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Forward-looking imaging for maneuvering platforms has garnered significant

interest in many military and civilian fields. As the maneuvering trajectory in the

scanning period can be simplified as the constant acceleration maneuver,

monopulse imaging is applied to enhance the azimuthal resolution of the

forward-looking image. However, the maneuver causes severe range

migration and Doppler shift; this often results in range location error due to

the space-varying Doppler shifts and the failure of angle estimation. We

propose a decimation keystone algorithm based on the chirp-Z transform

(CZT). First, the pulse repetition frequency (PRF) is decimated with an

integer; thus, the azimuthal sampling sequence is decimated into many sub-

sequences. Then, the linear rangewalk correction (LRWC) is performed on each

sub-sequence using the keystone transform, significantly reducing the

influence of the change of Doppler-ambiguity-number on range location.

Further, the sub-sequences are regrouped as one sequence, and the range

curvature due to the acceleration is compensated in the frequency domain.

Finally, the varying Doppler centroid in each coherent processing interval (CPI)

is analyzed and compensated for the sum-difference angular measurements.

Simulation results demonstrate the effectiveness of the proposed algorithm for

forward-looking imaging under constant acceleration maneuvers and the

feasibility of range location error correction.
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1 Introduction

High-resolution microwave imaging of the front area of an aircraft has raised

significant interest among researchers in recent years. Doppler beam sharpening

(DBS) and monopulse imaging are two widely-used techniques for enhancing cross-

range/angular resolution in airborne scanning radar sensors. Doppler beam sharpening

cannot resolve multiple scatterers in the large squint cases because of the severe decline of

the Doppler centroid differences, resulting in a “blind area” in the forward-looking

direction. Forward-looking monopulse imaging refers to the two-dimensional microwave
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imaging of the front view of an aircraft based on monopulse

techniques. Generally, the radar antenna scans across the front

scene, and the monopulse technique is utilized to enhance the

azimuthal resolution of the image (Griffiths, 1998; Nickel, 2006;

Zhang et al., 2016). The method is characterized by low system

complexity, good adaptability for the flight path, and significant

resolution enhancement. However, Monopulse technique fails to

resolve target multiplicity in the range and azimuth resolution

bin of an ordinary monopulse radar. The angle glint caused by

target multiplicity may result in imaging blurring in forward-

looking images, especially for extended targets comprised of a

significant number of scatterers. Combining the amplitude-

comparison monopulse technique with the Doppler beam

sharpening (DBS) technique, the Doppler difference of the

scatterers in the main lobe is used to separate them into

different Doppler units (Lu et al., 2011). Then, the sum-

difference Doppler estimates are reconstructed and used to

estimate the scatterers’ angles. The method can significantly

alleviate the image blurring caused by the freedom limit in the

angular dimension (Li et al., 2021).

Usually, the uniform motion in the coherent processing

interval (CPI) often leads to severe space-varying range

migration (Li et al., 2012) and thus affects the focusing

performance and positioning accuracy. Therefore, linear range

walk correction (LRWC) is implemented based on the keystone

transform for forward-looking imaging (Li et al., 2012). However,

the change in the Doppler-ambiguity-number due to the varying

Doppler shifts of targets in different directions should also be

addressed.

The maneuvering trajectory may be simplified as the

constant acceleration motion during the CPI for monopulse

estimation. And the change of platform velocity in the

scanning process causes non-linear range migration and

space-varying Doppler shift. So, the range curvature and the

Doppler shifts need to be addressed. Especially when the

scanning mode is adopted, the change of Doppler-ambiguity-

number for scatterers situated at the larger squint angles may

cause severe range location error (Li et al., 2022). Moreover, the

angle measurement based on the Doppler estimates may suffer

from varying Doppler shifts due to accelerations.

