, such localization models consider
localization directly from raw sensor observations, without consideration for transmission
losses inWASNs. In contrast, when sensors reside in separate real-life devices, we need to
quantize, encode and transmit sensor data, decreasing the performance of localization,
especially when the transmission bitrate is low. In this work, we investigate the effect of low
bitrate transmission on a Direction of Arrival (DoA) estimator. We analyze a deep neural
network (DNN) based framework performance as a function of the audio encoding bitrate
for compressed signals by employing recent communication codecs including PyAWNeS,
Opus, EVS, and Lyra. Experimental results show that training the DNN on input encoded
with the PyAWNeS codec at 16.4 kB/s can improve the accuracy significantly, and up to
50% of accuracy degradation at a low bitrate for almost all codecs can be recovered. Our
results further show that for the best accuracy of the trained model when one of the two
channels can be encoded with a bitrate higher than 32 kB/s, it is optimal to have the raw
data for the second channel. However, for a lower bitrate, it is preferable to similarly encode
the two channels. More importantly, for practical applications, a more generalized model
trained with a randomly selected codec for each channel, shows a large accuracy gain
when at least one of the two channels is encoded with PyAWNeS.

Keywords: speech source localization, direction of arrival estimation, speech and audio coding, deep neural
network, wireless acoustic sensor networks

1 INTRODUCTION

There are over 50 billion mobile devices connected to the cloud as of 2020 (Yang and Li, 2016), out of
which more than 50% are estimated to be the Internet of Things (IoT) and wireless acoustic sensor
network (WASN) devices (The Cisco Visual Networking Index, 2020). We can consequently expect
that services based onWASN technology will be increasingly rolled out, not only for low latency and
high communication bandwidth, but also to gain access to multiple sensors for cooperative
localization strategies. In fact, such WASN ecosystems will enhance various context-aware and
location-based applications for which real-time localization is becoming increasingly beneficial
especially in the development of smart devices and voice interfaces. However, WASN-based systems
have to use communication protocols to transmit data between nodes, where codecs inevitably
introduce noise in the received signals and reduce the accuracy of subsequent localization modules.
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While both speech and audio codecs (e.g., (Bäckström, 2017)) and
localization methods (e.g., Cobos et al. (2017)) are well-studied,
their combined effect has not received much attention. Therefore,
there is a need for localization methods specifically designed for
encoded signals.

Many methods have been previously developed to solve target
localization problems in WASNs by focusing on estimating the
source’s coordinates. The established methods could be classified
depending on the used measurement models: 1) Time Difference
of Arrival (TDoA); 2) distance measurement; 3) received signal
strength; 4) direction of arrival (DoA) also known as bearing,
measurements; and 5) signal energy and their combinations. Each
measurement has its own merits, and this paper focuses on DoA.
The proposed method estimates the azimuth angle of a target
source referring to a pair of sensors. Unfortunately, due to the
limited energy and bandwidth of the fused signals, the traditional
DoA-based localization methods usually fail to achieve
satisfactory accuracy. Alternatively to conventional localization
methods, much faster neural network (NN)-based methods have
also shown their potential application in DOA estimation in
recent literature, where specific extracted features are used as the
input for a multilayer neural network to learn the nonlinear
mapping from such features to the DoA estimation (Xiao et al.,
2015; Pertilä and Parviainen, 2019). The high accuracy of learning
based methods is due to the constrained training datasets,
targeting specific use cases. Such systems’ performance
significantly drops when used in conditions that do not match
the training domain. This mismatch problem has been widely
studied in the context of robustness to background noise and/or
reverberation (Xiao et al., 2015; Chakrabarty and Habets, 2017;
Huang et al., 2018; Liu, 2020), array imperfections (Liu et al.,
2018), multiple sources scenario (Takeda and Komatani, 2016;
Chen et al., 2018). However, as far as we know, prior works have
not addressed distortions due to codecs.

The proposed localization scheme is motivated by the speech
codec we recently published (Bäckström et al., 2021), where we
estimated the TDoA from a multi-channel, coded mixture. This
method of front-end processing opens up avenues for processing
audio not just from microphones from the same sensor array but
frommicrophones from distinct devices. In parallel, the popularity
of voice-enabled devices opens up an interesting area of research.
However, we also need to take into account that different devices
from different manufacturers may not support the same encoding
standards. To leverage a specific two-channel scenario, there are
two options, both with their particular trade-offs: 1) One of the
recording devices can also be a fusion center (FC), responsible for
receiving and decoding the second signal then processing with
localization, as in Figure 1A. 2) Alternatively, the two devices can
both just record the signal and send the encoded version to the FC
for localization, as in Figure 1B. In both scenarios, the device can
compress the signals before transmission to minimize the amount
of transmitted data. However, distributed sensing with
quantization and coding is a complex multi-objective
optimization problem (Shehadeh et al., 2018). The
computational load, power consumption, bandwidth, signal
accuracy, and localization accuracy should all be simultaneously
optimized while we also have to take into account the individual

limits of each device. With this motivation, in contrast to prior
studies and, in addition to environmental and sensor noise, in this
work, we focus on the effect of quantization noise on localization
accuracy. To build our localization model, we pool training data
from several sources, and simulate varying bitrate and codecs
conditions (Figure 2). Since noise robustness has received a lot
of attention in the literature, we focus primarily on the less explored
area of robustness with respect to codecs.

