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The COVID-19 virus has irrevocably changed the world since 2020, and its incredible
infectivity and severity have sent a majority of countries into lockdown. The virus’s
incubation period can reach up to 14 days, enabling asymptomatic hosts to transmit
the virus to many others in that period without realizing it, thusmaking containment difficult.
Without actively getting tested each day, which is logistically improbable, it would be very
difficult for one to know if they had the virus during the incubation period. The objective of
this paper’s systematic review is to compile the different tools used to identify coughs and
ascertain how artificial intelligence may be used to discriminate a cough from another type
of cough. A systematic search was performed on Google Scholar, PubMed, and MIT
library search engines to identify papers relevant to cough detection, discrimination, and
epidemiology. A total of 204 papers have been compiled and reviewed and two datasets
have been discussed. Cough recording datasets such as the ESC-50 and the FSDKaggle
2018 and 2019 datasets can be used for neural networking and identifying coughs. For
cough discrimination techniques, neural networks such as k-NN, Feed Forward Neural
Network, and Random Forests are used, as well as Support Vector Machine and naive
Bayesian classifiers. Some methods propose hybrids. While there are many proposed
ideas for cough discrimination, the method best suited for detecting COVID-19 coughs
within this urgent time frame is not known. Themain contribution of this review is to compile
information on what has been researched on machine learning algorithms and its
effectiveness in diagnosing COVID-19, as well as highlight the areas of debate and
future areas for research. This review will aid future researchers in taking the best
course of action for building a machine learning algorithm to discriminate COVID-19
related coughs with great accuracy and accessibility.
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1 INTRODUCTION

This paper will review the different approaches used to discriminate between types of coughs through
the limited technology of a micro-phone from a smartphone, as well as the medical issues
surrounding coughs around the world. It will first describe a systematic method to identify
papers that are relevant to the fields of artificial intelligence, coughs, and cough discrimination,
and therefore worthy of review. The following section will discuss our step-by-step process of using
the Google Scholar, PubMed, and MIT library search engines to iden-tify relevant papers. Following
that, we will provide an overview of the field, including information on the biology of coughing, the
different types of coughs, cough recording datasets, and propose methods for cough detection and
discrimination. Then, we discuss the research done on COVID-19 related cough discrimination.
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After-wards, we describe other cough detection related
techniques, such as principal component analysis (PCA) and
loss change analysis (LCA) techniques, infection testing, pH
monitoring, cough monitor-ing, and cough treatment. Finally,
we discuss miscellaneous factors such as COVID-19 datasets,
privacy, and applications. This review will provide insight into
what can be done for early diagnosis of the COVID-19 cough
through the rapid recognition of its symptomatic cough to lower
the transmission of the virus.

2 REVIEW METHODOLOGY

The research papers chosen for this review had to meet the fol-
lowing criteria: they discuss a prototype or algorithm aiding in
detecting coughs; they use artificial intelligence or neural networks
to discriminate between types of coughs; they consist of informa-
tion about the biological origin of a cough or the recorded audio of
a cough; they discuss chronic cough and its treatments; or they
discuss the difference between multiple types of coughs, such as
those of COVID-19, the common flu, lung cancer, or others. All
these papers ultimately help in computer recognition of various
kinds of coughs. Many were found through reviewing papers on
coughs andAI, and then examining the papers that cited them. The
more cita-tions the research paper had, the easier it was to find
other relevant papers. The keywords used were the following,
ranked by useful-ness: “cough,” “cough artificial intelligence,”
“cough sound analysis,” “cough discrimination,” “covid 19
cough,” “chronic cough,” “suppura-tive airway disease,” “lower

airway infection cough,” “cancer cough,” and “gastro oesophageal
reflux cough."

As shown in Figure 1, we searched for “"cough” “artificial
intel-ligence” symptom discrimination “detection” diagnosis” as
well as “"cough” reflex larynx chronic wheeze “infection” “clinic"’
and finally “"chronic cough” treatment unmet needs,” finding a
total of 1,461 hits.

We then selected the papers that had the most citations
according to Google Scholar, reviewed them, and found 19
additional papers that were relevant. We selected the papers
that matched the criteria set forth above.

A paper fit the criteria if it involved cough and treatment needs
or cough and cough biology or cough and artificial intelligence or
COVID-19 and cough.

All of these were filtered using the criteria described above, and
a final list of the 204 most relevant papers was identified.

List 1 includes the reviewed papers on topics related to cough
discrimination for various types of cough. List 2 includes the re-
viewed papers for various methods used for cough
discrimination. References in bold fonts refer to papers that
are primarily related to that topic, while references in italic
fonts refer to papers that focus on coughing more than its
detection. For each topic, the paper with the highest accuracy
is listed.

List 1: Method used in cough analysis (8 topics).

We now present 8 topics organized in three categories in
relation to how cough issues may be solved:

FIGURE 1 | Flowchart for methodology of reviewing papers.
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• Cough Detection.
– PCA/LCA: (Ali et al., 2020), (Derraz, 2020), (Larson,
2011), (Spycher et al., 2008), (Khomsay, 2019) (Highest
true positive rate: 92% (Larson et al., 2012))

– Cough counting: (Vizel et al., 2010), (Smith et al., 2006),
(Hsu et al., 1994), (Aerts et al., 2005), (Leconte et al., 2011)
(Highest accuracy: 90% or higher (Vizel et al., 2010))

– Cough recording techniques: (Ferrari et al., 2008),
(Goldsmith, 2003), (Murata et al., 1998), (Salmi et al.,
1988), (Doherty et al., 1997), (Aerts et al., 2005),
(Drugman et al., 2013), (Moradshahi, 2013), (Smith
et al., 2006), (Hsu et al., 1994), (Larson, 2011), (Rocha,
2017), (Birring et al., 2008), (Leconte et al., 2011), (Abaza
et al., 2009), (Augustinov, 2020), (Orlandic, 2020), (Pinkas
et al., 2020), (Bagad et al., 2020), (Balamurali, 2020),
(Sharma et al., 2020a), (Chaudhari, 2020)

– Cough monitoring: (Harle, 2006), (Birring et al., 2008),
(Leconte et al., 2011), (Casaseca-De-La-Higuera, 2015),
(Alsabek, 2020), (Seshadri et al., 2020) (Highest accuracy
ranges from 75% to 93% (Leconte et al., 2011))

• Artificial intelligence in cough discrimination.
– Pre-processing step (e.g. Spectral analysis): (Rocha, 2017),
(Botha, 2018), (Vizel et al., 2010), (Monge-Alvarez et al.,
2019b), (Ferrari et al., 2008), (Salmi et al., 1988), (Abaza
et al., 2009), (Murata et al., 1998), (Hsu et al., 1994),
(Doherty et al., 1997), (Amoh and Odame, 2016),
(Monge-Alvarez et al., 2019a), (Moshou, 2001), (Abaza
et al., 2009), (Guarino, 2005), (Belkacem, 2020),
(Amrulloh et al., 2015), (Pramono et al., 2016),
(Windmon et al., 2019), (Carpentier et al., 2018),
(Sharan et al., 2019), (Casaseca-De-La-Higuera, 2015),
(Rocha, 2020), (Dubnov, 2020), (Xu et al., 2020),
(Orlandic, 2020), (Balamurali, 2020), (Chaudhari,
2020), (Subirana, 2020) (Highest accuracy: 94% for
female and 97% for male coughs (Abaza et al., 2009))

