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Imagined speech can be used to send commands without any muscle movement or
emitting audio. The current status of research is in the early stage, and there is a shortage
of open-access datasets for imagined speech analysis. We have proposed an openly
accessible electroencephalograph (EEG) dataset for six imagined words in this work. We
have selected six phonetically distributed, monosyllabic, and emotionally neutral words
from W-22 CID word lists. The phonetic distribution of words consisted of the different
places of consonants’ articulation and different positions of tongue advancement for vowel
pronunciation. The selected words were “could,” “yard,” “give,” “him,” “there,” and “toe.”
The experiment was performed over 15 subjects who performed the overt and imagined
speech task for the displayed word. Each word was presented 50 times in random order.
EEG signals were recorded during the experiment using a 64-channel EEG acquisition
system with a sampling rate of 2,048 Hz. A preliminary analysis of the recorded data is
presented by performing the classification of EEGs corresponding to the imagined words.
The achieved accuracy is above the chance level for all subjects, which suggests that the
recorded EEGs contain distinctive information about the imagined words.
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INTRODUCTION

Speech communication is the most natural way of exchanging information between humans.
However, disorders like amyotrophic lateral sclerosis (ALS), muscular dystrophies, brainstem
stroke, etc. can disrupt the neuromuscular channels to perform regular communication. It is
also required to transfer verbal information without making any sounds, for instance, in the
military situation (Pei et al., 2012). In such cases, information transfer using imagined speech is a
desirable solution (García et al., 2012). Imagined speech is the thinking of speech prompts
(phonemes, vowels, words, etc.) without any auditory stimulation and tongue, lips, or hand
movement (Martin et al., 2014). Decoding imagined speech by using electroencephalography
(EEG) is still in its infancy. However, there is vast excitement to use the electrophysiological
method to decode imagined speech. Imagined speech can establish a brain–computer interface (BCI)
system, which can decode the brain activities during imagined speech into respective commands. A
BCI system consists of three major components: 1) signal acquisition, 2) signal decoding (which
include feature extraction and translation), and 3) device output. A variety of methods for brain
activity acquisition might be used in the BCI. These include EEG electrocorticography (ECoG),
magnetoencephalography (MEG), positron emission tomography (PET), functional magnetic
resonance imaging (fMRI), and optical imaging. However, ECoG, MEG, PET, fMRI, and optical
imaging are either highly expensive or immobile, which makes them difficult for general uses
(Wolpawa et al., 2002). EEG is noninvasive, is portable, is relatively cheaper, and has high time
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resolution. EEG devices provide a noninvasive mechanism for
measuring electrical signals transmitted near the surface of
the brain.

In recent years, several studies have addressed the imagined
speech recognition problem for establishing the BCI using EEG
(Deng et al., 2010; Pei et al., 2011; Martin et al., 2016; Min et al.,
2016; Hashim et al., 2018). Although the results were
encouraging, the degree of freedom and the accuracy of
current methods are not yet sufficient to enable fluid
communication between humans and machines. For a BCI
system, degrees of freedom define the number of output
classes allowed to vary. An efficient BCI system requires a
good tradeoff between the degree of freedom and accuracy.
Several studies were performed to classify EEG corresponding
to five imagined vowels (Matsumoto and Hori, 2013, 2014; Riaz
et al., 2015; Aguila et al., 2017; Sree and Kavitha, 2017; Morooka
et al., 2018; Cooney et al., 2019; Ghosh et al., 2019) and reported
that imagination of vowel’s articulation could modulate the brain
activities. However, the research is still lagging in the multiclass
classification of words considering the imagined speech. One of
the possible reasons behind fewer studies in imagined word
classification is the shortage of open-access datasets for
imagined words. García et al. (2012) recorded EEG data for
five Spanish language words, i.e., “arriba,” “abajo,” “izquierda,”
“derecha,” and “seleccionar” equivalent to “up,” “down,” “left,”
“right,” and “select.” The pronunciation of each word was
repeated 33 times in succession during the EEG recording.
Still, a maximum accuracy of 65.5% was obtained to classify 5
words (García-Salinas et al., 2019). Pawar and Dhage (2020)
classified words corresponding to four directions, i.e., “left,”
“right,” “up,” and “down,” and achieved 49.77% classification
accuracy using wavelet-based features. However, the dataset used
in the above studies is not openly accessible, so testing of new
signal decoding techniques is not possible over these datasets.