Prior work in this area has focused on examining the effect of
mixed bandwidths on automatic speech recognition (Mac et al.,
2019) as well as evaluating the performance of different audio
codecs on emotion recognition (Garcia et al., 2015; Siegert et al.,
2016). Evaluation of the audio quality of codecs is naturally also a
classic task, e.g. Rämö and Toukomaa (2015).

In this paper, we consider a speaker target positioning as a
DoA classification task. Our contribution is to study how our
recently proposed simple DNN architecture (Zarazaga et al.,
2020) performance varies with the different bitrate encoding
of recent communication codecs including PyAWNeS
(Bäckström et al., 2021), OPUS (Valin et al., 2012), the
Enhanced Voice Services (EVS) (Bruhn et al., 2012), and Lyra
(Kleijn et al., 2021). We analyze the performance of both
considered scenarios as a function of the audio input bitrate.
We demonstrate that by training with low bitrates we can recover
some of the localization performance loss. Motivated by the two-
device context for DoA estimation, we also study the performance
of our estimator if the two considered input channels to the
network are not encoded with the same bitrate. Surprisingly, even
though the model is trained with data encoded at a low bitrate, it
works almost as well as the model trained with uncompressed
data. Most interestingly, we get large accuracy gains for a
randomly chosen codec at low bitrates by using the PyAWNeS
codec for low bitrate training, suggesting that it preserves spatial
information even in low bitrate conditions.

2 PROBLEM STATEMENT OF LOW
BITRATE DOA ESTIMATION

2.1 Data Model
Our particular focus in this paper is a typical home scenario,
where a user has multiple, potentially wearable, audio devices
near him. We consider the localization task in a two-dimensional
area with a number of low-cost and randomly distributed sensors.
The sensors transmit their signals to the fusion center, which
estimates the targets’ locations. This network configuration is
required since typical DoA estimators require at least two
channels. Specifically, we consider a wireless acoustic sensor
network (WASN) of two local, independent sensors working
together with a fusion center (FC).

The received signal in the mth device can be modeled in the
discrete-time Fourier transform (DTFT) domain as

Xm w( ) � βmS w( )exp −jwτm( ) + ϵ w( ), m � 1, 2{ }, (1)
where S(ω) is the spectrum of the target speaker, attenuated with a
positive amplitude decay factor βm ∈ I R+, and delayed by a
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transmission time of flight (ToF) τm ∈ I R+ relative to the speaker
position. Moreover, ϵ(w) stands for noise and reverberation
measurements and j � ����(−1)√

is the imaginary unit. The time
delay of arrival (TDoA) parameter (τ1 − τ2), referring to the two
channels X1 and X2, represents the source’s spatial location
information.

In real-life WASNs applications, the individual sensor signals
have to be quantized and coded with a finite bitrate. The decoded
outputs of each sensor can, accordingly, be assumed to be non-
linear transformations of the original, which likely degrade the
signal quality. Consequently, quantization can distort and bias
the information needed for localization, especially at low bitrates.

3 SYSTEM DESCRIPTION

3.1 Overview
Our localization estimator is similar to the system described in
Zarazaga et al. (2021), previously used to model the distribution
of various spatial cues using a two-channel DNN-based
architecture as shown in Figure 3. The model parameters are
estimated by using the probability at each time-frequency point
that a target speaker comes from a given DoA. First, the STFT is
performed on the left and right channels to obtain the time-
frequency representation of the input signals, here denoted as X1,
and X2 respectively, where t = 1, . . ., T is the frame index and b =

FIGURE 1 |Generic systemmodels: (A) Two encoded-channel model: The two devices just records the signal and sends the encoded signal to the FC. (B): Single
encoded-channel model: One of the recording device itself is the FC.

FIGURE 2 | System diagram of the proposed learning-based approach for DoA estimation.

FIGURE 3 | Proposed workflow.
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1, . . ., B is the frequency bin index. The resulting spectrum is a
(T × B) complex-valuedmatrix, where T represents the number of
time frames contained in the audio sequence and B is the number
of frequency bins.

3.2 Input Feature Set
The input feature set has critical significance for a DNN-based
estimator. Clearly, the feature set should include the required
DoA information. However, with quantized signals, we expect
that information in some frequency bands could be lost at low
bitrates, which can distort feature extraction and bias the model.
Therefore, we have decided to slide our input features into
uniformly distributed frequency blocks from which we can
detect the DoA information in each frequency band. The
input features are estimated at each time-frequency unit and
grouped into N uniformly distributed frequency blocks, each of
them containing K � �BN� frequency bins. In our two-device
model, we have chosen to use the inter-channel level
difference (ILD), inter-channel phase difference (IPD), and the
phase transform (PHAT) cross-power spectrum (CPS) across all
frequency bins in the STFT domain as inputs to the neural
network in a given time frame. This choice is motivated by
the fact that the combination of CPS, ITD and ILD can make
the estimation of sound source direction more accurate. Thus, we
use a feature vector combining ITD, ILD and CPS derived from
the observed input spectrum in each frequency block,
consecutively defined as

ILD t, b( ) � 20 log10
|X2 t, b( )|
|X1 t, b( )|( ), ∈ RTXB, (2)

