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We consider the attributes of a point cloud as samples of a vector-valued

volumetric function at discrete positions. To compress the attributes given the

positions, we compress the parameters of the volumetric function. We model

the volumetric function by tiling space into blocks, and representing the

function over each block by shifts of a coordinate-based, or implicit, neural

network. Inputs to the network include both spatial coordinates and a latent

vector per block. We represent the latent vectors using coefficients of the

region-adaptive hierarchical transform (RAHT) used in the MPEG geometry-

based point cloud codec G-PCC. The coefficients, which are highly

compressible, are rate-distortion optimized by back-propagation through a

rate-distortion Lagrangian loss in an auto-decoder configuration. The result

outperforms the transform in the current standard, RAHT, by 2–4 dB and a

recent non-volumetric method, Deep-PCAC, by 2–5 dB at the same bit rate.

This is the first work to compress volumetric functions represented by local

coordinate-based neural networks. As such, we expect it to be applicable

beyond point clouds, for example to compression of high-resolution neural

radiance fields.
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1 Introduction

Upon the recent success of implicit networks, a. k.a. coordinate-based networks

(CBNs), in representing a variety of signals such as neural radiance fields (Mildenhall

et al., 2020; Yu A. et al., 2021; Barron et al., 2021; Hedman et al., 2021; Knodt et al., 2021;

Srinivasan et al., 2021; Zhang et al., 2021), point clouds (Fujiwara and Hashimoto, 2020),

meshes (Park et al., 2019a; Mescheder et al., 2019; Sitzmann et al., 2020; Martel et al., 2021;

Takikawa et al., 2021), and images (Martel et al., 2021), an end-to-end compression

framework for representations using CBNs has become inevitably necessary. Motivated

by this, we propose the first end-to-end learned compression framework for volumetric
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functions represented by CBNs with a focus on point cloud

attributes as other representations lack baselines to compare

with. We call our method Learned Volumetric Attribute

Compression (LVAC). Point clouds are a fundamental data

type underlying 3D sampling and hence play a critical role in

applications such as mapping and navigation, virtual and

augmented reality, telepresence, and cultural heritage

preservation, which rely on sampled 3D data (Mekuria et al.,

2017; Park et al., 2019a; Pierdicca et al., 2020; Sun et al., 2020).

Given the volume of data in such applications, compression is

important for both storage and communication. Indeed,

standards for point cloud compression are underway in both

MPEG and JPEG (Schwarz et al., 2019; Jang et al., 2019; Graziosi

et al., 2020; 3DG, 2020a).

3D point clouds, such as those shown in Figure 1, each

consist of a set of points {(xi, yi)}, where xi is the 3D position of

the ith point and yi is a vector of attributes associated with the

point. Attributes typically include color components, e.g., RGB,

but may alternatively include reflectance, normals, transparency,

density, spherical harmonics, and so forth. Commonly (Zhang

et al., 2014; Cohen et al., 2016; de Queiroz and Chou, 2016;

Thanou et al., 2016; de Queiroz and Chou, 2017; Pavez et al.,

2018; Schwarz et al., 2019; Chou et al., 2020; Krivokuća et al.,

2020), point cloud compression is broken into two steps:

compression of the point cloud positions, called the geometry,

and compression of the point cloud attributes. As illustrated in

Figure 2, once the decoder decodes the geometry (possibly with

loss), the encoder encodes the attributes conditioned on the

decoded geometry. In this work, we focus on this second step,

namely attribute compression conditioned on the decoded

geometry, assuming geometry compression (such as Krivokuća

et al., 2020; Tang et al., 2020) in the first step. It is important to

note that this conditioning is crucial in achieving good attribute

compression. This will become one of the themes of this paper.