An open-access dataset proposed by Zhao and Rudzicz (2015)
consisted of seven syllables/phonemes (“iy,” “uw,” “piy,” “tiy,”
“diy,” /m/, /n/) and four phonologically similar words (i.e., pat,
pot, knew, and gnaw). They recorded data from 12 subjects using
a 62-channel data acquisition system. However, no one has
reported classifying four imagined words using the presented
dataset in our knowledge. Another open-access imagined speech
EEG dataset consisted the 16 English phonemes and 16 Chinese
syllables (Wellington and Clayton, 2019). The dataset was
recorded using a 14-channel EEG data acquisition system
from 21 English-speaking and two Chinese-speaking
participants. Though humans mostly think in the form of
words, decoding brain signals corresponding to the imagined
words is required to understand human thoughts. For developing
and testing the algorithms for decoding the imagined words, the
primary requirement is the dataset containing the EEG signals
corresponding to the imagined words. The dataset collected by
researchers is recorded for some specific purposes. Nguyen et al.
(2018) provided an imagined word dataset to understand the
imagined word length effect over brain activities. The dataset
consisted of three short words, two long words, and three
imagined vowels. The dataset was recorded from six–six
subjects for short and long imagined words while collecting

data from eight subjects for imagined vowels. An EEG dataset
with four direction-based Spanish words, i.e., “arriba,” “abajo,”
“derecha,” “izquierda” (i.e., “up,” “down,” “right,” “left,”
respectively) was recorded by Nieto et al. (2021) from 10
subjects. This dataset aimed to develop an imagined word
database that can decode the direction of movement. However,
the trials for all subjects were varied as few subjects left the
experiment in the middle due to willingness and tiredness.
Another dataset for six Spanish imagined words representing
different directions (“arriba,” “abajo,” “izquierda,” “derecha,”
“adelante,” and “atras”) was recorded from 15 subjects
(Coretto et al., 2017). Coretto et al.’s dataset was recorded
from six EEG channels (F3, F4, C3, C4, P3, and P4). It
showed the distinctive information corresponding to the
imagined words by classification accuracy of 18.61% using
wavelet-based features, which was above the chance level.
However, the dataset was not acquired from the whole brain
regions, which could cause missing some important EEG
activities from different brain areas.

The aforementioned works have indicated that the research
fraternity required more open-access databases to explore the
distinctive features in multiclass imagined speech signals. There
are two important parameters observed to keep in mind during
EEG data collection for imagined speech: brain region selection
for acquiring EEG signals and selection of imagined speech
prompts. It is well accepted that Wernicke’s area and Broca’s
area play significant roles in speech production. However, several
studies reveal that other brain regions also activate during speech
production (Blank et al., 2002). Zhao and Rudzicz (2015) show
that features extracted from EEGs acquired from different brain
areas (left and right temporal regions, auditory cortex, and left
middle central cortex) contain speech-related features. Another
study performed by Torres-García et al. (2013) found that when a
person imagines the pronunciation of a word, he/she internally
“hears” the word that is observed from the data collected from the
auditory cortex. It suggests that data collection from multiple
brain regions will be helpful to extract the distinctive features
related to speech prompts.

The changes in imagined speech prompt vary the
corresponding brain activities. It may happen due to various
reasons like change in the length of speech prompt, emotion
attached with the speech prompt, and the commands generated
to pronounce the word in imagination (or overtly in case of overt
speech) composed of different phonemes. It can be said that the
phonological structure of the word is highly responsible for the
change in brain activities. Several studies have been performed
using different types of speech prompts, e.g., response for a
question in (Yes/No) (Halder et al., 2010), the direction of
movement (García et al., 2012; Coretto et al., 2017; Pawar and
Dhage, 2020), word length (Nguyen et al., 2018), words used in
daily needs (Mohanchandra and Saha, 2016), etc. It is observed
that no study is performed for the imagined words with different
phonological structures. On the other hand, the phonetic
difference in the words may lead into the activation of brain
activities in distinctive manners (Bakhshali et al., 2020; Cooney
et al., 2019) and help us to understand the brain activity pattern
corresponding to different phonemes.
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The present work aims to provide an imagined words dataset
where each word consists of the phonemes with different places/
manner of articulation and height/positions of tongue
advancement. The distinctive information in the recorded EEG
is quantified by performing classification for six imagined words
using wavelet-based features proposed by Torres-García et al.
(2013) and Sereshkeh et al. (2017). The classification accuracies
obtained for the proposed dataset are compared with the baseline
obtained from the classification of another open-access dataset
given by Coretto et al. (2017) using the same feature set. The
presented study shows that phonetic differences in the imagined
words vary the brain activities effectively and can be utilized to
develop an imagined speech recognition system.