CPS t, b( ) � X1 t, b( )X2* t, b( )
|X1 t, b( )X2* t, b( )|, ∈ RTXB, (3)

and

ITD t, b( ) � argmax
t

CPS t, b( )( ), ∈ RTXB, (4)

where |.| takes the absolute value of their arguments, and argmax
computes the time lag of the maximum peak. Concatenating CPS,

ILD and ITD features, a vector is obtained at each time-frequency
unit U(t, b) � [CPST(t, b), ILDT(t, b), ITDT(t, b)]T ∈ RTx3B. All
extracted vectors of features are split into N uniformly distributed
frequency blocks (only along the frequency bins), each of them
containingK � �BN� frequency bins, where each block involves only
the information from K frequency bins as follows:

U t,n( ) � UT t, n − 1( )K + 1( ), . . . , UT t, nK( )[ ]T ∈ R3K, (5)
where n is the index of the nth frequency block fed into the nth

DNN. The STFT of the raw data at a sampling frequency of
16 kHz is computed in frames of 2048 samples (128 ms) with a
50% overlap. A sliding frequency window with 64 samples and a
50% overlap is then used to extract 31 CPS vectors in each time
frame, which are then cropped to a number of samples equivalent
to a maximum microphone distance of around 2.5 m. Therefore,
the CPS vector within a lag range of [ − 128, + 128] samples has a
size of 256. Then, adding then ILD for 64 time-frequency units
and one ITD value results in an input feature vector U(t,n) with
length Q = 321 for each DNN.

3.3 Target Outputs
We define the DoA estimation as a classification task on a
predefined grid of angles, corresponding to the likelihood of an
active source at each angle. For that, we use a uniform azimuth grid
which stands for the azimuth directions θj from −90° to +90° with
the desired grid resolution of 5° (Figure 4). Thus, the resulting grid
contains nDoA � ∑J

j�0j points. The target of each DNN is a binary
vector of size nDoA × 1 , where each index corresponds to one
discrete DoA.Only the element of the outputDoA vector that is the
closest to the ground-truth DoA value is set to 1.

3.4 Model Architecture
The neural network architecture is illustrated in Figure 5. It
consists of one input layer representing the low-level extracted
features followed by two hidden layers of sparse autoencoders
(AEs) (Bengio et al., 2013), and the fourth layer uses a softmax
classifier to estimate a set of probabilities that the current input is
oriented toward potential DoAs. The first input layer represent
the extracted low-level features. Therefore, the number of input
neurons equals the dimension of the feature vector, Q = 321
neurons, and one bias unit. The second part uses this low level
feature input layer to extract high-level features. Following (Yu
and Deng, 2011), we use two hidden sparse AEs which are
composed of V = 256 neurons and one bias unit employing a
sigmoid activation function. The estimated high level-features
will serve as input for the fourth layer to estimate the DoAs, using
a softmax layer containing 37 neurons corresponding to the nDoA
considered angles. Thus, our DNN outputs 37 nodes, which
represent the azimuth directions θj from −90° to +90° with
steps of 5°, representing the likelihood of the presence of a
sound source P = {pj} in the jth orientation index. The target
of the DNN is a binary vector of size nDoA × 1, where each index
corresponds to one discrete DoA. For each active source, the
element of the target vector that is the closest to the true DoA is
set to 1. When several sources are present in the scene, more than
one neuron can be activated (set to 1). All other target outputs are
inactive (set to 0).

FIGURE 4 | The space is divided into J parts. The elements of the
ground-truth range in [1..J] Adapted from Zarazaga et al. (2021).
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3.5 From Sub-classifier to Global DoA
Classifier
In the proposed strategy, each well-trained DNN is fed with the
input features from each time-frequency unit, and then the
posterior probability of the sound source in each angle is
obtained. After that, the average posterior probability of each
direction in all frames is calculated, and the azimuth
corresponding to the maximum posterior probability is taken
as the localization result.

4 EXPERIMENTAL SETTINGS FOR DOA
ESTIMATION

For our DoA estimation system evaluation, we first present the
generated dataset made with the simulated spatial room impulse
responses (SRIRs) that we used for training and testing. Then, we
describe the DNN training procedure and settings for the
following experiments.

4.1 Datasets
To train the networks, as well as for some test datasets, we
synthesized SRIRs using Pyroomacoustics (Scheibler et al.,
2017). The room size is 8×6×3 m3 with a reverberation time
of about RT60 = 0.3 s, with inter-sensor distance dmic = [1, 2]m,
and source-to-microphone distances d = [1, 2, 3]m. We
synthesized all possible SRIRs for the room, corresponding to
all DoAs. Anechoic utterances from the LibriSpeech dataset
(Panayotov et al., 2015) were randomly extracted for both
training and test sets. For the training dataset, for each
configuration, we generate several stereo mixtures sampled at
16 kHz corresponding to all possible DoAs from −90° to +90° with
steps of 5°. Each SRIR was convolved with a different 15 s speech

signal randomly extracted from a subset of the LibriSpeech
dataset.