Following successful application of neural networks in image

compression (Ballé et al., 2016; Toderici et al., 2016; Ballé et al.,

2017; Toderici et al., 2017; Ballé, 2018; Ballé et al., 2018; Minnen

et al., 2018; Balle et al., 2020; Mentzer et al., 2020; Hu et al., 2021),

neural networks have been used successfully for point cloud

geometry compression, demonstrating significant gains over

traditional techniques (Yan et al., 2019; Quach et al., 2019;

Guarda et al., 2019a,b; Guarda et al., 2020; Tang et al., 2020;

Quach et al., 2020b). However, the same cannot be said for point

cloud attribute compression. To our knowledge, our work is

among the first to use neural networks for point cloud attribute

compression. Previous attempts have been hindered by the

inability to properly condition the attribute compression on

the decoded geometry, thus leading to poor results. In our

work, we show that proper conditioning improves attribute

compression performance by over 30% reduction in the BD-

rate. This results in a gain of 2–4 dB in the reconstructed colors

FIGURE 1
Point clouds rock, chair, scooter, juggling, basketball1, basketball2, and jacket.

FIGURE 2
Point cloud codec: a geometry encoder and decoder, and an
attribute encoder and decoder conditioned on the decoded
geometry.
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over region-adaptive linear transform (RAHT) coding (de

Queiroz and Chou, 2016), which is used in the “geometry-

based” point cloud compression standard of MPEG G-PCC.

Additionally, we compare our method with a recent learned

framework Deep-PCAC (Sheng et al., 2021), which is not

volumetric, and outperform it by 3–5 dB.

Although learned image compression systems have been

based on convolutional neural networks (CNNs), in this work

we use what have come to be called coordinate based networks

(CBNs), also called implicit networks. A CBN is a network, such

as a multilayer perceptron (MLP), whose inputs include the

coordinates of the spatial domain of interest, e.g., x ∈ R3. We

use lightweight MLPs with one hidden layer as CBNs. Keeping

the CBNs relatively small provides (1) efficient training/inference

and (2) negligible overhead for representing the CBN. A CBN can

directly represent a nonlinear function of the spatial coordinates

x, possibly indexed with a latent or feature vector z, as y = fθ(x) or

y = fθ(x; z). CBNs have recently come to the fore in accurately

representing geometry and spatial phenomena such as radiance

fields. However, while there has been an explosion of work using

CBNs for representing specific objects and scenes (Park et al.,

2019a; Mescheder et al., 2019; Mildenhall et al., 2020; Sitzmann

et al., 2020; Yu A. et al., 2021; Barron et al., 2021; Hedman et al.,

2021; Knodt et al., 2021; Martel et al., 2021; Srinivasan et al., 2021;

Takikawa et al., 2021; Zhang et al., 2021), none of that work

focuses on compressing those representations. (Two exceptions

may be (Bird et al., 2021; Isik, 2021), which simply apply model

compression to the CBNs.). Good lossy compression is

nontrivial, and must make the optimal trade-off between the

fidelity of the reconstruction and the number of bits used in its

binary representation. We show that naïve scalar quantization

and entropy coding of the parameters θ and/or latent vectors z

lead to very poor results, and that superior results can be achieved

by proper orthonormalization prior to uniform scalar

quantization. In addition, for the best rate-distortion

performance, the entropy model and CBN must be jointly

trained to minimize a loss function that penalizes not only

large distortion (or error) but large bit rate as well. We

achieve this via a rate-distortion Lagrangian loss. Our main

contributions include the following:

• We are the first to compress volumetric functions modeled

by local coordinate based networks, by performing an end-

to-end optimization of a rate-distortion Lagrangian loss

function, thereby offering scalable, high fidelity

reconstructions even at low bit rates. We show that

naïve uniform scalar quantization and entropy coding

lead to poor results.

• We apply our framework to compress point cloud

attributes. (It is applicable to other signals as well such

as neural radiance fields, meshes, and images.) Hence, we

are the first to compress point cloud attributes using CBNs.