MATERIALS AND METHODS

Subjects
Fifteen healthy subjects (seven male/eight female) volunteered for
the study, and all of them were graduate and postgraduate
students of the Engineering Institute. Twelve subjects were
right-handed, and three (subjects 5, 7, and 13) were left-
handed. Subjects were aged between 20 and 35 years (with a
mean of 26.41 years and a standard deviation of 5.23 years) and
residents of different states in India. All subjects were proficient in

British English; however, everyone had different native language
(i.e., Oria, Hindi, Marathi, Kashmiri, and Malayalam). The
required demographic details and the linguistic identity of
each subject are given in Appendix B. None of the subjects
had any history of neurological disorder, and they were not
undergoing any medical treatment at the time of the
experiment. Subjects gave their informed consent before
participating in the experiment.

Experiment Paradigm
The subjects were comfortably seated in a reclining armchair in
the dimly lit recording room. Subjects were instructed to perform
overt and imagined speech tasks for a displayed word on the
screen. The experiment was started with the cue displayed on a
computer screen, followed by a fixation time, overt speech time
window, another fixation time, imagined speech time window,
and feedback window, as shown in Figure 1. Both fixation times
were represented by the “+” sign display on the screen, while the
screen kept blank for the duration of overt and imagined speech
production. The timings for word display, overt speech
production, and imagined speech production events were 2 s,
and the fixation duration was 1 s. Subjects have to speak the
displayed word loudly after the first fixation time. Then they have
to imagine the pronunciation of a word (imagined speech task)
after displaying the second fixation time. Subjects had to perform
overt and imagined speech tasks in the given time window of
2–2 s. The subjects themselves did a self-assessment of
performing correct/incorrect trials after performing the
imagined speech task. If the subjects felt that they had
performed both overt and imagined speech tasks properly in
the given time frame, they were asked to press the numeral key
“1”; otherwise, they pressed “2.” The total duration for one trial
was around 9 s. All trials were separated by each other by a
duration of 1 s. A total of 50 trials for each word were recorded in
five sessions of approximately 10-10 min, resulting in a total of
300 trials per subject. The subjects were allowed to take rest and
recover from the tiredness in between the sessions.

Subjects were asked about their physical and emotional
wellness before starting the experiment. The subjects were
asked to avoid eye blinks during overt and imagined speech
production. However, they were not forced to keep their eyes
open if they felt stressed during the trial. A training session of 20
trials was performed before starting the experiment. However,
each trial’s overt speech production helped the subject observe the

FIGURE 1 | Paradigm for the experiment.

TABLE 1 | Phonetic transcription, place of articulation of consonants, and advancement in pronunciation of vowels in selected words.

Simply
recognizable
words

Phonetic
transcription

Place of articulation Advancement in pronunciation

Bilabial Labio-
dental

Dental Alveolar Postal-
veolar

Palatal Velar Glottal Front Near
front

Central Near
back

Back

Could /kʊd/ — — — 1 (d) — — 1 (k) — — — — 1(ʊ) —

Yard /jɑː(r)d/ — — — 2 (r, d) — 1 (j) — — — — — — 1 (ɑ )
Give /ɡɪv/ — 1 (v) — — — 1 (g) — — 1(ɪ) — — —

Him /hɪm/ 1 (m) — — — — — 1 (h) — 1(ɪ) — — —

There /ðeə(r)/ — — 1 (ð) 1 (r) — — — 1(e) — 1(ə) — —

Toe /təʊ/ — — 1 (t) — — — — — — 1(ə) 1(ʊ) —
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speech production process of the presented word. They were
asked to think the same process without creating any sound.