– Classification step (e.g. Neural networks): (Parker et al.,
2013), (Charles, 2020), (Shi et al., 2018), (Monge-Alvarez
et al., 2019b), (Moshou, 2001), (Shin et al., 2009),
(Charles, 2020), (Abeyratne, 2013), (Amoh and Odame,
2016), (Monge-Alvarez et al., 2019a), (Kakabutr, 2017),
(Swarnkar et al., 2013), (Ali et al., 2020), (Derraz, 2020),
(Larson, 2011), (Rocha, 2017), (Botha, 2018), (Amrulloh
et al., 2015), (Pramono et al., 2016), (Windmon et al.,
2019), (Carpentier et al., 2018), (Sharan et al., 2019),
(Larson et al., 2012), (Zhuang et al., 2010), (Casaseca-
De-La-Higuera, 2015), (Barata, 2019), (Rocha, 2020),
(Hoyos-Barcelo et al., 2018), (Dubnov, 2020),
(Khomsay, 2019), (Belkacem, 2020), (Shuja, 2010),
(Augustinov, 2020), (Pal and Sankarasubbu, 2020), (Xu
et al., 2020), (Pinkas et al., 2020), (Bagad et al., 2020),
(Balamurali, 2020), (Chaudhari, 2020), (Alsabek, 2020),
(Subirana, 2020) (Highest accuracy: 99% for used model
(Charles, 2020))

• Chemical tests in cough discrimination.
– Infection testing: (Equi, 2001), (De Marco et al., 2007)
– pH monitoring: (Blondeau et al., 2007), (Ing et al., 1991),
(Palombini et al., 1999)

3 OVERVIEW OF THE FIELD

3.1 The Biology of Coughing
Unexplained chronic cough is a global issue, and the patients suf-
fering from chronic cough are typically not given the necessary
attention and treatment (Kang et al., 2019). Additionally, doctors
cannot prescribe medicine without fear of tachyphylaxis (Doherty
et al., 1997). Biologically, a cough originates from the sudden
opening of the glottis after contraction, which creates a violent,
explosive sound. The cough also originates from the larynx, as the
larynx is responsible for cough reflex and dysfunction can cause
coughing issues. For an acute cough, there are parainfluenza
coughs which are more stable than influenza coughs.
Coronavirus is clinically similar to the rhinovirus.

List 2: Cough-related topic to be solved (7 topics).

We now present 7 topics in relation to cough topics, organized
in two categories:

• Cough types.
– Acute cough: (Morice, 2002), (Wee-Yang and Boushey,
2008), (Ferrari et al., 2008), (Salmi et al., 1988)

– Pertussis: (Parker et al., 2013), (Spycher et al., 2008)
– Asthma: (Fujimura, 2003), (Hsu et al., 1994), (Birring,
2011)

– Lung: (Chang et al., 2011), (Redding and Carter, 2017),
(Harle, 2006), (Harle et al., 2020), (Botha, 2018), (Equi,
2001), (Abeyratne, 2013), (Chang et al., 2008), (Wee-Yang
and Boushey, 2008), (De Marco et al., 2007), (Windmon
et al., 2019), (Larson et al., 2012), (Abaza et al., 2009),
(Dubnov, 2020), (Balamurali, 2020), (Sharma et al., 2020a)

– Gastro-oesophageal: (Blondeau et al., 2007), (Ing et al.,
1991)

– COVID-19: (Ali et al., 2020), (Derraz, 2020), (Belkacem,
2020), (Dubnov, 2020), (Shuja, 2010), (Pal and
Sankarasubbu, 2020), (Pinkas et al., 2020), (Bagad
et al., 2020), (Sharma et al., 2020a), (Chaudhari, 2020),
(Alsabek, 2020), (Subirana, 2020), (Seshadri et al., 2020)

• Unmet needs.
– Chronic cough issues including Tachyphylaxis: (Hilton
et al., 2015), (Gibson, 2016), (Chung, 2017), (Kang et al., 2019),
(Mcgovern et al., 2018), (Chang et al., 2008), (Palombini et al.,
1999), (Birring et al., 2008), (Birring, 2011), (Ryan et al., 2010),
(De Marco et al., 2007), (Pavord, 2008), (Hsu et al., 1994),
(Bowen et al., 2018), (Chang et al., 2011), (Redding and Carter,
2017), (Blondeau et al., 2007), (Ing et al., 1991), (Windmon
et al., 2019), (Bowen et al., 2018), (Doherty et al., 1997),
(Morice, 2002)

Irwin (Irwin and Curley, 1991) lists the types of coughs as:
asthma related, lung related, and common cold related. Morice
(Morice, 2002) lists the types of coughs as acute, chronic,
pertussis related, lung related, influenza related, and gastro-
oesophageal related. Given what was relevant in the papers, we
used acute, pertussis, asthma, lung-related, gastro-oesophageal,
COVID-19, and chronic coughs as categories.
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3.2 Types of Coughs
The two main categories of coughs are acute cough, which is tem-
porary, and chronic cough, which is typically more severe and
lasts for a significant amount of time. Specific diseases that result
in coughs include pertussis, COVID-19, gastro-oesophageal
diseases, lung cancer, and bronchitis.

3.3 Cough Recording Datasets
The ESC-50 dataset (https://github.com/karolpiczak/ESC-50) can
be used to train the computer as it has an array of natural sounds
including coughs, which was used by Imran et al. (Ali et al., 2020)
and John (Charles, 2020). FSDKaggle 2018 and 2019 have also been
used as datasets, used by John (Charles, 2020). However, datasets
such as these are not available to the public, and the ones that are
accessible are not extensive and do not focus solely on coughs. This
impedes progress as it is difficult for other scientists to use the
existing databases already created. Therefore, more databases need
to be made available to the public.

3.4 Cough Discrimination Techniques
Neural network based algorithms have been effective in discrim-
inating cough. Some popular choices for these neural networks
are k-NN, Feed Forward Neural Network, and RF. Classifiers
such as Support Vector Machine and the naive Bayesian
classifiers have been used frequently. Parker et al. (2013) used
a classic approach with k-NN, Fast Forward Neural Network, and
RF to detect paroxysmal coughing from pertussis cases. After
feeding vectors into the neural networks, the evaluation of
whether or not a cough was that of per-tussis was performed
by averaging the results of the decision trees of the RF. They
checked for overfitting by reserving data for cross-validation of
the k-NN and RF. The Neural Network was trained 100 times,
and the results were averaged. All algorithms functioned with
relatively good accuracy. A drawback of the k-NN algorithm is
that while it is accurate, it is also very time consuming to run. This
can be improved through various spin-offs of the algorithm.

3.4.1 Convolutional Neural Networks (CNN)
Amoh et al. (Amoh and Odame, 2016) used CNNs as a method
to classify coughs. The basis of their paper is that the same
techniques and types of neural networks which are used in
neural networks for imaging could be applied to coughs. Since
CNNs are trained for imaging, they can again be used in helping
with training for coughs. However, since imaging deals with
fixed 2D images and sound processing deals with many frames
of sound, the neural network must be slightly tweaked. Pre-
segmentation ensures that spectro-temporal data are of a fixed
dimension from the audio signal, which can then be fed into the
network. The data can fit the fixed dimension by discarding segments
or by being zero-padded. Additionally, the paper advised using deep
RandomNeural Networks (RNN) instead of HiddenMarkovModels
(HMMs). This was done because deep RNNs are more likely than
HMMs to model long-term contexts, and are resistant to additional
noise, making the RNN an ideal neural network for detecting coughs.
In terms of spectral analysis, the 128-bin Short Time Fourier
Transform is used to create 64 frequency points. By using this
spectral data as input into the Convolutional Neural Network,

using a stochastic gradient descent, training results are smooth. For
this paper, a learning rate of 0.001, a batch size of 20, and a Nesterov’s
moment of 0.9 were used. The RNN was trained using the adadelta
optimizer.

3.4.2 Evolved Cepstral Coefficient (ECC)—Hidden
Markov Model (HMM) Hybrid
When testing different algorithms for machine learn-ing, Shin
et al. (2009) found it best to use ECCs in place of MFCCs because
MFCCs have problems with finding the optimal number of fillers.
Additionally, anHMMwith a first-order ergodic structure was chosen
due to the original HMM’s inherent issues. Coupled with the Hilbert
transform to calculate the signal of a cough sound, this hybrid model
achieved great accuracy and resilience. Spectral analysis is frequently
performed on cough audios to analyze the audio of the cough and help
discriminate between different types of coughs, and 23 of the papers
focus on this. For example, coughs can differ in peak wavelength.