Our solution allows the network to interpolate the

reconstructed attributes continuously across space, and

offers a 2–5 dB improvement over our learned baseline

Deep-PCAC (Sheng et al., 2021) and a 2–4 dB

improvement over our linear baseline, RAHT (de

Queiroz and Chou, 2016) with adaptive Run-Length

Golomb-Rice (RLGR) entropy coding—the transform in

the latest MPEG G-PCC standard.

• We show formulas for orthonormalizing the coefficients to

achieve over a 30% reduction in bit rate. Note that

appropriate orthonormalization is an essential (and

nontrivial) component of all compression pipelines.

Section 2 provides a brief overview of our Learned

Volumetric Attribute Compression (LVAC) framework

without going into the details, Section 3 covers related work,

Section 4 details our framework, Section 5 reports experimental

results, and Section 6 discusses and concludes. We provide a list

of notations used in the paper in Supplementary Table S1.

2 Overview of the framework

The goal of this work is to develop a volumetric point cloud

attribute compression framework that uses the decoded

geometry as side information. Unlike standard linear

transform coding approaches such as RAHT, our approach

performs non-linear interpolation through the learned

volumetric functions modeled by neural networks.

Our approach is summarized in Figure 3, where we jointly train

1) some transform coefficients V for the point cloud blocks, 2)

quantizer stepsizes, 3) an entropy coder, and 4) a CBN via

backpropagation through a Lagrangian loss function D + λR.

Here D is the distortion between the reconstructed attributes and

the true attributes (color attributes in this work), and R is the

estimated entropy of the quantized transform coefficients V̂,

computed by our neural entropy model, which is a differentiable

proxy for the “non-differentiable” entropy coder. The quantized

transform coefficients V̂ are inverse transformed via a linear

synthesis matrix Ts as in standard transform coding frameworks.

Notice, however, that we omit the usual analysis transform prior to

quantization. This is because we directly learn the transform

coefficients V through optimization for each point cloud 1. These

learned transform coefficientsV are then quantized and synthesized

into latent vectors Ẑ � [ẑn] as shown in the figure. While the

synthesized latent vector ẑn for the block that a query point

resides in could be output as the reconstructed attributes for that

point, we take one step further and introduce a non-linear operation:

We feed a small neural network, namely a CBN, with the synthesized

1 We train the latents, quantizer stepsizes, neural entropy model, and the
CBNs for each point cloud. However, we show the CBNs could be
generalized across different point clouds.
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latent vector and the 3D location of the query point x. This network

outputs the reconstructed attributes, which are used in our distortion

calculation. Finally, our Lagrangian loss is calculated with the

estimated rate and the distortion, and this loss is backpropagated

through all the blocks in Figure 3. As wewill explain in Section 4, the

synthesis matrix Ts is not learned. However, it is a fixed function of

the geometry, as in RAHT. In fact, our synthesis transform can be

regarded as the RAHT synthesis transform operating on latent

vectors rather than attributes. Thus, we compress our latent vectors

conditioned on the geometry as side information. All components

besides the synthesis matrix such as the transform coefficientsV, the

quantization stepsizes, the entropy model, and the CBN are jointly

trained through the Lagrangian loss function that optimizes both the

reconstructions and the bitrate.

As we dive into the details of Figure 3 in the following

sections, we try to address the following challenges:

• It is essential to make sure that the coefficients are

orthonormalized prior to quantization. Otherwise, the

quantization error would accumulate across different

channels. To achieve this, we need to introduce

orthonormalization and de-orthonormalization steps

before and after the quantization.

• Both quantization and entropy coding are non-differentiable

operations. Thus, we need to utilize diffentiable proxies to

perform backpropagation during training.

3 Related work

3.1 Learned image compression

Using neural networks for good compression is non-trivial.