Selection of Words
The selection of the words was performed in a way; the imagined
word dataset should be used later to test the ability of the
imagined speech recognition technique. For such purpose,
words were selected from the CID W-22 word lists. CID W-
22 word lists were administered by Hosford-dunn and Runge
(2016) under the hypothesis that judiciously chosen words can
test the word recognition ability of the human auditory system

without compromising test accuracy. CID W-22 consists of four-
word lists (“List 1,” “List 2,” “List 3,” and “List 4”) of 50
monosyllabic words arranged in the order of recognition
difficulty. Word selection was made from the first fifteen
words of “List 1,” which were reported with a lower difficulty
level in understanding by the human audiotory system. Words
were selected with two major constraints: 1) There must be the
phonetic difference in consonants that appeared in words based
on the places and manner of articulations. 2) Different vowels
should appear in words that require different heights and
advancements of tongue position in pronunciation. The word

TABLE 2 | Manner of articulation and tongue height in the pronunciation of vowels in selected words.

Simply
recognizable
words

Phonetic
transcription

Manner of articulation Tongue Height

Plosive Nasal Trill Tap Fricative Lateral
Fricative

Appro-
ximent

Lateral
Appro-
ximent

Close Mid Open

Could /kʊd/ 1 (d), 1 (k) — — — — — — — — — 1(ʊ)
Yard /jɑː(r)d/ 2 (d) — 1 (r) — — — 1 (j) — — — 1 (ɑ )
Give /ɡɪv/ 1 (g) — — — 1 (v) — — — 1(ɪ) — —

Him /hɪm/ — 1 (m) — — 1 (h) — — — 1(ɪ) — —

There /ðeə(r)/ — — 1 (r) — 1 (ð) — — — 1(e) 1(ə) —

Toe /təʊ/ 1 (t) — — — — — — — — 1(ə) 1(ʊ)

FIGURE 2 | Electrode placement over the scalp and experimental setup. The subject is looking at a monitor from a two-feet distance. The monitor displayed the
word and task to be performed. In this illustrative figure, the subject was imagining the pronunciation after the word’s display. The monitor was blank during imagined
speech task.

TABLE 3 | Number of trials selected from all subjects for analysis of EEG data with bad channels.

Subject Id S01 S02 S03 S04 S05 S06 S07 S08 S09 S10 S11 S12 S13 S14 S15

Bad channel — — — — P2 P2 POz, P2 — P2, PO4 — — —- — P2, PO4 —

Total Trials (300) 281 294 275 278 282 274 282 283 286 287 287 276 296 291 280
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length was controlled based on the number of syllables per word
(Grzybek, 2015). All selected words were monosyllabic and
emotionally neutral. The selected six words for the experiment
were “could,” “yard,” “give,” “him,” “there,” and “toe.” The
phonetic transcription, place of articulation of consonants, and
advancement in the pronunciation of vowels in selected words are
presented in Table 1 and the manner of articulation with tongue
height is presented in Table 2.

EEG Recording
A 64-channel BioSemi ActiveTwo system with active Ag/AgCl
electrodes with CMS and DRL as the ground was used to record
EEG at a sampling rate of 2,048 Hz with a 24-bit analog-to-digital
converter. BioSemi head cap (according to the subject’s head size) was
used to position the 64 EEG electrodes on the scalp according to the
international 10–20 system as shown in Figure 2. All electrodes were
referenced to none (Biosemi, 2013). The impedance for all electrode
sites was kept at less than 10 kΩ. All the required instructions, tasks,
and triggers to the BioSemi were provided through the E-Prime 2.0
software. Trigger information for the start and endpoint of overt and
imagined speech tasks with the information of data structure is
presented in Supplementary Appendix SA.

Signals were visually inspected during the recordings. Trials
consisting of the muscles and other artifacts were marked for

rejection, and the experiment was paused until the EEG stabilized.
Trials in which the subject did not perform the given tasks properly
were discarded based on feedback given by the subjects in each
trial. After rejecting inappropriate trials, the total number of trials
selected for analysis per subject is shown in Table 3 and Figure 2.

Pre-processing
The recorded signal was spatially re-referenced using a common
average reference (CAR) montage. The raw EEG signal from each
electrode was filtered using a zero-phase band-pass filter with a
cutoff frequency of 0.01–250 Hz to remove low-frequency trends
and high-frequency noises. A finite-impulse-response (FIR)
notch filter in the range of 48–52 Hz with zero phase (forward
and inverse) was used to remove the 50-Hz line noise harmonic.
The eye blinks artifacts were removed using independent
component analysis (Jung et al., 2000). Then, recorded data of
each stimulus type were epoched into trials from 0 to +1 s
centered on the stimulus onset.