Forward-looking radar imaging aims to accumulate the

scatterers’ reflective energy coherently. This is like detecting a

moving target using a stationary radar system. Both applications

must overcome the related motion between the radar’s antenna

phase center (APC) and the target. The range migration and the

Doppler history of the echoes are similar. Therefore, the methods

proposed for detecting targets with uniform acceleration motion

may be feasible to compensate for motion error in forward-

looking imaging.

To accumulate a target’s energy in the case of constant

acceleration motion, the range walk is generally corrected with

the keystone transform, and the second-order phase error caused

by accelerations is compensated using a dechirping processing

(Wu et al., 2009). Li X. et al. (Li et al., 2015) proposed a coherent

accumulations algorithm based on the keystone transform and

fractional Fourier transform (FrFT). After LRWC, the signals are

extracted for FrFT to complete energy accumulation. However,

since only the range walk is compensated, the range curvature

results in poor accumulation performance when the acceleration

cannot be ignored. Sharif R. et al. proposed a method based on

the keystone transform and Wigner-Hough (Sharif and

Abeysekera, 2007). The second-order keystone transform

removes the range curvature (Kirkland, 2011) (Yang et al.,

2011). First, the quadratic coupled term of range frequency

and the slow time is decoupled through the second-order

keystone transform. Second, a matched filter is reconstructed

to compensate for the Doppler centroid offset and estimate the

accelerations. Finally, the second stage of the second-order

keystone transform is used to correct range curvature and

accumulate the target energy. However, in all the above

research, the change of the Doppler ambiguity number is not

considered because only moving targets in the main lobe are

concerned in the detection cases. Furthermore, the second-order

keystone transforms mean an extensive computation load.

In imaging cases, the motion parameters are usually

measured using the GPS/INS mounted on the platform. On

the contrary, the range migration and the Doppler shift due

to targets or scatterers from the scene differ from the directions.

So, space-varying motion compensation plays a vital role in the

forward-looking imaging. To resolve the problem, a decimation

keystone algorithm is proposed in the paper. First, the range walk

is corrected using the decimation keystone transform, which

solves the change of the Doppler ambiguity number by reducing

the spatial sampling rate. Then, a compensative factor in the

frequency domain is constructed to eliminate the range

curvature. Finally, the effect of accelerations on the Doppler

centroid is considered and removed during angle measurement.

Simulation experiments verify the effectiveness of the proposed

method.

2 Analysis of the signal model for
forward-looking imaging on
uniformly accelerated platforms

2.1 A geometric model for forward-
looking imaging on uniformly accelerated
platforms

Forward-looking monopulse imaging based on the scanning

mode improves the azimuthal resolution of the real-aperture

image of the front scene through the monopulse technique (Wu

et al., 2010).

Suppose the radar platform flies from A to B with an initial

forward velocity v. ax is the transverse acceleration, ay is the

forward acceleration, and az is the longitudinal acceleration. The
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radar antenna beam scans the front area uniformly, and the

current azimuth angle, with respect to the flight path, is θ. During

the imaging process, the target’s slant range changes due to the

platformmovement, as illustrated in Figure 1. The coordinates of

B and P are ((1/2)axt2m, vtm + (1/2)ayt2m, R0 sinφ + (1/2)azt2m)
and (R0 cosφ sin θ, R0 cosφ cos θ, 0) , The instantaneous slant

range of the point target P , relative to the APC of the radar, is

R tm( ) �
������������������������������������������������������������������
1
2
axt2m − R0 cosφ sin θ( )2

+ vtm + 1
2
ayt2m − R0 cosφ cos θ( )2

+ R0 sin φ + 1
2
azt2m( )2

√
,

(1)

where R0 is the instantaneous slant range from A to P at the

initial time, tm is the slow time, and ϕ is the depression angle. For

further analysis, 1) is expanded to Taylor’s series.