Simply truncating the latent vectors of an existing representation

to a certain number of bits is likely to fail, if only because small

quantization errors in the latents may easily map into large

quantization errors in their reconstructions. Moreover, the

entropy of the quantized latents is a more important

determiner of the bit rate than the total number of

coefficients in the latent vectors or the number of bits in their

binary representation. Early work on learned image compression

could barely exceed the rate-distortion performance of JPEG on

low-quality 32 × 32 thumbnails (Toderici et al., 2016). However,

over the years the rate-distortion performance has consistently

improved (Ballé et al., 2016; Ballé et al., 2017; Toderici et al., 2017;

Ballé, 2018; Ballé et al., 2018; Minnen et al., 2018; Balle et al.,

2020; Cheng et al., 2020; Hu et al., 2021) to the point where the

best learned image codecs outperform the latest video standard

(VVC) in PSNR, albeit at much greater complexity (Guo et al.,

2021), and greatly outperform conventional image codecs (by

over 2× reduction in bit rate) at the same perceptual distortion

(Mentzer et al., 2020). Essentially all current competitive learned

image codecs are versions of nonlinear transform coding (Balle

et al., 2020), in which the bottleneck latents in an auto-encoder

are uniformly scalar quantized and entropy coded, for

transmission to a decoder. The decoder uses a convolutional

neural network as a synthesis transform. The codec parameters θ

are trained end-to-end through a differentiable proxy for the

quantizer, often modeled as additive uniform noise. The loss

function is a Lagragian L(θ) = D(θ) + λR(θ), where D(θ) and R(θ)

are the expected distortion and bit rate. In this work, we use

similar proxies for uniform scalar quantization and entropy

coding as used for the learned image compression and train

our representation using a similar loss function.

3.2 Coordinate based networks

Early work that used coordinate based networks (Park et al.,

2019a; Mescheder et al., 2019; Sitzmann et al., 2020), exemplified

FIGURE 3
Querying attributes at position x ∈ R3. The block Bn(x) at target level L in which x is located is identified by traversing a binary space partition tree.
The “learnable” transform coefficients V are first quantized by rounding to obtain V̂ � �V�, and then the latent vectors are reconstructed as Ẑ � TsV̂. V
is optimized by back-propagatingD (θ, Z)+ λR (θ, Z) through all the components in the figure. The pipeline uses differentiable proxies for the quantizer
and entropy coder. In Figure 4, we give more details on the quantization and the orthonormalization steps, which are omitted in this figure for
simplicity.
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by DeepSDF (Park et al., 2019b), focused on representing

geometry implicitly, e.g., as the c-level set {x: c �
fθ(x; z)} ⊂ R3 of a function fθ: R

3 × RC → R modeled by a

neural network, where z ∈ RC is a global latent vector. As a result

such networks were called “implicit” networks. Much of this

work focused on auto-decoder architectures, in which the latent

vector z was determined for each instance by back propagation

through the loss function. The loss function L (θ, z) measured a

pointwise error between samples fθ(xi; z) of the network and

samples f (xi) of a ground truth function, such as the signed

distance function (SDF).

Later work that used CBNs, exemplified by NeRF (Mildenhall

et al., 2020; Barron et al., 2021), used the networks to model not

SDFs but rather other, vector-valued, volumetric functions,

including color, density, normals, BRDF parameters, and

specular features (Yu A. et al., 2021; Hedman et al., 2021;

Knodt et al., 2021; Srinivasan et al., 2021; Zhang et al., 2021).

Since these networks were no longer used to represent solutions

implicitly, their name started to shift to “coordinate-based”

networks, e.g., (Tancik et al., 2021). An important innovation

from this cohort was measuring the loss L(θ) not pointwise

between samples of fθ and some ground truth volumetric

function f, but rather between volumetric renderings (to

images) of fθ and f, the latter renderings being ground truth images.

Mildenhall et al. (2020) focused on training the CBN fθ(x) to

globally represent a single scene, without benefit of a latent vector z.