EEG ANALYSIS

Event-related potentials (ERPs) were visualized by normalizing
the EEGs using the subject’s prestimulus standard deviation

FIGURE 3 | Brain activity during the imagined words (A) could, (B) yard, (C) give, (D) him, (E) there, and (F) toe. Black boxes represent the early positive deflection
in the left temporal region, which represents the speech comprehension. Red boxes represent the higher positive deflection at the right temporal region during imagined
speech production where gray boxes represent corresponding negative deflection in the EEG amplitude.
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during all epochs. Then grand average ERPs were obtained for all
spoken and imagined words. Since there is no clear standard for
understanding the EEG acquired for imagined words, the change
in EEG potential and cortical depth was observed in early
duration (Figure 3). It indicated the early positive deflection
in the left temporal region [channels 6–9 (F5, F7, FT7, FC5) and
15, 16 (T7, TP7)] for all imagined words from 0 to 150 m, the
possible duration for word preparation. Another differentiable
amplitude during 200–500 m of the stimuli onset was observed in
both temporal regions. ERPs show that the left temporal lobe
elicited negative potential just after the speech preparation, while
the right temporal region [channels 51–54 (C6, T8, TP8, CP6)
and 42, 43 (F8, FT8)] shows opposite positive potential during
imagined word production. For further exploration of the
dominating frequency band in EEG with change in imagined
words is also observed. Figure 4 shows the time-frequency
analysis of EEG obtained through channels F5, T7, Tp7, and T8.

Time-frequency representation shows a large deflection in
beta frequencies during 0–200 m and around 500 m of the event
onset. For the remaining duration, differentiable changes in
gamma frequency powers can be observed. The TFR supports
the results of a previous study performed by Manca and
Grimaldi (2016). The study suggests a remarkable
correspondence between average durations of speech units
and the frequency ranges of cortical oscillations. Phonetic
features (mean duration of 20–50 m) of imagined prompts
are associated with high gamma (>40 Hz) and beta

(15–30 Hz) oscillations. The change in beta- and gamma-
band amplitude in the whole-brain region was also observed
using topographic plots, as shown in Figure 5.

The most activated brain regions for change in imagined words
were the left/right superior temporal gyrus, Wernickes’ area (left
posterior superior temporal gyrus), and the posterior frontal lobe.
The interesting fact was that the change in brain activities was
observed in both hemispheres’ temporal lobes, which could be
possibly due to the reason such as when people imagine the
pronunciation of a word, they “hear” that word internally.
ANOVA test was conducted between the average left temporal
region’s ERPs (consisting ofWernicke’s area) of all six words, which
were not statistically significant (p = 0.231). Pairwise t-tests were
performed along with the word pairs. The ERPs for word pairs
“could” and “there” (p = 0.004), “toe” and “him” (p = 0.007), “Yard”
and “Could” (p= 0.011), “him” and “yard” (p= 0.029), and “toe” and
“give” (p = 0.014) were significantly different. The rest of the other
word pairs did not show significant differences in the left temporal
region’s ERPs. Similarly, for the right temporal region’s ERP, the
ANOVA test for six words was not statistically significant (p =
0.389). Pairwise t-tests were again performed along with the word
pairs. The ERPs for word pairs “could” and “there” (p = 0.008), “toe”
and “him” (p = 0.013), “yard” and “could” (p = 0.001), and “toe” and
“give” (p = 0.004) were significantly different. Other brain regions
have also displayed the marginal change in EEG amplitude for
different words. Therefore, the features extracted from all channels
were utilized for the classification of imagined different words.

FIGURE 4 | Time-frequency representations (TFRs) of averaged EEG signals for six words (A) Could, (B) Yard, (C) Give, (D) Him, (E) There, and (F) Toe acquired
from subject ID 2. The TFRs are plotted for the first 1 s after stimulus onset and for the frequency range of 0–100 Hz. TFRs show high activation during 0–200 ms and
around 500 ms in the left temporal region aroundWernicke’s area (T7, TP7). Maximum variation in amplitude for different words can be observed in the beta and gamma
bands in both temporal regions and Broca’s area (F5).
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CLASSIFICATION PERFORMANCE

Feature Extraction
The classification of recorded data is performed using the features
extracted using a discrete wavelet transform (DWT) suggested by
Coretto et al. (2017), Sereshkeh et al. (2017), and Panachakel et al.
(2020). The wavelet transform decomposes a signal using a set of
functions called wavelets, which are scaled and shifted versions of
another function named mother wavelet ψ(t). The DWT of a
time-domain signal f(t) can be written as Eq. 1.