R tm( ) � R0 − vtm cos θ cosφ − 1
2
ax cosφ sin θt

2
m

− 1
2
ay cosφ cos θt

2
m + 1

2
az sinφt

2
m

+ v2 1 − cos 2 θcos 2 φ( )
2R0

t2m + o t2m( ). (2)

According to the image geometry, the slant range changes

not only over the slow time, but also with the squint angle θ , and

the depression angle ϕ , Because the beam scans in the azimuth

dimension, the change in ϕ can be ignored and considered a

constant ϕ0 , The second term in (2) represents the range walk

due to the initial velocity, and the third, fourth, and fifth terms

mean the range curvature due to the acceleration. Under the

condition of far-range imaging and forward-looking imaging,

both θ and ϕ are tiny, so the sine of θ and ϕ are also small.

Meanwhile, when the platform is flying forward, the lateral

accelerations are small, so the influence of lateral acceleration

on range migration can be ignored. Since the CPI is small and

R0 ≫ vtm , the sixth and higher-order terms can be ignored. And

2) can be approximated as

R tm( ) ≈ R0 − vtm cos θ cosφ0 −
1
2
ayt

2
m cos θ cosφ0 (3)

2.2 Range migration and Doppler shift

Assume that the monopulse radar transmits a linear-

frequency-modulation (LFM) pulse signal; the time-domain

expression of the transmitted signal can be expressed by

x t( ) � δ t −mTr( ) exp j2πfct( ). (4)

where δ(t) represents the chirp pulse, m represents the pulse

sequence number, Tr represents the pulse repetition interval

(PRI), fc represents the center frequency.

The sum-difference channels time-domain echoes of the

point target after range pulse compression can be expressed as

sΣ t̂, tm( ) � AΣ tm( )p t̂ − 2R tm( )
c

( ) exp −j 4πfc

c
R tm( )( ),

sΔ t̂, tm( ) � AΔ tm( )p t̂ − 2R tm( )
c

( ) exp −j 4πfc

c
R tm( )( ). (5)

FIGURE 1
A geometric model for forward-looking imaging of a uniformly accelerated platform.
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where s∑(t̂, m) is the sum channel signal, sΔ(t̂, m) is the

difference channel signal, AΣ(tm) represents the sum

channel’s antenna pattern at the slow time, AΔ(tm) represents
the difference channel’s antenna pattern at the slow time, p(·) is
the normalized echo envelope, and t̂ represents the fast time.

Because the range migration and Doppler shift are the same for

the sum-difference channels, we only analyze the sum channel

signal. By taking a range Fourier transform to s∑(t̂, tm) and

applying the principle of stationary phase (POSP), the signal

spectrum can be obtained by

S fr, tm( ) � AΣ tm( )P fr( ) exp −j 4π
c

fc + fr( )R tm( )( ). (6)

where fr is corresponding to the frequency domain of t̂ , P(fr) is
the Fourier transform of p(t̂) , By substituting 3) into 6), the

signal spectrum becomes

S fr, tm( ) � AΣ tm( )P fr( ) exp −j 4π
c

fc + fr( )R0( )
× exp j

4π
c

fc + fr( )vtm cos θ cosφ0( )
× exp j

2π
c

fc + fr( )ayt2m cos θ cosφ0( )
� AΣ tm( )P fr( ) exp −j 4π

c
fc + fr( )R0( )

× exp j
4π
λ
vtm cos θ cosφ0( )

× exp j
4π
c
frvtm cos θ cosφ0( )

exp j
2π
λ
ayt

2
m cos θ cosφ0( )

× exp j
2π
c
frayt

2
m cos θ cosφ0( )

(7)

The cross-coupling phase terms are expressed as a range

frequency and slow time function. The second exponential term

indicates the Doppler shift, and the third shows the linear range

walk due to the forward velocity. The fourth termmeans the extra

Doppler shift, and the fifth indicates the range curvature due to

the forward acceleration.

3 Rangemigration correction base on
decimation keystone algorithm

According to 7), linear range migration and linear Doppler

shift caused by the forward velocity are space-variant for targets

in different directions. Traditional methods compensate for the

space-variant range walk using the keystone transform (Li et al.,

2012).