4.2 Training Procedure
Similar to Yu and Deng (2011) and Dean et al. (2012), the
process of training of each DNN is divided into pre-training and
fine-tuning stages. In the pre-training phase, the AEs and
softmax classifier are trained individually by using each
output layer as an input for the next layer, fixing the weights
of the previous layers at each stage. The greedy layer-wise
training of Bengio et al. (2007) and Liu and Nocedal (1989)
and the limited memory BFGS (L-BFGS) optimization
algorithm are used to minimize the cost function. The
unsupervised training of the two AEs outputs high-level
features used to train the softmax classifier, which activates
the jth neuron, giving the highest probability that the current set
U(t,n) is oriented to the jth direction. A cross-entropy loss
function is therefore used to optimize the softmax classifier.
The fine-tuning stage is the stacking and the training of the
overall DNN. Hence, the AEs and the softmax classifier are
stacked together. Then the overall DNN is trained employing
L-BFGS optimization to minimize the difference between the
DNN’s output and the label of the training dataset. The learning
parameters for different training stages of the DNN are shown
in Table 1.

4.3 Codecs
To simulate a variety of audio codecs before transmission to the
FC for localization, we encode and decode each waveform with a
selected codec. Since we are interested in speech data, our
investigations are focused on selected speech audio codecs.
Namely, we use the 3GPP Enhanced Voice Services (EVS)
codec (Bruhn et al., 2012), Opus (Valin et al., 2012), our own
PyAWNeS-codec (Bäckström et al., 2021), and the neural codec
Lyra (Kleijn et al., 2021). In particular,

•EVS has two operational modes: 1) the primary mode with 11
fixed bit rates ranging from 7.2 kB/s to 128 kB/s and one
Variable BitRate (VBR) 5.9 kB/s. 2) the EVS AMR-WB
Inter-Operable mode with 9 bitrates ranging from 6.6 kB/s
to 23.85 kB/s. EVS supports four input and output sampling
rates [8, 16, 32, 48] kHz. A delay compensation mode is
integrated into the EVS codec, allowing the compensation
of the integrated delay of about 32 ms within the encoded
output signal.

FIGURE 5 | Architecture of the used DNNn: Un,m is the input vector of
features and a bias vector bU.AE1 andAE2 are two auto encoders and the bias
vectors bAE1 and bAE2 . The softmax classifier gives the probability pj = j|Ut,m.

TABLE 1 | List of training parameters for the different training stages of the DNNs,
where λ is the weight decay, β is the sparsity penalty term and ρ is the sparsity
parameter.

Training stages λ β ρ Epochs

1st AE 9 × 10–4 1 0.3 200
2nd AE 1 × 10–4 1 0.3 200
Softmax classifier 1 × 10–4 - - 150
Fine-tuning 1 × 10–4 - - 150
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•Opus is an open source codec developed by the Xiph.Org
Foundation (Valin et al., 2012). It is based on a hybrid
approach combining the speech-oriented SILK and the low-
latency CELT. SILK is based on Linear Predictive Coding
(LPC) and it is used for encoding information below 8 kHz.
However CELT uses the modified discrete cosine transform
(MDCT) in combination with the Code-excited Linear
Prediction (CELP) frequency domain, and it is used to
encode information above 8 kHz. The Opus supports bitrate
ranging from 6 kB/s to 256 kB/s. Several versions of VBR and
CBR operation are also available. The Opus codec supports the
sampling rates 8, 12, 16, 24 and 48 kHz, with automatic
resampling where needed. The Opus codec internally
decided at which bandwidth the codec operated at the
target bitrate.
•The Python acoustic wireless network of sensors (PyAWNeS)
codec is a speech and audio codec especially designed for
distributed scenarios, where multiple independent devices sense
and transmit the signal simultaneously (Bäckström et al., 2021). In
contrast to prior codecs, it is designed to provide competitive
quality in a single channelmode, but such that quality is improved
with every added sensor. The codec is based on the TCXmode of
the EVS codec (Bruhn et al., 2012), but uses dithered quantization
to ensure that quantization errors in independent channels have
unique information. Another novelty of the codec is that, although
it has a reasonably conventional structure, it is implemented on a
machine learning platform such that all parameters can be
encoded end-to-end.
•Lyra is a generative low-bitrate speech codec, a neural audio
codec adopting WaveGRU architecture targeting speech at
3 kB/s.

To evaluate quality, ten native bitrate modes were selected [8,
13.2, 16.4, 24.4, 32, 48, 64, 92, 128, 160] kB/s at a sampling
frequency of 16 kHz. An informal analysis of variable and
constant bitrate modes did not show any significant difference
in DoA quality.

5 EXPERIMENTAL EVALUATION

To determine the impact of coding on a DoA estimate, we
evaluate the effect of quantization at a selection of bitrates and
codecs on the performances of the proposed DNN framework.

5.1 Evaluation Metrics
To characterize DoA accuracy, we determine the mean
absolute error (MAE), the root-mean-square error (RMSE),
and the measurement success rate (MSR). The MAE and the
RMSE between an estimated DOA (θ̂k) of the kth ground-truth
DoA value (θk) for the rth test utterance are computed
respectively as

MAEθ � 1
RK

∑R
r�1

∑K
k�1

|θk − θ̂k
r( )|, (6)

and

RMSEθ �

���������������������
1
R
∑R
r�1

1
K

∑K
k�1

|θk − θ̂k
r( )|2⎛⎝ ⎞⎠√√

, (7)

where R is the number of utterances in the test set, and K denotes
the number of simulated DoAs for each utterance (K = 37).