DWTψ(j, k) � ∫
∞

−∞
f(t)ψp

j,k(t)dt (1)

where j, k ∈ R are scale and shifting factors, respectively. The
signal can be recovered using an inverse wavelet transform, which
can be obtained using Eq. 2:

f(t) � 1
C
∫
∞

−∞
∫
∞

−∞
ψp
j,k(t)DWTψ(j, k)dj dk (2)

where

C � ∫
∞

−∞

∣∣∣∣ψ(ω)∣∣∣∣2
|ω| dω

The recorded signals were downsampled to 512 Hz and
decomposed using the Daubechies-4 (db4) mother wavelet
(Popov et al., 2018) to the eight levels corresponding to the

following frequency bands: 128–256 (D1), 64–128 (D2), 32–64
(D3, γ), 16–32 (D4, β), 8–16 (D5, α), 4–8 (D6, θ), 2–4 (D7,δ), and
<2 (A7). The root mean square (RMS), standard deviation (SD),
and relative wavelet energy (RWE) were calculated for D3, D4,
D5, D6, and D7 bands and used as features. RWE was calculated
by taking the ratio of the energy of a single decomposition level to
the total energy of a segment using Eq. 3.

RWEi � Ei

Et
;with i � 3: 7 (3)

where Ex � ∑
k
|Dx(k)|2

There are five bands per EEG segment selected for feature
extraction. Three features (RMS, SD, and RWE) per band were
extracted, resulting in 15 features per channel and 960 features
per epoch.

Before training of classifiers using extracted features, principal
component analysis (PCA) was applied to the feature sets to
reduce dimensionality and identify the components with the
maximum variance. Dimensionality reduction is significant
when used with computationally expensive training
algorithms, such as multiclass SVM. The PCA algorithm
extracts the components from a dataset most responsible for
the variance in those data. The first principal component contains
the greatest variance, with the second containing less, and so on.
Typical approaches include retention of the first k principal
components (where k = 1, 2, 3, etc.) or retention of k number
of components such that a specified fraction of the total variance
is explained. In this case, the number of components

FIGURE 5 | Topographical distribution of (A) beta and (B) gamma band activities for different imagined words. The pattern of beta wave’s amplitude in the left
temporal region was significantly different during 0–200 m (p < 0.03 at T7) of onset. There were maximum beta and gamma activities observed for the word "toe," while
activities were minimum in amplitude for the word "him." There is a high amplitude observed in both beta and gamma waves at both temporal regions for all words from
200 to 400 m of onset.
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corresponding to 95% of the total variance has been retained for
classifier training.

Classifiers
Three different classifiers, random forest (RF) and support vector
machine (SVM), were trained using all extracted feature sets
discussed in the previous section. Details about the selected
classifiers are discussed below.

Random forest (RF): RF consists of many individual decision
trees that operate as an ensemble. Each tree in the random forest
spits out a class prediction, and the class with the most votes
becomes the model’s prediction. The random forest approach’s
fundamental principle comprises the construction of many
“simple” decision trees in the training stage and the majority
vote (mode) across them in the classification stage. Among other
benefits, this voting strategy has the effect of correcting for the
undesirable property of decision trees to overfit training data. The
number of trees in the ensemble is a free parameter that is readily
learned automatically using the so-called out-of-bag error (Chiu
and Tavella, 2008). In this work, the classifier was implemented
using the following hyper-parameters: the number of trees was
50, and the number of attributes considered at each node was
log2(number of features) + 1.

Support vector machine (SVM): SVM is very commonly used
due to its good generalization properties; it is not sensitive to
overtraining and can handle high-dimensional datasets.
Specifically, a hyperplane is used for SVM to maximize the
boundaries of each class. The fashion in which this hyperplane
makes the separation between the classes can be modified using a
kernel. The influence of a single data point training can also be
controlled in SVM, which is termed as a gamma parameter. In the
present work, a radial basis function was used for the SVM kernel,
and gamma was kept as 1.0.

RESULTS

A 5-fold cross-validation scheme was selected to ensure that
robust estimates of classification accuracy have been obtained.
The EEG epochs were randomly divided into five sets, four of
which were used for training the classifier. The other set was used
as a test set. This process is repeated through five iterations, with
each classifier’s accuracy retained to compute an average value for
the final accuracy. The classification accuracy was calculated by
the ratio of correct classification and the total number of samples.