However, subsequent work shifted towards using the CBN with

different latent vectors for different objects (Stelzner et al., 2021; Yu

H.-X. et al., 2021; Kundu et al., 2022a,b) or different regions

(i.e., blocks or tiles) in the scene (Chen et al., 2021; DeVries et al.,

2021; Martel et al., 2021; Mehta et al., 2021; Reiser et al., 2021;

Takikawa et al., 2021; Rematas et al., 2022; Tancik et al., 2022; Turki

etal., 2022).Partitioning the sceneintoblocks,andusingaCBNwith

adifferent latentvector in eachblock, simultaneously achieves faster

rendering (Reiser et al., 2021; Takikawa et al., 2021), higher

resolution (Chen et al., 2021; Martel et al., 2021; Mehta et al.,

2021), and scalability to scenes of unbounded size (DeVries et al.,

2021; Rematas et al., 2022; Tancik et al., 2022; Turki et al., 2022).

However, this putsmuch of the burden of the representation on the

local latentvectors, rather thanontheparametersof theCBN.This is

analogous to conventional block-based image representations, in

which the sameset of basis functions (e.g., 8×8DCT) isused in each

block, and activation of each basis vector is specified by a vector of

basis coefficients, different for each block.

In this work, we partition 3D space into blocks (hierarchically

using trees, akin to (Yu A. et al., 2021; Martel et al., 2021;

Takikawa et al., 2021)), and represent the color within each

block volumetrically using a CBN fθ(x; z), allowing fast, high-

resolution, and scalable reconstruction. Unlike all previous CBN

works, however, we train the representation not just for fit but for

efficient compression as well via transform coding and a rate-

distortion Lagrangian loss function. It is worth noting that

(Takikawa et al., 2022), which cites our preprint Isik et al.

(2021b), recently adapted our approach (though without RD

Lagrangian loss or orthonormalization) to use fixed-rate vector

quantization across the transform coefficient channels.

3.3 Point cloud compression

MPEG is standardizing two point cloud codecs: video-based

(V-PCC) and geometry-based (G-PCC) (Jang et al., 2019;

Schwarz et al., 2019; Graziosi et al., 2020). V-PCC is based on

existing video codecs, while G-PCC is based on new, but in many

ways classical, geometric approaches. Like previous works (Zhang

et al., 2014; Cohen et al., 2016; de Queiroz and Chou, 2016;

Thanou et al., 2016; de Queiroz and Chou, 2017; Pavez et al., 2018;

Chou et al., 2020; Krivokuća et al., 2020), both V-PCC andG-PCC

compress geometry first, then compress attributes conditioned on

geometry. Neural networks have been applied with some success

to geometry compression (Yan et al., 2019; Quach et al., 2019;

Guarda et al., 2019a,b; Guarda et al., 2020; Tang et al., 2020;

Quach et al., 2020a; Milani, 2020, 2021; Lazzarotto et al., 2021),

but not to lossy attribute compression. Exceptions may include

(Quach et al., 2020b), which uses learned neural 3D→ 2D folding

but compresses with conventional image coding, andDeep-PCAC

(Sheng et al., 2021), which compresses attributes using a

PointNet-style architecture, which is not volumetric and

underperforms our framework by 2–5 dB (see Figure 12B and

Supplementary Material). The attribute compression in G-PCC

uses linear transforms, which adapt based on the geometry. A core

transform is the region-adaptive hierarchical transform (RAHT)

(de Queiroz and Chou, 2016; Sandri G. P. et al., 2019), which is a

linear transform that is orthonormal with respect to a discrete

measure whose mass is put on the point cloud geometry (Sandri

et al., 2019a; Chou et al., 2020). Thus RAHT compresses attributes

conditioned on geometry. Beyond RAHT, G-PCC uses prediction

(of the RAHT coefficients) and joint entropy coding to obtain

superior performance (Lasserre and Flynn, 2019; 3DG, 2020b;

Pavez et al., 2021). Recently (Fang et al., 2020) use neural methods

for lossless entropy coding of the RAHT transform coefficients.