The accuracy of our DoA estimator is measured as a
percentage (%) by the MSR indicating a correctly estimated
DoA within a certain angular error tolerance.

MSRθi � 100
mk

R
, (8)

where mk denotes the number of successful tests of the kth DoA
angle. Due to the chosen DNN-based classifier’s output grid
resolution, we consider a tolerance of up to 5°. This implies
that DoA accuracy also reports the classification accuracy. Thus
mk is effective if and only if |θk − θ̂k

(r)|< 5°.

5.2 Model Performance as a Function of the
Encoding Bitrate
We first investigate the performance of DNN in the simplest
situation where two signals are similarly encoded with the same
bitrate. For this experiment, we train our model without a codec
using as input audio mixtures generated from a synthesized SRIR
dataset, as explained in Section 4.1, resulting in a total of 74
SRIRs. Each SRIR was convolved with a different 1 s speech signal
randomly extracted from a subset of the LibriSpeech dataset
including 28, 539 audio files. Eight audio stereo recordings 15 s in
duration were generated for each SRIR, resulting in 5 h of
uncompressed data speech for the training set. For our test
set, we generate both uncompressed data audio, and their
encoded version. Hence, we generate four test set resulting
from using PyAWNeS, OPUS, EVS, and Lyra codecs,
including uncompressed and encoded versions of the audio.
Ten bitrates [8, 13.2, 16.4, 24.4, 32, 48, 64, 92, 128, 160] kB/s
are considered for the codecs used, except for EVS, which is
limited to 128 kB/s, and Lyra, which only operates at 3 kB/s. The
generated data resulted in 54 h of speech for each test set.

We first evaluated the DoA estimation performance of the
trained DNN to return the DoA of uncompressed (high bitrate)
data. Figure 6E represent the DoA accuracy through a probability
matrix by matching the ground-truth potential DOAs to their
predicted values. It represents the probability for the target DoA.
It is computed by averaging the frequency dimension and the
number of consecutive frames within the same test set J. As
expected, the position of the target speaker varies from −90° to
+90°. The different colours show the occupation probabilities for
the target. We observe that the proposed DoA classifier shows a
high similarity between the ground-truth DoA and the predicted
labels. Accuracy is highest at relatively small azimuth angles (−45°

< DoAs < 45°); however, slightly smaller accuracy is shown for
higher azimuth orientation. Nevertheless, the DoA mismatch
corresponds approximately to the 1 range. This is due to the
mapping function between the input features vector and output
angles, which is expected as an arcsin whose gradient f′(sin θ̂) �
1

cos θ̂
approaches infinite when θ is large, resulting in a very sharp
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function that is quite hard for the DNN to fit. So the mapping
function f will deviate from arcsin at a large azimuth and result in
considerable bias estimations over 75°.

To study the effect of bitrate on DoA estimation, we use the
encoded data from the PyAWNeS test set to plot the probability
matrix for bitrates [8, 16.4, 32, 160] kB/s, figuring respectively in
Figures 6A–D. Considering the generic system of Figure 1A, the
test set is constructed where similar bitrates are chosen for both

channels. We can notice a remarkable deviation of the estimated
DoAs from the bisector proving a considerable degradation when
the number of available bits for encoding the data is decreasing,
especially at high DoAs.

To visualize the impact of the codec’s type and the used bitrate
on DoA estimation performance, we analyze the absolute angular
error over all potential DoAs and we take the model performance
over test data without compression as our baseline accuracy.

FIGURE 6 | The localization accuracy of the DNNs: Similarity between Ground-truth DoAs (deg) and Predicted DoAs (deg) ranging from −90° to +90° when tested
over: (A–D) PyAWNeS test set at various bitrates [8, 16.4, 32, 160] kB/s and (E) over test set without compression (No compression).

FIGURE 7 | Absolute Error versus increasing bitrate when employing different codecs performed by the model trained without compression (w/o codec) on a test
set including similarly encoded signals. The green triangle in each boxplot shows the MAE (deg).
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Figure 7 illustrates the performance of the DoA estimator with a
boxplot of absolute angular error, as a function of the bitrate
when the input channels are encoded using PyAWNeS, EVS,
Opus, and Lyra. We observe that the DoA estimator is relatively
robust at high bitrates and its accuracy degrades drastically only
when going below 16.4 kB/s, where the angular error increases in
comparison to the baseline estimator with uncompressed data.
This is expected as the performance with low bitrate encoding
introduces distortion in the speech characteristics and inevitably
removes useful speech information. However, at higher bitrates,
the degradation reduces to 40% relatively, and the distribution of
angular error appears to be mostly independent of the bitrate
when this latter exceeds 48 kB/s demonstrating that most of the
speech characteristics required for spatial localization are
preserved in this case. The histogram of the baseline and those
of PyAWNeS, EVS and Opus, show approximately the same error
distribution as the model trained and tested in high bitrate,
matched conditions. The quartile and median values only
slightly decrease for bitrates above 48 kB/s and stay
concentrated within 1° of angular error. This demonstrates
that the estimator is robust and consistent above 16.4 kB/s.