Table 4 shows the subject-wise classification accuracies
resulting from the training of RF and SVM classifiers. The

average accuracy is more significant than chance level
accuracy (16.67% for six classes) for all subjects. The
maximum accuracy is achieved for subject 2, while the
minimum classification accuracy was achieved for subject 13.
Further analysis is performed by considering the native language
of subjects as a variable. It was observed that the imagined speech
for the subject whose first language was Marathi or Hindi was
better classifiable (>28.6%) than the subject whose first language
wasMalayalam (<27.3%). This could happen due to the change in
the accent of a subject. A confusion matrix was obtained to
understand the effect of phonological changes in the words over
the classification accuracy, as shown in Table 5. It shows that
maximum true positives were obtained for the word “yard.” It was
also observed that classification for phonologically similar words
was poorer than those with a high phonetic difference.

Pairwise classification of imagined words was also performed
to get an insight of phonologically difference/similarity effect over
classification accuracy (Table 6).

The maximum classification accuracy was observed for the
word-pair “there” and “could” (82.0%), while the minimum
accuracy of 68.63% was obtained for the word-pair “give” and
“him.” It was observed that the place of consonants’ articulation
and the position of tongue advancement in vowel pronunciation
affect the classification accuracy. The example of words “give”
and “him” shows that the similar position of tongue advancement

TABLE 4 | Subject-wise classification accuracy obtained for proposed imagined word dataset. The chance level of classification is 16.6% (six classes).

Subject ID 1 2 3 4 5 6 7 8

RF 28.33 29.26 26.54 27.19 24.19 22.83 29.04 25.16
SVM 28.74 32.57 29.08 31.01 27.58 26.03 32.32 28.69
Subject ID 9 10 11 12 13 14 15 Average
RF 28.02 24.19 24.06 22.20 23.63 21.95 22.28 25.26
SVM 31.95 27.58 25.61 28.93 25.15 26.70 27.22 28.61

TABLE 5 | Confusion matrices obtained for subject 2 after classification with SVM
classifier.

Target Class

Could Yard Give Him There Toe

Output Class Could 35.66 18.30 11.36 7.63 10.34 16.71
Yard 20.77 38.84 10.07 9.08 12.17 8.96
Give 12.90 8.63 28.92 23.21 11.29 15.16
Him 16.03 8.89 22.54 27.21 11.03 14.38
There 10.16 21.15 11.94 10.83 30.71 15.22
Toe 13.64 8.50 15.31 12.87 15.62 34.06

TABLE 6 | Average pairwise classification accuracy of selected words for
subject 2.

Yard Give Him There Toe

Could 77.1035 69.819 75.6585 82.008 71.3235
Yard 73.0405 75.6415 70.516 75.6755
Give 68.6375 74.2475 77.537
Him 75.8795 78.1745
There 71.4935
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in vowel pronunciation and the lower difference of place of
consonant’s articulation reduce brain activity changes during
imagined speech production. Another example of words
“yard” and “could” shows an accuracy of 77.10%, although the
same phoneme was involved in the word’s coda (/d/). There may
be two factors for good results: the first is the prosodic feature in
the vowel (ɑv) in the word “yard,” and the second is the change in
the manner of articulation for words’ onsets “/j/” and “/k/.”

Comparison With Another Dataset
There is no imagined word database available in literature where
the phonetic distribution of the selected words is examined for
imagined speech classification. Therefore, a comparison is made
based on the higher classification accuracy of six imagined words.
For such purpose, a dataset recorded by Coretto et al. (2017) is
considered, which consists the imagined speech dataset for five
Spanish vowels (/a/, /e/, /i/, /o/, and /u/) and six Spanish
commands \arriba,” \abajo,” \derecha,” \izquierda,” \adelante,”
and \atrás" (up, down, right, left, forward, and backward,
respectively). The presented comparison shows that word
selection for imagined speech tasks affects the accuracy of
signal classification techniques. In this dataset, the EEG signals
corresponding to channels F3, F4, C3, C4, P3, and P4 were
recorded from 15 subjects. Each subject performed the
imagined speech trials around 50 times per speech unit. The
data corresponding to imagined "words" were selected for
comparison purposes. The phonetic distribution of the words
chosen in Correto’s dataset is compared with the proposed
dataset in Supplementary Appendix SC.