The paper described a cough, moan, and voice as the main
iden-tifiers of cough abnormalities. It then delved into the science
of a cough sound, its basic concept and its sample sounds, a
proposed hybrid model to detect a cough sound, and then tested
its proposed model using various SNRs. The artificial neural
network model was used, as well as the hidden Markov model.
However, due to the HMM’s inherent issues, the discrete first-
order HMM with an ergodic structure was chosen. Upon testing,
it was seen that the hybrid model worked well in more noisier
environments and im-proved recognition. While the standard
HMM had a recognition percentage of 88% at 5 dB which
plummeted to 3% at−10 dB, the hybrid model had a higher
recognition percentage of 91% at 0 dB which was relatively
unchanged at 82% at −10 dB.

3.5 Instruments Used for Cough Detection
Ferrari et al. (2008) discussed a proper method to set up a
recording setup for maximum accuracy. When recording a pig
farm for coughs, the microphones on the pig farm were
connected via preamplifiers (Monacor SPR-6) to an 8-channel
analog-to-TDIF (Tascam digital interface) unit (Soundscape
SS8IO-3). All recordings were sampled at a rate of 44.1 kHz
with a resolution of 16 bits. While counting the coughs and cough
attacks did not provide an answer, it was seen that the non-
infected pigs coughed with a higher peak frequency
(750–1800 Hz) while the infected pigs coughed with a lower
peak frequency (200–1,100 Hz). Another paper, Goldsmith
(2003), proposed a novel instrument for analyzing cough
sounds. The cough would be fed directly into a microphone,
and minimal interference would be heard. However, the most
common apparatus used for recording cough sounds was a
smartphone.

Other papers relating to cough detection that were less
relevant are: Alqudaihi et al. (2021) and Hoare et al. (1972).

3.6 Critical Review of Papers Based on
Accuracy
We reviewed the papers if they included results for the accuracy of
the used neural network algorithm. Table 1 lists the 21 most
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accurate algorithms among the reviewed reports. High accuracies
as shown in this table are produced from using a neural network
algorithm.

Very few algorithms have been able to achieve an extremely
high accuracy or success, and those that have in general, use
simpler algorithms. Convolutional neural networks prove to do
very well. However, there is general disagreement over which
neural networks are more successful among scientists and how
certain algorithms can be combined for maximum efficiency.

4 COUGH RECORDING TECHNIQUES

There have beenmanymethods tested for recording coughs of the
highest quality audio, but a microphone array has proven to be
very successful. Salmi et al. (1988) analyzed the cough noise by a
person on a static charge sensitive bed by passing it through a
sampling rate of 30 Hz. The program used an algorithm where it
calculated the mean noise levels of the signal. Then, the detection
level was multiplied by 4 for acoustic signals and 3 for body
movement signals. If both body movement and acoustic signals
surpassed the threshold simultaneously, then a cough would be
recognized. This algorithm can also be used for sleep and sleep-
related apneas. Cough sounds are transients containing frequency
components with a range of 80 Hz to around 4,000 Hz, at
minimum. Therefore, high-pass filtering can cut off low-
frequency noise, or different sounds. The results of recording
the coughs over a long period of time with automatic analysis of
cough has advantages in high sensitivity and specificity.

Murata et al. (1998) described an experiment used to
discriminate between productive coughs, caused by excess
airway secretions, and non-productive coughs. In the
experiment, some subjects had chronic airway diseases and
some were healthy. Coughs with spu-tum were described as
productive coughs. The voluntary coughs, on the other hand,
were compared with vowel sounds for recording. Then, a sound
spectrogram and time-expanded waveform were cre-ated
through the cough audio waves. The cough was analyzed in its
second phase after the expulsion of sound from the cough. Phase
2 was the longest phase with a length of 105 msec, followed by
phase 3 (the noise created by the vocal cords closing) with a
length of 90 msec, and lastly by with phase 1 (the expulsion) in
last with a length of 50 msec.

Doherty et al. (1997) analyzed the differences acoustically
between healthy members when given an induced cough. By
giving capsaicin to the set of subjects, a spontaneous cough will be
produced. The researchers plotted the data on a spectrogram by
overall spectral energy, and root means square pressure plots. The
Root-Means-Square plots showed that the most common pattern
is a cough with two energy peaks, at the beginning and end. Less
common were a single peaked cough sound and more than three
high energy peaks. The spectrograms varied greatly, as did the
spectral energy chart. Capsaicin is able to produce reproducible
cough noises without fear of tachyphylaxis.

Aerts et al. (2005) focused on cough detection in pig houses,
where sound equipment was hooked up to the laboratory and
recorded the number of coughs for the pigs. When doing this,

underestimations of up to 94% in counting coughs were reported.
The goal of Drugman et al. (2013) was to study different sensors
for cough detection and then test them in an experiment with
healthy subjects in a confined room. The performance of the ECG
sensors, thermistor, chest belt, accelerometer, contact, and audio
microphones outperformed the KarmelSonix system.

Drugman et al. (2013) studied different sensors for cough
detection and then tests them in an experiment with healthy
subjects in a con-fined room. The performance of the sensors
ECG, thermistor, chest belt, accelerometer, contact and audio
microphones outperformed the Karmelsonix system.

Moradshahi (2013) tested cough sound discrimination
algorithms in noisy environments since reverberation can
cause a great deal of inaccuracy in these algorithms. When
white noise was added to the system, the success of the
discriminator decreased significantly, and when the distance
from the microphone was greater, the algorithm could not
discriminate between two different cough types. When tested
with varying volume of cough sounds, the success of the
discriminator also changed. As the volume increased, the
success of the discriminator increased, but when the volume
reached a certain point, the saturation of the system was so high
that the success of the discriminator dropped. To improve upon
the single microphone, the researcher used a microphone array
and beamforming techniques to improve the performance of the
discriminator in these noisy scenarios. The success of the
discriminator increased with these new adjustments.

Orlandic (2020) described methods for data collection that can
be used for cough analysis algorithms around the world. Its first
consideration was the best method for data collection, which
asked the user to cough into an elbow with the microphone at
arm’s length since coughing is a potentially dangerous activity
during a pandemic. Since this dataset uses crowdsourcing, it ran
into the problem that many samples will be unrelated to the
database’s desired content. Classifiers were used for this database
cleansing using power spectral density. This paper has public
source code for the XGB classifier that performed this task.

Bagad et al. (2020) proposed an AImodel that is able to predict
the presence of COVID-19 from cough sounds alone, which have
been recorded on a phone application. The data collection
procedure can be described in the following steps: subject
enrollment, where the users report their demographic
information; cough-sound recording, where the users records
three separate audio samples of themselves coughing; and testing.
The main neural architecture described for this task was the
CNN, and the training strategies described were augmentation,
pre-training, and label smoothing. It turned out that the
performance for this algorithm was similar for both male and
female individuals.

Sharma et al. (2020a) discussed the differences between speech
and cough noises for those with and without COVID-19 and for
those without it. The sound of the cough, the pattern of breathing,
the respiration rate, way of speech, and intervals of breathing are
all subtle tells that could reveal a decently accurate diagnosis. In
those with COVID-19, low pitches with popping and bubbling
would be heard. There will be cough sounds for a continuous
30 min, with an episode lasting around half a minute or so. A
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TABLE 1 | Critical review of papers based on accuracy.