To better visualize the effect of the used codec’s type on the
DoA estimator, Figure 8 illustrates the degradation in relative
root mean square error (RMSE) with the different bitrate audio
inputs for our trained model by taking the angular error
performed with uncompressed data as our baseline. As our
results show, the relative RMSE increases sharply when the
bitrate decreases. We can notice that the relative RMSE for the
PyAWNeS codec is the best across all bitrates. However, both
EVS and Opus result in higher relative RMSE. For 3 kB/s, Lyra
results in high degradation, showing a relative RMSE
exceeding 40°.

To better understand this achievement, we also visualize the
spectrum of an audio uncompressed example with various
bitrates per channel, its corresponding frequency-slided CPS
input feature, and the resulting TDoA between the two
encoded channels for PyAWNeS codec in Figure 9. As can be

seen, the frequency-slided CPS still involves the TDoA
information between the two encoded channels over
approximately all sub-bands [0, 31] for a bitrate up to 32 kB/s,
which will make the performance of our DNN as efficient as for
the uncompressed data. However, the CPS input feature loses its
TDoA information for a lower bitrate. Hence, the localization
information loss, especially at higher frequencies, is clear in both
16.4 kB/s and 8 kB/s encoding. Only lower frequencies over the
first 7 sub-bands show the high peaks centered around the
localization information. Similarly to the PyAWNeS
spectrogram, we show this degradation in Figure 10 with the
similar input and the same segment when using Opus. For a
32 kB/s, we notice many sidelobs in the frequency-slided CPS,
resulting in a localization information loss over sub-bands.
Moreover, as can be seen, that depending on the requested
bitrate, the bandwidth can vary from narrowband (NB) to
fullband (FB). In fact for the lowest bitrate of 8 kB/s, Opus
encoding has no information above 4 kHz (NB), resulting in
the highest peak centered around 0 (sample). There are also some
aliasing artifacts apparent in the low frequencies, which causes
the localization information inaccuracy. Similar to Opus,
Figure 11 shows that even for high bitrates starting from
128 kB/s, introduced distortion in the EVS-coded spectrum
results int high sidelobs in the input frequency-slided CPS
feature even if we enabled EVS-SWB to encode up to 16 kHz.
For 3 kHz, Lyra shows Figure 12 introduced distortion in the
coded spectrum resulting in high sidelobs in the input frequency-
slided CPS feature, which causes a localization information loss
over almost all sub-bands.

5.3 Performance With Low Bitrate Training
In our second experiment, we wanted to explore if the
degradation can be compensated by matching the training
data with the test data. For this purpose, we did two different
sets of experiments: First, we train individual two encoded
channel models for low bitrate encoding at 8 and 16.4 kB/s.
Then we analyzed to see if we can compensate for the

FIGURE 8 | Relative RMSE (deg) versus an increasing bitrate (KB/s) performed by the model trained without compression (w/o codec) on a test set including
similarly encoded signals.
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degradation. Based on the first experiment, we employ the
PyAWNeS codec to generate the train set as it outperforms
Opus and EVS at a low bitrate.

Second, we trained a model with mixed bitrates. For each
training example, we picked an encoding bitrate from the set
[16.4, 32, 128] kB/s. For a fair comparison, the same number of
training examples is used for training the mixed bitrate model
and the low bitrate model.

Table 2 shows the results when the model is trained with a low
bitrate PyAWNeS codec. For a better comparisionwe also report our

results from Section 5.2, evaluating the model trained without a
codec on different test sets under various codecs’ conditions:
PyAWNeS, Opus, and EVS at [8, 16.4] kB/s, and Lyra at 3 kB/s.
For the baseline model trained without codec, performance worsens
as the bitrate decreases since lower bitrates imply more lossy
encoding. As expected, the training with a matched bitrate makes
the performance under seen (PyAWNeS) and unseen codecs (EVS
andOpus) close to not using any codec, even at low bitrates. For EVS
8 kB/s, training with the codec at 16.4 kB/s improvesMSR by almost
35%. However, this improvement is only up to 9.5% when training

FIGURE 9 | 1st row: Spectrograms for one uncompressed test utterance channel and its PyAWNeS-encoded versions at various bitrates [8, 16.4, 32, 160] kB/s.
2nd row: Frequency-slided CPS input feature computed between two segments of the encoded channels. 3rd row: argument of the maximum of CPS in each frequency
band corresponding to the delay (samples) between the two channels.

FIGURE 10 | 1st row: Spectrograms for one uncompressed test utterance channel and its Opus-encoded versions at various bitrates [160, 32, 16.4, 8] kB/s. 2nd

row: Frequency-slided CPS input feature computed between two segments of the encoded channels. 3rd row: argument of themaximumof CPS in each frequency band
corresponding to the delay (samples) between the two channels.
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with a codec at 8 kB/s. In fact, it is shown that the degradation with
the 8 kB/s is attributed to the loss of delay information in encoding
that cannot be recovered by matching the test data with the 8 kB/
s-trained model, which cannot see critical information for high
frequencies during training and hence cannot recover the errors.
Moreover, performance is much worse with the unmatched bitrate
condition using the Lyra codec for which degradation could not be
recovered. It is interesting to note, however, that the model trained
with the 16.4 kB/s codec can perform better than the baseline
matched trained model with the smallest RMSE 1.57° and highest
accuracy of 99%.