3.1 Traditional keystone transform and
range curve compensation

The keystone transform is performed to correct the range

walk in (7) in forward-looking imaging. To decouple the

relationship between fr and tm in (7), a scaling factor is

applied to tm, such as

tm � fc

fc + fr
t′m, (8)

which is the keystone transform (Perry et al., 1999). By

substituting 8) into 7), the spectrum signal is recast as

S1 fr, t
′
m( ) � AΣ t′m( )P fr( ) exp −j 4π

c
fc + fr( )R0( )

× exp j
4πfc

c
vt′m cos θ cosφ0( )

× exp j
2π
c

f2
c

fc + fr
ay t′m( )2 cos θ cosφ0( ), (9)

where the traditional keystone transform eliminates the coupling

between fr and tm in the second term and compensates for the

varying range walk, but, the third exponential term in (9)

represents a residual coupling between fr and (t′m)2
introduced by the keystone transform.

For the high-band radar satisfiesfr ≪fc , asA(t′m) ≈ A(tm) ,
f2
c /fc + fr � fc/1 + (fr/fc) ≈ fc × (1 − (fr/fc)) � fc − fr ,

9) can be approximated as

FIGURE 2
Schematic diagram of the residual velocity generated by solving Doppler ambiguity.
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S1
′ fr, t

′
m( ) � AΣ t′m( )P fr( ) exp −j 4π

c
fc + fr( )R0( )

× exp j
4πfc

c
vt′m cos θ cosφ0( )

× exp j
2πfc

c
ay t′m( )2 cos θ cosφ0( )

× exp −j 2πfr

c
ay t′m( )2 cos θ cosφ0( ).

(10)

To compensate the range curvature in the fourth exponential

term, a frequency-domain factor is proposed to decouple fr and

(t′m)2 (Xia, 2011). The compensation factor is expressed by

H fr, t
′
m( ) � exp j

2πfr

c
ay t′m( )2 cos θ cosφ0( ). (11)

Considering that the slant angle in the front area is usually

less than 15°, the change in cos θ is small. Therefore, the

difference in the range curvature of targets in different

directions can be ignored. The compensation factor is

simplified as

H fr, t
′
m( ) � exp j

2πfr

c
ay t′m( )2 cosφ0( ), (12)

Therefore, the range curve compensation can be manipulated in

the frequency domain. By multiplying by (10), we can obtain

S2 fr, t
′
m( ) � S1

′ fr, t
′
m( ) exp j

2πfr

c
ay t′m( )2 cosφ0( )

≈ AΣ t′m( )P fr( ) exp −j 4π
c

fc + fr( )R0( )
× exp j

4πfc

c
vt′m cos θ cosφ0( )

× exp j
2πfc

c
ay t′m( )2 cos θ cosφ0( ). (13)

Performing the inverse Fourier transform to (13), yields

s′ t̂, m( ) � AΣ t′m( )p t̂ − 2R0

c
( )

exp −j 4πfc

c
R0 − vt′m cos θ cosφ0 −

1
2
ay((

t′m( )2 cos θ cosφ0)). (14)

The slant range in the envelope indicates that the space-

variant range migration has been corrected using the keystone

transform and range curve compensation. However, the

exponential term means the acceleration introduces an extra

Doppler shift.