Paper title Year Review

Diagnosis of COVID-19 and non-COVID-19 patients by classifying only a single
cough sound Maleki (2021)

2021 The paper used a cost-effective algorithm based on computer-aided digital
technolo-gies. The accuracy rate was extremely high: 98.33% for all patients
and 97.20% for only COVID-19 patients. No errors or confidence intervals were
reported. The authors used 6,737 recorded cough samples and 8,854 control
sounds with 5 different recorders, with a total of 43 subjects

A generic deep learning based cough anal- ysis system from clinically validated
sam- ples for point-of-need COVID-19 test and severity levels Andreu-Perez et al.
(2021)

2021 The algorithm proposed combines a cough detection algorithm based in EMD
and a recognition method known as DeepCough3D. This performance was
high, with a sensitivity of 91% and a 10%margin of error. The Type I error for the
DeepCough3D algorithm was 3.36%, and its respective Type II eror was
2.82%. No confidence intervals were reported. There were 8,380 clinically
validated samples used. Classification was based on severity, such as
borderline positive, standard positive, or high positive

COVID-19 artificial intelligence diagnosis using only cough recordings Laguarta
et al. (2020)

2020 A screening test was proposed that discriminates an impressive 98.5% COVID-
19 positives from a forced-cough recording. The algorithm uses CNNs. The
model has a 97.1% discrimination accuracy if the subjects are diagnosed with an
official test. It discriminates 100% of those who are asymptomatic, although the
Type I error is high: 16.8%. No confidence intervals were reported. The dataset
used was extremely large and balanced, as the same number of COVID-19
positive and negative samples were used. The sample set of two-second audio
chunks was also balanced, used in training of the proposed model

Automatic detection and classification of cough events based on deep learning
Augustinov (2020)

2020 The paper used deep neural learningwith an automatic CNN. The reported accuracy
was high at 92.5%, but with the 3-label model, the accuracy decreased to 81.2%.
The dataset was fully balanced due to obtaining 50% of 1,602 spectrogram image
samples that are cough holder segments. No errors or confidence intervals were
reported. The network used contained 1,602 spectrogram images with half being
cough holder segments and the other being healthy. Data acquisitionwas performed
using the LEOSound Lung-Sound-Monitor. 48 patientsweremeasured for 8 ormore
hours, and 100,507 samples of 30-s windows were used in data acquisition

Practical cough detection in presence of background noise and preliminary differ-
ential diagnosis from cough sound using artificial intelligence Charles (2020)

2020 Special algorithm was used involving XGBoost database and CNNs. High accuracy
of the used model was reported at 99%, with a loss of only 3%. Reported Type I
errors are: 7%,12%, and25%while Type II errors are: 8%,0%, and0% for an artificial
neural network, random forest, and k-NN, respectively. No confidence intervals were
reported. All sounds were converted to spectogram using the Python librosa library,
and were 44 kHz. The detection training dataset had roughly 35,000 images

Towards device-agnostic mobile cough detection with convolutional neural net-
works Barata (2019)

2019 A simple convolutional neural network was used with a high success rate. The
accuracy measured was high at 90.9%. There was no concrete value given for
either Type I or Type II errors. However, it was shown that the highest rates for
Type I errors are from the algorithm k-NN, followed by the random forest, then
by the convolutional neural networks. No confidence intervals were reported

Efficient k-NN implementation for real- time detection of cough events in smart-
phones Hoyos-Barcelo et al. (2018)

2018 This paper used vp-treeswith k-NNsearch for an efficient algorithm. The classification
accuracies were high, over 93%. No confidence intervals were reported

Automatic cough detection for bovine res- piratory disease in a calf house
Carpentier et al. (2018)

2018 The paper proposed a complex algorithmwithmedium-high precision of 84.2% in
certain circumstances to a high precision of 94.2% in others. However, the
sensitivity of the overall algorithm was quite low: 41.4%. Type I and II errors varied
throughout the batches, but no concrete average was given for either. Type II
errors were higher than Type I errors. No confidence intervals were reported. The
individual sound events were manually extracted, therefore making the ratio of
non-cough to cough events balanced. Sounds were recorded over two time
periods of 82 and 96 days, with 21 and 14 calves in each compartment. There
were 664 different cough references, and 445 min total of sound data

A machine hearing system for robust cough detection based on a high-level rep-
resentation of band-specific audio features Monge-Alvarez et al. (2019a)

2018 Real time cough monitoring was able to achieve high accuracy with a sensitivity
of 92.71% and a specificity of 88.58%. No confidence intervals were reported

Dog cough sound classification using arti- ficial neural network and the selected
rele- vant features from discrete wavelet trans- form Kakabutr (2017)

2017 An artificial neural network was used with a high accuracy of around 90% on
average. No confidence intervals were reported

Deep neural networks for identifying cough sounds Amoh and Odame (2016) 2016 A convolutional neural network edged out a recurrent neural network in cough
detection, with a specificity of 92.7% for the convolutional network and a specificity
of 87.7% for the recurrent network. No confidence intervals were reported

(Continued on following page)
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TABLE 1 | (Continued) Critical review of papers based on accuracy.

Paper title Year Review

Effect of downsampling and compressive sensing on audio-based continuous
cough monitoring Casaseca-De-La-Higuera (2015)

2015 The paper used a simple cough detection system based on simple decision-
tree classification, and had an extremely high performance with a 98%
sensitivity and 97.13% specificity. No confidence intervals were reported

Automatic cough segmentation from non- contact sound recordings in pediatric
wards Amrulloh et al. (2015)

2015 An algorithm using non-Gaussianity, Shannon entropy, and cepstral coefficients
was used and showed high accuracy of 97.3%, a sensitivity of 92.8%, and
specificity of 97.5%. No errors or confidence intervals were reported. The data set
used contained 14 subjects with a sound recording length of 840 min

Automatic identification of wet and dry cough in pediatric patients with respira- tory
diseases Swarnkar et al. (2013)

2013 A k-mean clustering algorithm was used with a logistic regression model to detect wet
and dry coughs. The model was moderately accurate with a 88% specificity for wet
coughs and a 76% specificity for dry coughs. A 95% confidence interval was reported,
being 87%–88% for the training/validation dataset, and 76%–84% for the prospective
dataset. The soundswere recordedusingabed-sidenon-contactmicrophone, and the
data contained78patients. Therewere 310 coughevents from60patients (the training/
validation dataset), and 117 cough events from 18 patients (the prospective dataset)

Detecting paroxysmal coughing from per- tussis cases using voice recognition
tech- nology Parker et al. (2013)

2013 There was a high rate of success and low error due to running the neural network
hundreds of times. 90% of coughs correctly classified as pertussis, Type I errors
ranged from 7–25%, and Type II errors ranged from 0–8%. More specifically, for a
neural network: the success rate for detecting actual pertussis and a lack of onewas
93% and 92%, respectively, with Type I and Type II errors of 7% and 8%. For
random forest: the success rate for detecting actual pertussis and a lack of one was
88% and 100%, respectively, with Type I and Type II errors of 12% and 0%. For
k-NN: the success rate for detecting actual pertussis and a lack of onewas 75%and
100%, respectively, with Type I and Type II errors of 25% and 0%. No confidence
intervals were reported. Pertussis sound files were collected from children and from
YouTube, and were classified as either pertussis or non-pertussis

The objective assessment of cough fre- quency: accuracy of the LR102 device
Leconte et al. (2011)

2011 The accuracy of the LR102 device was proven to be somewhat accurate, as
the automatic counting and manual counting were closely correlated at r = 0.87
for occurrence of cough episodes per hour and r = 0.89 for the occurrence of a
single cough per hour. Cough frequency was overestimated. Errors were not
reported. For a single cough, the confidence interval at 95%was reported to be
0.75 to 0.92, and for an episode, the confidence interval at 95% was reported
to be 0.78 to 0.93. In total, 40 h of recording were analyzed

Accurate and privacy preserving cough sensing using a low-cost microphone
Larson (2011)

2011 This is extremely accurate system that used a PCA and a random forest
classifier, resulting in an average true positive rate of 92% and a Type I error of
0.5%. No confidence intervals were reported. 17 subjects experiencing cough
episodes were used in data acquisition. They were recorded with an Android
G1 mobile phone, which was placed around their neck or in their shirt pocket.