The mixed bitrate model can not recover the degradation for
all the different bitrate encodings we studied. For 16.4 kB/s, it is
not as good as the matched training and is lower than the
baseline.

5.4 Distributing Varying Bitrate Among the
Two Channels
Previous experiments mainly focused on the condition of an
equal bitrate for the two channels, so for the third part of this
study, we wanted to find out if our two encoded-channel model

FIGURE 11 | 1st row: Spectrograms for one uncompressed test utterance channel and its EVS-encoded versions at various bitrates [8, 16.4, 32, 128] kB/s. 2nd

row: Frequency-slided CPS input feature computed between two segments of the encoded channels. 3rd row: argument of themaximumof CPS in each frequency band
corresponding to the delay (samples) between the two channels.

FIGURE 12 | 1st row: Spectrograms for one uncompressed test utterance channel and its Lyra-encoded versions at very low bitrate 3 kB/s. 2nd row: Frequency-
slided CPS input feature computed between two segments of the encoded channels. 3rd row: argument of the maximum of CPS in each frequency band corresponding
to the delay (samples) between the two channels.
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trained without a codec can work well on the condition of a
different bitrate based on the fact that the generic systemmodel in
Figure 1B is a specific case of Figure 1A, where the
uncompressed channel could be simulated as a high bitrate
encoded channel.

For this experiment, to simulate a test set for Figure 1B, we fix
the input to one of the channels to be the uncompressed audio
and vary the bitrate of the second channel.

In Table 3, we display RMSE and MSR performed by the
baseline model without a codec (w/o codec) and the model
trained with PyAWNeS at 16.4 kB/s (w/PyAWNeS@16.4) for
different used codecs at different bitrates. It is interesting to
note that for the model trained with 16.4 kB/s, the
performance is better than the baseline matched trained

model and can recover up to 100% of degradation in the
case of the PyAWNeS and Opus 16.4 kB/s test sets.

Wemention that even an internal delay introduced by codecs
is already compensated for, and the EVS-encoded signals are
still shifted by 21(samples), experimentally measured using a
cross-correlation-based method. As we are considering both an
uncompressed and coded mixture for this experiment, we
manage to compensate for this delay in the test set so that
the input ITD feature could be correctly computed for the
model. This internal delay is independent of the bitrate and
that is why its effect is not considered when both channels are
encoded. On the other hand, some scale is noticed when
decreasing the bitrate for all codecs. This will not affect the
estimation when we similarly encode both channels, but it
modifies the ILD input feature then biases the DoA
estimation when these latter are encoded differently. In the
experiment, we find that as expected, location information on
the low bitrate 8 kB/s is often missed, which causes a large
decrease.

To compare the two generic systems, we display the relative
RMSE degradation performed by w/PyAWNeS@16.4 in
Figures 13–16 presenting, respectively, the impact of
PyAWNeS, Opus, EVS, and Lyra codecs at different bitrates
when applied to one of the two channels and when the two
channels are encoded. The angular error performed by the
model with uncompressed audio for both channels is taken as
our baseline. These results show that having one channel
encoded with the highest bit rate is beneficial over encoding
the two channels similarly. This demonstrates that the trained
model performs better when there is at least one channel with
no degradation rather than both channels having some
degradation, even when the bitrate is as low as 32 kB/s. In
fact, performance is better when the bitrate of one channel is
greater than 32 kB/s as long as we retain a high bitrate on the
other channel. However, when the bitrate for one channel gets
as low as 16.4 kB/s, its is preferable to have two encoded
channels, especially for both EVS and PyAWNeS. A similar
achievement is also noticed at 3 kB/s when using Lyra.

TABLE 2 | Performance in terms of RMSE (◦) and MSR% in seen and unseen codecs conditions using the model serving as baseline trained without codec (w/o codec) and
models trained with PyAWNeS at 16.4, 8 kB/s and mixed bitrate repectively named as (w/PyAWNeS@16.4), (w/PyAWNeS@8), (w/PyAWNeS@mixed).

Train set

w/PyAWNeS w/o codec

Test set Bitrate (kB/s) @8 @16.4 @mixed -

per channel RMSE MSR RMSE MSR RMSE MSR RMSE MSR

No codec - 3.43 87.38 1.57 99.09 2.97 90.09 2.45 94.59
PyAWNeS 16.4 3.72 85.13 2.46 94.14 3.52 85.13 3.22 86.93

8 4.36 77.47 3.74 81.53 4.32 77.02 4.42 76.12
EVS 16.4 4.46 81.53 3.39 92.79 3.83 82.43 4.05 86.03

8 4.72 77.47 4.25 82.43 4.60 75.67 4.66 75.67
Opus 16.4 4.08 86.48 2.76 95.04 3.49 86.93 3.52 89.63

8 4.67 81.0 4.02 84.23 4.44 81.53 4.59 80.63
Lyra 3 5.42 66.66 5.19 67.11 5.40 67.56 5.66 63.51

TABLE 3 | Performance in terms of RMSE (◦) and MSR% in seen and unseen
codecs conditions using the model serving as baseline trained without
compression (w/o codec) and models trained with PyAWNeS at
16.4 (w/PyAWNeS@16.4).