3.2 The decimation keystone algorithm for
Doppler ambiguity compensation

For the high-band radars, as the PRF of the system is much

smaller than the Doppler centroid, the Doppler ambiguity

occurs. The correction of the Doppler ambiguity must

combine with the keystone transform. The dependence on the

Doppler ambiguity number is a limitation of the keystone

transform (Zhang and Zeng, 2005) (Li, 2006) and F is an

integer defined as

fdc � F × FR + fdn fdn

∣∣∣∣ ∣∣∣∣< FR

2
, (15)

where FR represents the PRF, fdn represents the measured

Doppler centroid in the case of Doppler ambiguity, fdc

represents the actual Doppler centroid of the main-beam

echoes, which is expressed by

fdc � 2vfc cos θ cosφ0

c
, (16)

Generally, F is achieved by

F � 〈fdc

FR
〉, (17)

where 〈 · 〉 is a rounding operator. fdw represents the Doppler

bandwidth of the main-beam echoes and is expressed by

(Richards, 2005)

fdw �
2vfcθ3 cosφ0

c
sin θ θ| |> θ3

2

2vfc cosφ0

c
1 − cos θ + θ3

2
( )( ) θ| |< θ3

2

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩ , (18)

where θ3 is the 3 dB beamwidth. According to (16) and (18), with

the increase of θ , the Doppler centroid decreases, whereas the

Doppler width increases, which is illustrated in Figure 2.

fdc0 and fdn0 represent the actual Doppler centroid and the

measured Doppler centroid of the target at 0°, respectively.
Similarly, fdcθ and fdnθ represent the true Doppler centroid

and the measured Doppler centroid of the target at θ,

respectively. In the scanning mode, the Doppler ambiguity

number of the front direction is used to compensate for all

the echoes from the targets on both sides. Therefore, the residual

error of the Doppler centroid for targets at θ occurs. If fdn0 is just

more significant than −FR/2 , the change of the Doppler

ambiguity number is likely to occur for those targets apart

from the flight path, producing a residual velocity, as shown

in Figure 2.

Since fdc0 is just larger than (F + 0.5)FR , the Doppler

ambiguity number is rounded to F + 1 , Because the actual

Doppler ambiguity number for the target at θ is F, it might

be shifted to fdcθ
′ , which means an extra velocity error. Therefore,

the wrong Doppler ambiguity number introduces the residual

Δv, which can be expressed by

Δv � v′ − v � c · fdcθ
′

2fc cos θ cosφ
− c · fdcθ

2fc cos θ cosφ
� c · FR

2fc cos θ cosφ
,

(19)
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where v′ is the related velocity from the platform to the target

whose Doppler centroid is fdcθ′ , The greater the residual rate is,

the larger the range location error will be.

A decimation keystone algorithm is proposed to solve the

range location error caused by the Doppler ambiguity

compensation. Suppose that the length of the sampling

sequence in the slow time dimension is M � P × Q. By down-

sampling the original sequence using an integer Q, the echo

sequence is decimated evenly intoM sub-sequences, as shown in

Figure 3. Each sub-sequence consists of P sampling points, which

index is p(p � 1, 2, . . . , P) , The sub-sequences are formed in the

order of P1, P2, . . . , PQ , as shown in Figure 3.

For each sub-sequence Pq, the spatial sampling rate FR is

reduced by Q times. Then keystone transform is manipulated to

the sub-sequence to compensate for the range walk. Although the

change in the Doppler ambiguity number cannot be avoided, a

low FR means less residual Doppler ambiguity. For example,

when the ambiguity number is changed from F to F + 1 , the

residual velocity Δv′ becomes

Δv′ � c · FR/Q( )
2fc cos θ cosφ

� Δv
Q

(20)

The residual velocity is reduced by Q times compared with

the traditional method. By setting an appropriate Q to make sure

FIGURE 3
Schematic diagram of sequence decimating and rearranging.

FIGURE 4
Flowchart of decimation keystone algorithm.
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more than one sample is achieved in each beam position, the

residual range walk can be limited to half a range resolution unit

to achieve accurate target positioning. After range walk

correction, the sub-sequences are regrouped according to the

inverse process, as shown in Figure 3.