Validation of an ambulatory cough detec- tion and counting application using vol-
untary cough under different conditions Vizel et al. (2010)

2010 This was a highly successful algorithm with a consistent success of 90% or
higher. Specificity for all cough events was 94% and the sensitivity was 96%.
No errors or confidence intervals were reported. The data was acquired with
the help of 12 volunteers, and the sounds were recording using the PulmoTrack
hardware. Each recording was 25 min long for a total of 300 min

Automatic detection system for cough sounds as a symptom of abnormal health
condition Shin et al. (2009)

2009 A successful and resilient hybrid model was created through combining
attributes of ECCs, the artificial neural network, and the hidden Markov model.
The model achieved a recognition percentage of 91% at 0 dB noises and a
82% at -10 dB noises, as well as performing equally well under noiser
conditions. No confidence intervals were reported

Classification of voluntary cough sound and airflow patterns for detecting abnor-
mal pulmonary function Abaza et al. (2009)

2009 The optimal classifier used in this algorithm resulted in an extremely high perfor-
mance with 94% for female coughs and 97% for male coughs. No concrete
error percentages or confidence intervals were reported. 52 healthy subjects
were used in this study, as well as 60 subjects who had obstructive or restrictive
lung disorders. These subjects performed three individual voluntary coughs

Establishing a gold standard for manual cough counting: video versus digital audio
recordings Smith et al. (2006)

2006 This was an accurate method of counting coughs in either videos or through
audio. The mean cough frequencies of each differed by 0.1 coughs/hour and
themean of cough frequency differences was 0.3 coughs/hour, with a standard
deviation of 0.6 coughs/hour. The 95% limits of agreement were reported from
-1.5 to +0.9 coughs/hour. 8 patients with chronic cough were studied through
manual cough counting, as well as a video camera with infrared lighting and
digital sound recording. Each cough recording was 8 h long
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trademark description of the COVID-19 cough is a dry, barking,
hoarse sound. If lungs are injured, a wheezing sound could
be heard.

Chaudhari (2020) talked about how datasets from
crowdsourc-ing could be used with neural network algorithms
to detect COVID-19 from cough audios with a reasonable
accuracy. A deep neural net-work was used with the publicly
available Coswara and Coughvid datasets of cough sounds.
Datasets of smartphone-recorded coughs from South America
were also used. MFCCs were used to extract audio features, and
then an ensemble of Deep Neural Networks were used for
classification. The accurate results of this algorithm
demonstrates that crowdsourcing is a moderately accurate
method of detecting COVID-19.

Other papers relating to cough detection that were less
relevant are: Larson (2011).

5 RESEARCH ON COVID-19 RELATED
COUGH DISCRIMINATION

In 2020, the main use of neural network architecture andmachine
learning algorithms for clinical diagnosis was to discriminate ac-
curately whether a cough was caused by COVID-19 or some other
lung-related disease, for example, through the method shown in
Figure 2. Research papers already exist that generally use
methods of spectral analysis combined with an array of neu-
ral networks. However, the method of recording the data is also
called into question, where the recording must be accurate

enough to yield accurate results, and it must be affordable
enough to be accessed by many around the globe in order to
have a large scale impact. Papers Shuja (2010), Pinkas et al.
(2020), and Chaudhari (2020) used smartphone applications for
recording, which yield near 90% accuracy or above and are is
accessible to millions of people around the world. Some of the
classifiers that were used for these research papers are: DL-MC,
CML-MC, DL-BC, logistic regression, gradient boosting trees,
SVM, and RNN. Some of the datasets that were used include ESC-
50, national COVID-19 data collection project, Koswara, and
Coughvid.

Coppock et al. (2021) presented seven main concerns in using
cough audio to train neural networks to detect whether or not one
has COVID-19 or not. Firstly, the algorithms may not be specific
to COVID-19 and may solely detect the general health of the
subject. Secondly, the unfiltered environmental sounds in the
background of the cough audio may tamper with the training of
the neural networks and could introduce bias–perhaps a correct
diagnosis for COVID-19 may be more likely indoors. Thirdly, the
patient’s knowledge of whether they have COVID-19 could
corrupt neural network training if emotions leak into the
voice. Fourthly, many datasets used for this training are not
extremely reliable or valid. Fifthly, there are not many public
codebases or datasets that can be used for neural network
training. Next, demographic characteristics can introduce bias
as disease prevalence is not consistent among all regions. Finally,
the participant population is largely uncontrolled.

Therefore, reappearing participants will cause the model to
function with higher accuracy, inflating the success scores.

FIGURE 2 |A cough audio and its six representations: theMelSpectrum, chroma, tonal, spectrogram, power spectrum, andMFCC, according toMohammed et al.
(2021). The cough undergoes an audio splitting step, generating six frequency measures based on the Mel frequency scale. These are audio signal representations
based on frequency. These representations are used in neural networks. MFCC stands for Mel Frequency Cepstral Coefficients.
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5.1 Using Spectral Analysis
Moshou (2001) placed pigs in an isolated area with a microphone,
and then recorded their coughs. The sample rate of the
microphone was 22,060 Hz since a typical cough frequency is
under 10,000 Hz. Thirty minutes of recording took 80 MB of disc
space. To find the power spectra density of the sounds, a Fast
Fourier Transform of 128 points was used on the cough audios.
The MATLAB toolbox is commonly used for calculating PSD.
The calculation yielded PSD vectors with 64 components, which
were then used later in prob-abilistic neural network training.
The Bayes decision rule can be applied to scenarios such as these,
which have many different cate-gories; in this case, two.
Probability density functions can be created using probabilistic
neural networks, which had been used by Specht in 1966. The
PNN was used with success to discriminate between cough
sounds and other noises. The most challenging task was to
separate the cough audio and the metal clanging as they have
similar frequency content.

Monge-Alvarez et al. (2019a) proposed a machine that can
detect cough solely based on audio recordings. First, the cough
patterns were characterized using 29 short-term features adjusted
for differ-ent noisy environments. Then, five frequency bands
were defined to aid in the calculation of the spectrum properties
of the acoustic cough audio. These spectrum properties were used
to generate a long-term feature space using sample statistics that
which were then fed into a series of SVMs, which were then
trained for different noisy environments. The output to these
SVMs was the detection of a presence of cough. Upon testing with
patients, it was found that this machine outperforms many other
methods in cough detection, and that it held well under the stress
of three noisy environments. However, this method required a
pre-processing step to eliminate other noises in the background.

Amrulloh et al. (2015) used an algorithm to identify cough
segments from pediatric sound recordings using non-
Gaussianity, Shannon entropy, and cepstral coefficient
extractions from the cough. These characteristics were then
fed into an artificial neural network.

Pramono et al. (2016) used a quick and easy neural network
algo-rithm with three stages to identify specifically a pertussis
cough. These three stages include sound event detection, feature
extraction, and cough detection/classification.

Windmon et al. (2019) described a smart-phone app that can
record and process cough audio to diagnose chronic obstructive
pulmonary disease. The algorithm includes filtering noise,
partitioning every cough into segments, extracting its features,
removing biases, and then designing a two-level classification
scheme based on Random Forests.

Carpentier et al. (2018) used an algorithm to discriminate
between coughs in a calf house, using 664 different cough
references. The algorithm worked well, with a precision of
higher than 80%. Features such as spectral spread, entropy,
and flux were used.

Sharan et al. (2019) used artificial intelligence to detect a croup
cough using MFCCs which are used to capture features of auto-
matically segmented cough sounds from test sets of patients. This
algorithm was a significant improvement in automatically
diagnos-ing croup automatically compared to previous methods.

Rocha (2020) aimed to create an algorithm that which could
automatically detect explosive cough events that are related to
pul-monary disease. Pre-processing included passing the audio
signal through an 8-th order infinite impulse response high-pass
filter with 80 Hz. Feature extraction was done with the help of
STFT and MFCCs. Classification was done with the help of four
classifiers: Naive Bayes for Bayesian, SMO for SVM, RIPPER for
Propositional Rule Learner, and Bagging for Bootstrap
Aggregation.

Dubnov (2020) proposed an algorithm that can automatically
detect COVID-19 through a cough with the help of logistic
regres-sion, SVM, Random Forest, Multilayer Perceptron, and
CNN as methods of classification. They were used along with Fast
Fourier Transformation for processing.