Test set Train set

Ch1 Ch2 w/PyAWNeS@16.4 w/o codec

codec (kB/s) RMSE MSR RMSE MSR

No codec - 1.57 99.09 2.45 94.59
PyAWNeS 160 1.71 97.29 2.45 94.59

64 1.61 97.74 2.50 93.69
32 1.71 97.29 2.68 93.69
16.4 2.46 95.94 3.25 87.83
8 5.87 54.95 3.25 54.05

No codec EVS 128 1.66 98.64 2.60 93.24
64 2.07 98.64 2.76 93.69
32 2.31 96.84 3.07 89.63
16.4 3.79 83.78 4.12 80.18
8 4.88 71.62 5.22 72.97

Opus 160 1.91 97.74 2.69 92.79
64 1.96 97.29 2.75 93.69
32 2.02 97.29 2.82 93.69
16.4 2.22 95.94 2.99 91.44
8 3.32 90.09 3.94 83.33

Lyra 3 6.60 54.5 6.89 48.19
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5.5 Varying Codecs for the Two Channels
With an Equal Bitrate
As it was proven that a trained (w/PyAWNeS@16.4) model
could overcome degradation at a low bitrate, then it could be
beneficial for challenging the condition where we have a
variance in codecs among the two channels with a similar
fixed bitrate of 16.4 kB/s. For this experiment, we generate
different test sets in which we select different codecs for the
two channels. To investigate the variance of the codecs’ impact,
we consider matching the condition where the two channels
are encoded with PyAWNeS as our baseline. Our results are
shown in Table 4. The model is not as good as the baseline
matched training. The degradation can be attributed to the loss
of information in encoding in the second channel when using
EVS or Opus. This degradation is more pronounced when the
two channels are different from the training set, with more
than 25% misclassified estimation. It’s interesting to note that
even if we employ PyAWNeS for one of the two channels, the
model is still more efficient when the two channels are encoded
similarly. We see a 38% degradation in RMSE when the audio
inputs are similarly encoded with EVS at 16.4 kB/s (Table 2)
versus 46 % and 100% when one of the channels is encoded
with PyAWNeS, and Opus respectively (Table 4). This can be
explained by the mismatch in the training and test data. This
degradation can be recovered if the training sample presented
to the model (w/Random@16.4) are encoded with a randomly

FIGURE 13 | Relative RMSE degradation for a varying bitrate performed
for the two models: 1) Single encoded-channel model where one of the
channels is without compression and the second is encoded with Opus. 2)
The two encoded-channel model where the two inputs are encoded
similarly with Opus at a varying bitrate.

FIGURE 14 | Relative RMSE degradation for a varying bitrate performed
for the two models: 1) Single encoded-channel model where one of the
channels is without compression and the second is encoded with EVS and the
internal delay has been compensated. 2) The two encoded-channel
model where the two inputs are encoded similarly with EVS at a varying bitrate.

FIGURE 15 | Relative RMSE degradation for a varying bitrate performed
for the two models: 1) Single encoded-channel model where one of the
channels is without compression and the second is encoded with PyAWNeS.
2) The two encoded-channel model where the two inputs are encoded
similarly with PyAWNeS at a varying bitrate.

Frontiers in Signal Processing | www.frontiersin.org March 2022 | Volume 2 | Article 80000312

Mansali et al. Speech Localization at Low Bitrates

https://www.frontiersin.org/journals/signal-processing
www.frontiersin.org
https://www.frontiersin.org/journals/signal-processing#articles


selected codec at 16.4 kB/s. A more accurate estimation could
be noticed when at least one of the two channels are encoded
with PyAWNeS.

6 CONCLUSION AND OUTLOOK

The current study investigated the effect of speech compression
on a DNN-based DoA classifier model. We analyzed the
degradation of a target DoA estimation as a function of
bitrates available for the input audio. The experiments
included different types of codecs. It was intuitively expected
that at lower bit rates the distortion is higher, leading to the
removal of some information about speaker location, and to a
lower DoA accuracy. In contrast, codecs with higher bit rates
introduce less distortion and therefore could be expected to
provide higher DoA accuracy. As the spectral information has
a high impact on the performance of our DoA classifier, it was
demonstrated that PyAWNeS is more suitable than EVS and
Opus to train the model at a low bitrate as it preserves location
information better. We also showed that training the DoA
classifier with PyAWNeS at 16.4 kB/s can outperform the raw
data-based model and recover degradation for the two similarly
encoded channels. We further demonstrated that for almost all
codecs, when limited bandwidth is available, a two encoded-
channel input over a single channel input scenario is preferable.
However, for the best performance, it is optimal to encode one
channel with the highest bitrate, given raw data for the second
channel. This achievement opens up another experiment where
different devices may not support the same codec. For that, a
trained model on a randomly selected codec for both channels at
16.4 kB/s likely approves previous results by highlighting higher
accuracy gain when at least one of the two channels are encoded
with PyAWNeS. This can be especially useful with a multi-
channel scenario so that the model can leverage the optimal
devices’ selection for the localization task. Our results thus
demonstrate that while coding does degrade DoA
performance, with a suitable choice of codec and training of
the DoA-estimator, the reduction in accuracy remains reasonable.
DoA estimation is thus viable also for encoded signals.
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