Since the actual signal processing is digitalized, the range

frequency and the slow time in the data need to be represented as

discrete variables. Three methods to implement the keystone

transform have been proposed (Wang and Zhao, 2011): SINC

interpolation, DFT-IFFT, and CZT. Because the computational

complexity of the CZT is much smaller than the other two

methods, it is used to implement the keystone transform. The

process can be expressed as follows:

S fr, zm( ) � Wm2/2 g m( ) p h m( )[ ], (21)

where W � e−j(fc+fr/fc)2π/M, g(m) � S(fr, m)Wm2/2,

h(m) � W−m2/2
, 0≤m≤M − 1, M is the data length of

S(fr, m), Performing the inverse FFT to (21), in the case

of Doppler ambiguity, the keystone transform can be

written as

S1 fr,m′( ) � IFFT S fr, zm( ) exp j2πFm′( )( ) (22)

where F is the Doppler ambiguity number.

The flowchart of the decimation keystone algorithm is

shown as Figure 4.

After range compression and motion compensation, we

utilize the Doppler estimates of the sum-difference

measurements to achieve monopulse forward-looking imaging

(Li et al., 2021). First, target multiplicity is resolved by exploiting

the different Doppler shifts caused by the relative motion

between the platform and the targets in different directions.

High azimuthal angle measurement accuracy of the Doppler

estimates is obtained using the sum-difference amplitude-

comparison technique. Subsequently, the intensity of the sum

channel estimates is projected onto the image plane according to

the range and angle measurements.

3.3 The effect of acceleration on the
Doppler centroid and its compensation

In the geometric model for forward-looking imaging

illustrated in Figure 1, when the acceleration a � 0, the

platform is moving uniformly. The Doppler shift of a target

situated at the azimuth angle, θ, is defined by (16). However, if

the platform is in a constant acceleration motion, the Doppler

shift is affected by the acceleration, as shown in (14). In the CPI,

the Doppler centroid of the main beam echoes also varies. To

address the problem, 1) is expanded into the Taylor series at tc,

which is the mean time of the CPI.

R tm − tc( ) � A + B tm − tc( ) + C tm − tc( )2 + o tm − tc( )2( ),
(23)

where

A �
����������������������
R2
0 + R2

c − 2R0Rc cos θ cos φ
√

≈ R0 − Rc cos θ cosφ

B � Rcvc − R0vc cos θ cosφ����������������������
R2
0 + R2

c − 2R0Rc cos θ cosφ
√ ≈ − vc cos θ cosφ

C � 1
2
· v2c + aRc − aR0 cos θ cos φ����������������������

R2
0 + R2

c − 2R0Rc cos θ cosφ
√ − v2c Rc − R0 cos θ cosφ( )2

R2
0 + R2

c − 2R0Rc cos θ cosφ( )3/2⎛⎜⎜⎜⎝ ⎞⎟⎟⎟⎠
≈
v2c 1 − cos 2 θ cos 2φ( ) − aR0 cos θ cosφ

2R0
,

(24)

and Rc � vtc + 1/2ayt2c , vc � v + aytc is the mean velocity in the

CPI. Suppose that fdc(tc) is the Doppler centroid of the scanning
target at tc, then it can be redefined as

FIGURE 5
Comparison of image results of the uniform motion platform. (A) Traditional keystone transform. (B) Decimation keystone algorithm.
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FIGURE 6
Comparison of image results of the uniform acceleration platform. (A) Traditional keystone transform at a � 10(m/s)2 (B) Traditional keystone
transform at a � 50(m/s)2. (C) Decimation keystone algorithm without range curve compensation (a � 10(m/s)2). (D) Decimation keystone
algorithm without range curve compensation (a � 50(m/s)2). (E) Decimation keystone algorithm with range curve compensation (a � 10(m/s)2). (F)
Decimation keystone algorithm with range curve compensation (a � 50(m/s)2).
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fdc tc( ) � −2B
λ

� 2vc cos θ cosφ0

λ
(25)

where the wavelength is, thus, the Doppler bandwidth is also

modified as follows:

fdw tc( ) �
2vcfcθ3 cosφ0

c
sin θ θ| |> θ3

2

2vcfc cosφ0

c
1 − cos θ + θ3

2
( )( ) θ| |< θ3

2

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩ . (26)

If the monopulse imaging is performed based on the Doppler

estimates of the sum-difference channels, the Doppler

parameters must be calculated according to (25) and (26).