Balamurali (2020) proposed an algorithm for diagnosing chil-
dren with asthma based on cough audios. The dataset was
obtained by recruiting asthmatic children from clinics, with a
mean age of 8 years. A smartphone was used for recording the
children’s ac-tive coughing. Vocalized sounds were also used
because they can indicate whether there are any issues with throat
inflammation or narrowing of pathways. MFCCs and CQCCs
were used for audio feature extraction. The GM and UBM were
used for classification, and the accuracy was reported to be the
highest for the fused model (cough).

5.2 Other Methods
To detect the coughing noise, the online datasets ESC-50 and FSDK-
aggle 2018 and 2019 were used in the paper by John (Charles, 2020).
All sounds were converted to spectrogramusing the librosa library in
Python. The Deep Residual Learning framework used a special
algorithm that allowed for training of much deeper networks than
other algo-rithms. XGBoost and Convolutional Neural Networks
were used to determine the result and diagnosis. The accuracy of the
used model was 0.99, and the loss was 0.03.

The sound of a cough can be divided into three parts based on
audio, according to the paper by Shi et al. (2018). Through cough
processing algorithms, a cough can be identified and determined
whether it is a dry or wet cough. This is done through neural net-
works, SVM, and naive Bayesian classifier. Removing silence in a
cough audio is important to preserving data. The endpoints of the
cough can be calculated through the zero-crossing rate (ZCR),
which is a ratio of the sign changes of a signal. Additionally,
MFCCs that are used to convert the data into coefficients.

Abeyratne (2013) described an algorithm that could be used
with high success to diagnose pneumonia. Pneumonia is a serious
child-killer and diagnosing it in a hospital is difficult. It is
possible, however, to diagnose pneumonia through the cough
audio. The first step is to extract and augment the cough features.
This can be done by computing many features from the cough
and compiling them. The second step is to use an LRM as the
pattern classifier. The leave-1-out cross validation technique can
be used. The next step is to select a good model from the LRM
which can be found through k-means clustering. The final step is
to calculate the cough index for the disease, in this case,
Pneumonic Cough Index (PCI). This can be calculated based
on the previous information found. This index will ultimately
determine if the cough is pneumonia related. The algorithm,
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when tested, resulted in a sensitivity and specificity of mostly
greater than 90% when tested with various children. The re-
search from this paper can provide a low-cost method of
combating diseases such as pneumonia and will have great
value in creating a vaccine for its related disease.

Kakabutr (2017) used artificial neural networks to classify
cough sounds from dogs and to determine whether the dog is
healthy, something that is difficult for many experienced
practitioners. The artificial neural network is used to convert
the raw cough audio from time domain into time frequency
domain, additionally extracting the important features relating to
the cough. Eight levels of decom-position were successfully used
to classify this cough sound, and the optimal neural network
model had 40 nodes in the hidden layer with 22 features. In the
hidden nodes, a logistic function was used and in the output
nodes, a hyperbolic tangent function was used. This model
worked successfully, generating an average accuracy of 90% or
higher with only using a quarter of all features.

Swarnkar et al. (2013) aimed to find a specific algorithm that
could discriminate automatically between wet and dry coughs
solely based on audio. This is useful because a wet cough can
indicate lower respiratory tract bacterial infections while dry
coughs could indicate other diseases. A logistic regression model
was proposed to classify the coughs into wet and dry with the help
of a k-means clustering algorithm. Upon testing with 78 patients,
results showed that the sensitivity and specificity of the logistic
regression model was near 88% with a 95% confidence interval for
wet coughs and 84% with a 76% confidence interval for the next
dataset with 18 patients. Therefore, this new algorithm can work
successfully for cough monitoring without the need for
professionals at a hospital setting.

Larson et al. (2012) could detect cough episodes through
neural networks which can automatically identify tuberculosis.
Recordings of 25.5 h were used with a large number of
tuberculosis patients.

Zhuang et al. (2010) proposed using Acoustic Event
Detection and extracting those discriminative features, which
could result in higher rates of success. HMMs worked well,
and the SVM-GMM-supervector was more successful at
approximating the KL diver-gence between feature distributions
for an audio segment.

Casaseca-De-La-Higuera (2015) proposed a simple and effi-
cient algorithm for detecting coughs based on simple decision-
tree classifications with spectral features and a smartphone audio
sig-nal. Undersampling down to 400 Hz resulted in the sensitivity
and specificity values remain above 90 percent.

Barata (2019) used a simple convolutional neural network to
identify whether a cough event had occurred. The steps of the
algorithm included extracting the audio event, preprocessing, and
cough detection, which simplifies into two categories: cough or
non-cough.

Hoyos-Barcelo et al. (2018) used local Hu moments through
the audio signal from the device. Through pairing local Hu
moments and a standard k-NN classifier, cough detection
becomes more ac-curate, although it is more time-consuming.
This study proposed a way to speed up the k-NN search, which
would enable real-time performance on all smartphones.

Shuja (2010) demonstrated how in the battle to fight COVID-
19 with artificial intelligence, the correct datasets and ways to use
them are vital. It discussed three categories of datasets: medical
im-ages, textual data, and speech data. In the section on speech
data, the paper suggested that cough sounds, breathing rate, and
stress can all be detected from smartphone applications and are
relevant to diag-nosing the severity of COVID-19 symptoms.
Some researchers have mentioned that the steps to determining a
COVID-19 infection in-volve distinguishing those who are
COVID-19 positive from healthy people, healthy people with a
cough, and then finally those with asthma and a cough. Logistic
regression, gradient boosting trees, and SVM classifiers were used
in the study. Cough and breathing inputs, when combined,
outputted the most accurate result.

Augustinov (2020) talked about how cough audios can be clas-
sified and categorized through deep learning, mainly for chronic
ob-structive pulmonary disease. The Computerized Respiratory
Sound Analysis group has developed a framework for classification
of au-dios relating to the respiratory system, categorizing them as
breath or adventitious respiratory sounds. The main issues with
automatic detection of respiratory sounds are that there is not
enough relevant data for extreme accuracy, and it brings ethical,
privacy, and secu-rity issues into play. This paper described a
network architecture that used CNNs as building blocks. The data
had been acquired through using the LEOSound Lung-Sound-
Monitor. For the binary classification model, the process was quite
accurate, with a reported accuracy of 92.5%.

Pal and Sankarasubbu (2020) proposed a model neural
architecture that would discriminate a COVID-19 cough based
on examining the audio. This architecture included Symptoms
Embeddings, which captures the hidden features of patient
characteristics. TabNet was mostly used for this purpose. The
second section of the architecture was Cough Embeddings, where
it could capture deeper features when given a cough sound
through its acoustic characteristics. Deep Neural Networks
were mostly used for this. A High Pass Filter was also used to
reduce the noise in the signal. This system would be useful
because it would increase the breadth of COVID-19 screening
while at the same time lowering the cost by using artificial
intelligence.

Pinkas et al. (2020) described a deep machine learning model
which was trained using recordings of coughs from those who
tested for COVID-19, which can be used for screening through
self-recording. The national COVID-19 data collection project
provided the dataset used for this project, and the recordings
consisted of coughs and counting verbally from 50 to 80. Counting
is free of social or emo-tional bias, which makes it simple to
examine. RNN-based expert classifiers were used, and the SVM
was used to predict whether or not the audio indicated that the
person was infected with COVID-19 or not. The dataset used for
this project was self-recorded through a smartphone microphone,
which demonstrated the feasibility for globally accessible data.

Alsabek (2020) primarily focused on how features of COVID-
19 coughs and noises could be extracted and then compared
through analyzing the audio signals. The data collection method
asked each speaker to cough four times, take a deep breath, and
count from one to ten. PRAAT was used for speech pre-
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processing, where silent portions of the recording are cut out. For
the extraction of the fea-tures, MFCCSs were heavily used as they
have broad applications in speaker and emotion recognition. The
paper concluded that track-ing the coughing and breathing noises
of the user was the best way to detect infection with COVID-19.