Classification with selected features and the SVM classifier was
performed over Coretto’s dataset, which provided average
classification accuracy of 18.14%. Figure 6 shows the subject-wise
classification accuracy achieved for Coretto’s dataset. Maximum
accuracy was achieved for subject "10," which was about 20.85%.

The comparison of the proposed dataset with Coretto’s dataset
was performed in two cases. In the first case, the classification was
performed using the same channels (F3, F4, C3, C4, P3, and P4)
as used in Coretto’s data. Selected features provided an average
classification accuracy of 25.02%. In the second case, all the 64

channels were used for classification purposes, providing 28.61%
of classification accuracy. It suggests that other brain regions also
contain distinctive features that can help in better classification of
imagined speech.

DISCUSSION AND CONCLUSION

The objective of this work is to create an openly accessible
imagined speech EEG database for six words. We have verified
whether the proposed dataset contains distinctive features
corresponding to imagined words. All selected words were
monosyllabic and emotionally neutral. The selection of words
was made by considering the phonetic distribution among the
words. To understand the effect of phonetic distribution in word
selection, EEG analysis was performed. The grand averages of
recorded EEG signals were obtained for each imagined word. The
ERPs showed a similar pattern of brain activation for imagined
speech for all words. Our result was in line with the neural
representation discovered in the previous works.

During imagined speech production, the maximum activated
brain region was the temporal and the prefrontal region
(Wernicke’s and Broca’s area) (Martin et al., 2016). Although
early activity for imagined speech was observed in the left
temporal region when the speech comprehension process
occurs, both temporal regions were active during speech
production, which could be observed in the ERPs shown over
the cortical depth (Figure 3). It was also observed how the place
and manner of articulation of phonemes in the words change the
EEG activities across the brain. For frequency band-wise
comparisons, topographical plots for beta and gamma bands
were presented, which show how band energy varies with the
change in phonemes in the imagined words. It was observed that a
larger difference in the place of articulation of the phonemes
involved in words made a more significant change in beta and
gamma band activities. It was also observed that the ERP during
word utterance highly depends upon the vowel following a
consonant. For example, the utterance of the word "could,"
which consists of /k/ followed by /ʊ/, provides a large

FIGURE 6 | Classification accuracy obtained for Coretto’s data using selected feature set with SVM classifiers. Accuracy was lower than the chance level for
subjects five and eight, while for others, it was higher than the chance level (16.6%).
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amplitude at the beginning of EEG. Here, /k/ originates from velar,
and it is a plosive sound. However, the utterance of the word “give”
consists of /g/ followed by /I/. /g/ also originates from velar and is a
plosive sound, but the changes in EEG amplitudes depend upon the
following vowel /I/. Another difference can be observed for the
words “there” and “toe.” Here, close tongue height with front
pronunciation provides greater changes in EEG as compared to
mid and open tongue height with central tongue position.

The classification of imagined speech further explored
distinctive information in each class of imagined speech signal.
DWT-based features were obtained from the dataset, and
classification was performed, which provided above chance
level classification accuracy for all subjects. The effect of word
selection on classification accuracy is compared with an existing
dataset. Classification results show that the phonetically
distributed words contain more distinctive information as
compared to direction-based imagined words. Comparison of
both datasets was performed using similar channels’ EEG as well
as the maximum data available in both datasets. The results
showed that along with word selection, data collected from other
brain regions also displayed an effective potential change
corresponding to different imagined words and helped in
improving classification accuracy. One possible reason for the
inferior results obtained using Coretto’s data is that it consists of
multisyllabic and long words; most of the words consist of similar
phonemes, whichmay cause the inclusion of similar features in all
words. At the time of classification, all features come into account,
which decreases the classification accuracy. However, it is difficult
to obtain the exact onset/offset of imagined speech utterance, so
phoneme-wise feature extraction will also be difficult. The
proposed dataset, which consists of more variation in
phoneme occurrence, is better for classification. We believe
that the proposed dataset will facilitate and encourage the
research fraternity to develop better EEG decoding techniques

for imagined speech recognition systems. In the future, a time-
locked imagined speech dataset can be collected with user-driven
triggers. The user-driven triggers may help to identify the onset
and offset of the imagined speech event. However, such paradigm
may consist of motor movement by the user and cause for muscle
artifacts.
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