Otherwise, the scatterers’ energy in the main lobe is missed,

and the angle cannot be measured accurately, leading to image

blurring.

4 Simulation results

4.1 Point target imaging simulation

The monopulse forward-looking imaging algorithm is

used for simulation to verify the proposed method (Li

et al., 2021). The simulation parameters are given in

Table 1. Suppose that the radar sensor is mounted on an

aircraft. The velocity v is 240 m/s. The radar transmits

coherent linear frequency-modulated signals with 1μs pulse

width and 50 MHz bandwidth. The center frequency of the

transmitted signal is 18 GHz. The beam scans the front scene

from -15° to 15°. The pulse number in the scanning

illumination is 2500. There are 3 × 21 point targets in the

scene in a 30 m × 30 m lattice. Each target has a uniform

intensity, and the axis of the scene center is (0, 1700) m in

meters on the ground surface. The SNR of the range-

compressed data is 20 dB, and the noise follows a complex

normal distribution with mean zero and variance σ2. The CPI

for the angle measurement is 32. Doppler estimates in the

sum-difference channels are reconstructed by CZT and used

to measure the azimuth angles of the point targets in

monopulse imaging (Li et al., 2021).

Figure 5 compares the forward-looking imaging results

processed using the traditional method and the decimation

keystone algorithm. The radar platform obeys a uniform

motion. The Doppler ambiguity number of the target at θ �
0° is F � 〈fdc0/FR〉 � 12, The Doppler ambiguity number of the

target at θ � 10° is Fθ � 〈fdcθ/FR〉 � 11, which means the

change in the Doppler ambiguity number occurs in the case.

The residual velocity generated by the wrong Doppler ambiguity

number is Δv � (c · FR)/(2fc cosφ0) � 20.8(m/s), The point

targets at |θ| ≠ 0° suffer from the residual rate, and their range

displacements are approximately proportional to their azimuthal

angles. The imaging results in Figure 5A verify the residual velocity’s

influence on the range location error. The imaging result of

the decimation keystone algorithm is shown in Figure 5B.

The decimating factor is Q � 25. Thus, the residual velocity

decreases to Δv′�Δv/Q� (c · (FR/Q))/(2fc cosφ0) � 0.8(m/s),
The change in the Doppler ambiguity number is more severe

in the sub-sequences, e.g., the Doppler number difference for

the point targets at θ � 10° is 4. But the range walk caused by

the residual rate is still less than half a range resolution unit owing

to the slight residual velocity and the short CPI. Therefore, the

targets are located accurately, as shown in Figure 5B.

Figure 6 verifies the effectiveness of the range curve

compensation on the constant acceleration maneuvers. Figures

6A, B present the imaging results processed by the traditional

FIGURE 7
Range profiles of targets at the axis (range 1700 m, azimuth −300 m). (A) Comparison of traditional keystone transform and decimation
keystone algorithm. (B) Comparison of only decimation and decimation keystone algorithm.
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keystone transform with different accelerations. Because of the

change in the Doppler ambiguity number and the range

curvature, range positioning error is apparent in the images.

Figures 6C, E compare the imaging results processed by the

decimation keystone algorithm with the acceleration equals

10(m/s)2. In Figure 6C, the range curvature due to the

acceleration is not compensated. Because of the slight

acceleration, the range curvature in Figure 6C is not apparent.