Here are some additional papers that touch on the subject of
COVID-19 detection through neural networks and sound
analysis: (Laguarta et al., 2020), (Sharma et al., 2020a),
(Vijayakumar and Sneha, 2020), (Andreu-Perez et al., 2021),
(Bansal, 2020), (Pahar, 2020), (Mouawad et al., 2021),
(Coppock, 2021), (Manshouri, 2021), (Maleki, 2021), (Lella
and Pja, 2021), (Jyothi, 2021), (Ramesh, 2021), (Desphande
and Schuller, 2020), (Schuller, 2020), (Stasak et al., 2021), (Aly
et al., 2021), (Chowdhury et al., 2021) (Harsharani, 2021), (Iqbal
and Iqbal Faiz, 2020), (Khanzada et al., 2021), (Kranthi Kumar
and Alphonse, 2021), (Meister et al., 2021), (Sharma et al., 2021),
(Sharma et al., 2020b), (Tong et al., 2021), and (Usman, 2020).

Many of the research papers agree that the next step forward is
that there must be more accessible datasets with far greater
records than currently available. This would improve the
accuracy of testing and therefore the accuracy of diagnosis
through artificial intelli-gence.

6 PCA AND LCA TECHNIQUES

Commonly found with neural network techniques are PCA and
LCA techniques, which aid in feeding the datasets into the
neural network algorithms. Using these techniques correctly is
vital in optimizing the performance of the deep learning
algorithms. In general, PCA and LCA are used to convert
data taken from the cough audio into a usable sequence of
numbers that can then be used in a neural networking
algorithm. For example, Imran et al. (Ali et al., 2020) created
an app that predicts whether a user has COVID-19 based on the
sound of their cough. PCA projections are used on the MFCC
features from the audio to create feature vectors. Then, these
feature vectors are fed into the neural networking algorithm to
generate a diagnosis for the cough audio. This diagnosis will
then tell the user of the app whether or not the user has
COVID-19.

Derraz (2020) created a neural network that can classify a
cough as one that is from COVID-19 or from another illness. A
PNN, along with DSP and neural networks, was used to
differentiate these coughs. However, PCA techniques were
used to create feature vectors which are then fed into the
neural networks.

Larson (2011) included a great example on how PCA can be
used to optimize the deep learning algorithms. While this
system used a lengthy random forest classifier, with the help
of PCA, it could greatly optimize how the data was being fed
into the neural network. In this example, the PCA used
orthogonal components and eigenvectors to reduce
dimensionality. Then, the components were ranked based
on the amount of variation they could explain in the data.
With this system, the data was being fed into a neural network
in an efficient and relevant way.

Khomsay (2019) used deep learning networks and tensor flow
for identifying coughs. However, it needed the help of PCA which
performs feature extraction, then sending this data to the Deep
Learning Network. LCA is important for statistical analysis and
finding distinct subsets in a population with inherent
heterogeneity. Spycher et al. (2008) used the LCA method on
coughing children. It was able to group the children into various
phenotypes based on their type of cough.

7 INFECTION TESTING

Equi (2001) conducted an experiment that compares cough swabs
taken from children with cystic fibrosis and children with
concomi-tant sputum. The cough swab was a strong predictor
of sputum culture, while a negative result did not rule out
infection.

The purpose of DeMarco et al. (2007) was to discover whether
chronic obstructive pulmonary disease (COPD) could be
predicted by the presence of phlegm, chronic cough, and
dyspnea. After a study was done, a correlation was found
which showed that the presence of chronic cough or phlegm
is linked with a high risk of developing COPD.

8 PH MONITORING

The aim of Blondeau et al. (2007) was to examine the association
between cough and weakly acidic reflux by studying a large set of
patients with unexplained chronic cough. After this study was
done, a positive association was found between the two.

The purpose of Ing et al. (1991) was to examine the correlation
between a chronic persistent cough and a gastro-oesophageal
reflux. Subjects identified as having chronic cough underwent
24 h am-bulatory oesophageal pH monitoring. These results were
compared with a matched control group.

Palombini et al. (1999) described an experiment where the
plain chest radiographs of nonsmoking patients who complained
of cough for over 3 weeks were examined. pH monitoring was
also per-formed. Asthma, PNDS, and GERD were frequently
found as culprits, earning them the expression “pathogenic triad
of chronic cough.”

9 COUGH MONITORING

Harle (2006) conducted a study of the cough caused by lung
cancer. The current treatments are not perfect, and there is not a
lot of information about lung cancer and its associated cough.
Cough is a big symptom and a frequently unmet clinical need.
However, the study has the potential to improve the
understanding of therapeutic options for the cough associated
with lung cancer.

Birring et al. (2008) examined the effectiveness of the Leicester
CoughMonitor (LCM). The LCMwas used tomeasure cough fre-
quency, with recordings of up to 6 h. The recording proved that
the LCM is reliable enough to be trusted to assess cough
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frequency in patients for up to 24 h. It may even have the
capabilities to work in clinics.

Leconte et al. (2011) examined the effectiveness of the LR102
device, which has the ability to identify cough episodes through a
cough frequency meter with electromyography and audio
sensors. The LR102 overestimated cough frequency, but still
was relatively close and useful, and reduced the time needed
for analysis.

10 COUGH TREATMENT

Mcgovern et al. (2018) explained where the mechanisms in a cough
originate, as well as novel therapeutic ideas for a troublesome cough.
Cough hypersensitivity syndrome exists among patients because the
peripheral pathological process affects the activity and sensi-tivity of
vagal primary afferent nerve fibers. Tissue inflammation can
stimulate an increase in sensory neuron activity, which height-
ens cough reflex sensitivity. This sensitivity manifests from talking,
laughing, or smelling perfumes. Neuroplasticity has an important
relation with chronic cough and pain. Viruses cause inflammation
in the respiratory system, which stands in the way of sensory neuron
function, leading to cough. Plasticity is a contributor to the continu-
ation of chronic cough and cough hypersensitivity syndrome
among patients. Through understanding the neural pathways
responsible for chronic cough, there are new methods of therapy
emerging that could target the neural pathways such as targeting
molecular pathways central to the development of excessive cough.

Kang et al. (2019) covered how Korean cough patients are not
re-ceiving the required treatment that they need. After an
observation of the Korean patients, half of them stated that
there was a lack of treatment effects, and roughly 30% stated
that they were given an unclear diagnosis. Other common unmet
needs were that most patients reported difficulties in locating
cough specialists or clinics, as well as wanting further information
on cough treatment and pre-vention. This is a problem for
Korean adult patients, as they describe their chronic cough as
impairing their daily actions, frustrating their family and friends,
and causing depression.

Fujimura (2003) examined the correlation between atopic cough
and cough variant asthma through studying a set of patients with
atopic cough and cough variant asthma, as well as the effectiveness
of the treatment of inhaling beclomethasone dipropionate (BDP).
In conclusion, the study demonstrated that the onset of typical
asthma occurred significantly less frequently in those with atopic
cough than in those with cough variant asthma. Additionally, the
treatment significantly decreased the development of typical asthma
in those with cough variant asthma. A significant number of
patients with cough variant asthma end up developing typical
asthma. Atopic cough has indeed been proposed as a cause of
isolated chronic non-productive cough.

Gibson (2016) went into depth on the mistreatment of adult
pa-tients with unexplained chronic cough (UCC). The research
divided patients with UCC into cough categories of treatment-
resistant, idio-pathic, and intractable. Another study divided them
into refractory, unexplained, and idiopathic coughs. The paper offers
some possible therapies, such as nonpharmacological therapies.

An intervention included two to four sessions of education,
cough suppression tech-niques, breathing exercises, and
counseling, which resulted in a positive impact on cough severity.
Inhaled corticosteroids (ICSs) targeted airway inflammation, also
reducing cough severity in mul-tiple studies. However, if the patient
tests negative for bronchial hyperresponsiveness and eosinophilia,
then ICS’s should not be prescribed.

Bowen et al. (2018) explained the causes of UCC, which is a
chronic cough that has an unknown origin through a review of
patients with UCC. Tachyphylaxis and dependence in
pharmacotherapy are suspected to be the main problems, as they
are frequently observed among patients with UCC. Clinicians are
advised to use tricyclic antidepressants or gabapentin for treatment
initiation. Although the chances of a successful treatment will
diminish over time, most patients will be treated after several trials.