FIGURE 8
Comparison of correction results in simulation scenes. (A) Original Ku-band SAR map. (B) The data matrix of the sum channel. (C) The data
matrix of the difference channel. (D) Traditional keystone transform. (E) Decimation keystone algorithm without range curve compensation. (F)
Decimation keystone algorithm with range curve compensation.
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Therefore, the decimation keystone transformworks well.When the

acceleration increases to 50(m/s)2, the imaging result without range

curve compensation in Figure 6D presents apparent range

curvatures. And range curve compensation can eliminate the

influence of the significant acceleration on the targets’ envelopes,

as shown in Figure 6F. Simulation results demonstrated the

effectiveness of the decimation keystone transform and range

curve compensation in the case of constant acceleration maneuvers.

We compare the range profiles of the point target at the azimuth

distance of -300 m and the ground range of 1700 m from Figures 6B,

D, F, respectively. The normalized range profiles are interpolated by

five times. In Figure 7A, the curve in red represents the profile

processed using the traditional keystone transform, where the

displacement from the actual range is about 3 m. The curve in

the blue line represents the profile processed using the decimation

keystone transform, where the displacement is invisible. In

Figure 7B, the red curve represents the point target’s range

profile in Figure 6D. The curve in blue represents the range

profile of the point target in Figure 6F. Without compensating

for the range curvature, the point targets will be offset by 3 m,

resulting in a misalignment of the range positioning. The integrated

side lobe ratio (ISLR) is calculated by:

ISLR � 10 log 10

Ptotal − Pmain

Pmain
( ). (27)

In Figure 7A, the ISLR of the traditional keystone transform

is -9.93dB, while the ISLR of the decimation keystone algorithm

is −14.65 dB. In Figure 7B, the ISLR of only decimation

is −14.34 dB. The energy of the decimation keystone

algorithm is more concentrated and has a better focusing effect.

4.2 Scene simulation verification

Point targets simulation verifies the effectiveness of the

decimation keystone algorithm. This section demonstrates the

proposed method’s feasibility in reconstructing an extended

target. In the simulation, a Ku-band SAR image is used as the

original scene, and the image was down-sampled by 10 with 3 m ×

3 m pixel resolution, as shown in Figure 8A. The red dotted line

represents the actual range location of the road’s edges in the image.

The image center is at the ground position (01,700)m. The echo data

are generated according to the simulation parameters in Table 1with

the acceleration equals 50 m/s2. Figures 8B, C show the range-

compressed data matrices of the sum-difference channels,

respectively. The image results are plotted in the dB scale.

Figure 8D presents the image result processed with the

traditional keystone transform. The road edges are distorted and

defocused because of the space-varying Doppler shift and the

forward acceleration. The range offset of the targets is severe at

the large azimuthal angles. Figure 8E is the imaging result processed

with the decimation keystone algorithm without range curve

compensation. The distortion of the road edges remains

significant owing to the range curvature. Figure 8F demonstrates

that the decimation keystone algorithm combined with range curve

compensation can reconstruct the scene accurately. The

experimental results verify the effectiveness of our proposedmethod.

5 Conclusion

When the airborne platform adopts the scanning mode in

forward-looking imaging, the platform motion leads to range

walk and Doppler shift in the target accumulation time. When

the keystone transform is used for range walk correction, the point

targets on both sides may suffer from the change of Doppler

ambiguity number. This paper proposes the decimation keystone

algorithm, which can reduce the PRF by decimating, thus reducing

the residual velocity and achieving an accurate range position.

Furthermore, we analyze the influence of range curvature caused

by the acceleration and the Doppler shift on the imaging results for

platforms with constant acceleration motion. The decimation

TABLE 1 Simulation parameters for forward-looking scanning radar.

Parameters Value

Radar center frequency 18 GHz

signal bandwidth 50 MHz

beam scanning area −15° ~ 15°

3 dB beam width of the sum channel 6°

Signal pulse width 1 μs

Antenna scanning rate 30°/s

Center ground range 1700 m

Range × azimuth resolution 3 m × 3 m

Pulse repetition frequency 2500 Hz
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keystone algorithm introduces a frequency-domain factor to

compensate for the range curvature. Simulation results verify the

effectiveness of the proposed method.
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