Redding and Carter (2017) showed the dangers of
bronchiectasis and the effect that it can have on children. It is
very likely that children who have this condition are
underrepresented and untreated.

The aims of Harle et al. (2020) were to examine the cough, its
impact, and its severity in the case of lung cancer. By using many
cough-specific validated tools in the United Kingdom, a study can
be done with lung cancer patients. This study demonstrated that
there is an urgent demand for more potent antitussive treatments.

Birring (2011) discussed the treatment of chronic cough. It
discussed whether asthma, gastroesophageal reflux, and upper
air-way disorders are the causes or aggravants of chronic cough.
There is a high demand to understand why a heightened cough
reflex sensitivity exists for some patients, and whether genetic,
molecular, or physiological concepts have a role to play in that.

The aim of Ryan et al. (2010) was to understand chronic cough
and how speech language pathology couldmanage or improve the
condition. Some outcome measures were capsaicin cough reflex
sensitivity, automated cough frequency detection, and cough-
related quality of life. Speech language pathology management
may be able to intervene in the issues of refractory chronic cough.

11 COVID-19 DATASETS

The main public dataset for COVID-19 is the Coughvid dataset.
The Coughvid crowdsourcing dataset contains over 25,000
recordings with 1,155 being those of COVID-19. These coughs
originate from all around the world, and this is the largest known
public cough dataset that is related to diagnosing COVID-19 in
existence. This dataset can be accessed here: https://doi.org/10.
6084/m9.figshare.14377019.

However, besides this dataset, there is a shortage of cough
recordings that could be used to train neural networks that
diagnose COVID-19 with a high accuracy.

12 PRIVACY

In terms of these studies done, publicizing a participant’s name,
email address, phone number, or any information that was
irrelevant to the data of the study was prohibited. Therefore,
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every participant maintained privacy in cough recording, cough
analysis, or cough treatment. The FDA prohibits use of any cough
suppressants in children under the age of 18.

13 APPLICATIONS

The main commonalities within the research papers are that
prepro-cessing is done to the cough audio, involving spectral
analysis, and then a neural network is used. In this step,
MFCCs and Fast Fourier Transforms are used to convert the
audio into a suitable input for a neural network. These neural
networks include CNN, Deep Neural Networks, k-NN, Random
Forests, hybrids, and combinations of neural networks. In general,
it appears that algorithms that use ensembles of neural networks or
hybrids tend to bemore accurate than those that solely use one type
of neural network. It is clear that neural networks improve as the
number and size of the datasets increase. Therefore, public datasets
are a great help for training the neural networks. Researchers can
use this information to cre-ate increasingly accurate neural
network architecture that yields extremely accurate results. The
more powerful and accessible the algorithm, the cheaper and more
widespread an accurate diagnosis.

14 RECOMMENDATIONS FOR FUTURE
STUDIES

Public databases of cough recordings such as the one used in the
Dicova challenge of this conference, the fkthecovid dataset, and
the ESC-50 dataset exist. However, there is a shortage of data for
training the neural networks.

1) More data is needed in the field to train the neural networks
optimally.

2) Increase the accessibility of public datasets for researchers to
use for training.

3) There must be a processing pipeline continuously gathering
new data so that algorithms can adapt to new pandemics.

Beyond a need for larger datasets, all areas of the processing
pipeline need to improve as we have seen throughout this review.
In sum-mary, improvement areas include:

1) First and foremost, a need for larger datasets as we just dis-cussed
2) Increasing metadata when collecting coughs
3) Cough segmentation from surrounding noise
4) Pre-processing filter selection
5) Network architecture and algorithm selection
6) Testing and explainability
7) Detection of longitudinal metrics such as disease severity.

15 CONCLUSION

Much progress has been made in the detection and
discrimination of cough based on neural networks, where

optimal algorithms have been found such as shown in
Figure 3. Machine learning algorithms have correctly
diagnosed many that have been afflicted with all kinds of lung
diseases. Further work is needed to bring neural networks into
medical practice, which require more public data for training.
This will likely be achieved in the near future. Cough
discrimination, once performed at a high enough accuracy,
can be applied to diag-nosing COVID-19 in clinics as well as
in people’s homes, which will greatly reduce the cost of screening
as well as increase accessibility. Therefore, people will be able to
test themselves faster and more conveniently than ever before.
Since COVID-19 is incredibly con-tagious for a large part due to
the lack of frequent testing, a more convenient, timely, method
such as machine learning can improve testing and do its part in
keeping COVID-19 under control.

Other papers that were instrumental to this literature review
paper but were unrelated to cough specifically are: (Conference
on Human Factors in Computing Systems, 2008), (Ablamowicz
and Fauser, 2007), (Patricia, 2007), (Adya et al., 2004), (Akyildiz
et al., 2002), (Akyildiz et al., 2007), (Using the amsthm Package,
2015), (Andler, 1979), (David, 2003), (Archer et al., 1984), (Bahl
et al., 2004), (Bowman et al., 1993), (Braams, 1991), (Buss et al.,
1987), (Clark, 1991), (Kenneth, 1985), (Cohen, 1996), (Cohen
et al., 2007), (Conti et al., 2009), (CROSSBOW, 2008), (Dijkstra,
1979), (Douglass et al., 1998), (Dunlop and Basili, 1985), (Ian,
2007), (Simon Fear, 2005), (Gerndt, 1989), (Goossens et al.,
1999), (Van Gundy et al., 2007), (Hagerup et al., 1993),
(Harel, 1978), (Harel, 1979), (CodeBlue, 2008), (Heering and
Klint, 1985), (Herlihy, 1993), (Hollis, 1999), (Hörmander, 1985a),
(Hörmander, 1985b), (IEEE, 2004), (Kirschmer and Voight,
2010), (Knuth, 1981), (Knuth, 1981), (Knuth, 1984), (Knuth,

FIGURE 3 | Flowchart for Optimal Algorithm for Cough Discrimination,
accord-ing to Amoh and Odame, 2016) and Shin et al. (2009) for COVID-19
would become, which is essential during a pandemic where millions are
suffering across the globe.

Frontiers in Signal Processing | www.frontiersin.org June 2022 | Volume 2 | Article 75968413

Sharan Automated Cough Segmentation and Discrimination

https://www.frontiersin.org/journals/signal-processing
www.frontiersin.org
https://www.frontiersin.org/journals/signal-processing#articles


1997), (Kong, 2001a), (Kong, 2001b), (Kong and Thanasankit,
2002), (Kong and Thanasankit, 2003), (Kong, 2004), (Kong,
2005), (Kong, 2006), (Korach et al., 1984), (Jacob, 1994),
(Kosiur, 2001), (Lamport, 1986), (Lee and Wexelblat, 1978),
(Newton and Kinder, 2005), (Li et al., 2008), (McCracken and
Golden, 1990), (Mullender, 1993), (Mumford, 1987), (Natarajan
et al., 2007), (Nielson, 1985), (Novak, 2003), (Obama, 2008),
(Petrie, 1986), (Poker- Edge .Com, 2006), (Reid, 1980),
(SIGCOMM Comput, 1984), (Rous, 2008), (Sadiq et al., 2021),
(Saeedi et al., 2010a), (Saeedi et al., 2010b), (Salas andHille, 1978),
(Joseph Scientist, 2008), (Smith et al., 2010), (Spector and
Mullender, 1990), (Thornburg, 2001), (TUG, 2017),
(Tzamaloukas and Garcia-Luna-Aceves, 2000), (Veytsman,

2022), (Wenzel, 1992), (Werneck et al., 2000), (Werneck et al.,
2000), (Culler et al., 2004), (Geiger and Meek, 2005), (Zhou et al.,
2008), (Zhou et al., 2010), (Anzaroot and McCallum, 2013),
(Anzaroot et al., 2014), (Bornmann et al., 2019), and (R Core
Team, 2019).
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