Our work exceeds the RD performance of classic RAHT by

2–4 dB by introducing the flexibility of learning non-linear

volumetric functions. Our approach is orthogonal to the

prediction and entropy coding in (Lasserre and Flynn, 2019;

3DG, 2020b; Pavez et al., 2021; Fang et al., 2020) and all

results could be improved by using combinations of these

techniques.

4 LVAC framework

4.1 Approach to volumetric representation

A real-valued (or real vector-valued) function f: Rd → Rr is

said to be volumetric if d = 3. A volumetric function f may be
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approximated by another volumetric function fθ in a parametric

family of volumetric functions {fθ:θ ∈ Θ} by minimizing an error

d (f, fθ) over θ ∈Θ. Suppose {(xi, yi)}Np

i�1 is a point cloud with point
positions xi ∈ R3 and point attributes yi ∈ Rr. Point cloud

attribute compression approximates the volumetric function f:

xi↦yi by finding the optimal or close to the optimal parameter θ.

Different point clouds are represented by different volumetric

attribute functions f. Therefore the encoding procedure of LVAC

comprises of learning the parameter θ for the given point cloud.

A simple example is linear regression. An affine function y =

fθ(x) = Ax + b, with θ = (A, b), may fit to the data by minimizing

the squared error d (f, fθ) = ‖f − fθ‖2 = ∑i‖f (xi) − fθ(xi)‖2 over θ.
Although a linear or affine volumetric function may not be able

to represent adequately the complex spatial arrangement of

colors of point clouds like those in Figure 1, two strategies

may be used to improve the fit:

1) The first is to expand the fθ function family, e.g., to represent f

with more expressive CBNs. LVAC accomplishes this by

using neural networks and by increasing the number of

network parameters. We describe this expansion in the

following sections in more detail.

2) The second is to partition the scene into blocks. When

restricted to sub-regions, functions may have less

complexity and a good fit may be achieved without

exploding the number of network parameters in the CBN.

LVAC partitions the bounding box of the point cloud into

cube blocks. Each block is associated with a latent vector,

which is fed to fθ as an addendum and serves as a local

parameter to the block. The next section describes how these

latent vectors are used in more detail.

4.2 Latent vectors

In LVAC, the 3D volume is partitioned into blocks Bn as in

Figure 3. The attributes yi in a block Bn at offset n are fit with a

volumetric function y = fθ(x − n; zn) represented by a simple

CBN, shifted to offset n. The CBN parameters θ are learned for

each point cloud. In addition to the global parameter θ, each

block Bn supplies its own latent vector zn, which selects the exact

volumetric function fθ(·; z) used in the block. The role of θ is to

choose the subfamily of volumetric functions best for each point

cloud. The role of z is to choose a member of the subfamily best

for each block, and serves as a local parameter. This procedure is

summarized in Figure 3. The overall volumetric function may be

expressed as

y � fθ,Z x( ) � ∑
n

fθ x − n; zn( )1Bn x( ), (1)

where the sum is over all block offsets n, 1Bn is the indicator

function for block Bn (i.e., 1Bn(x) � 1 iff x ∈ Bn), and Z = [zn] is

the matrix whose rows zn are the blocks’ latent vectors.

To compress the point cloud attributes {yi} given the

geometry {xi}, LVAC compresses and transmits Z and

possibly θ as quantized quantities Ẑ and θ̂ using R(θ̂, Ẑ) bits.
This communicates the volumetric function fθ̂,Ẑ to the decoder.

The decoder can then use fθ̂,Ẑ to reconstruct the attributes yi at

each point position xi as ŷi � fθ̂,Ẑ(xi), incurring distortion

D θ̂, Ẑ( ) � d f, fθ̂,Ẑ( ) � ∑
i

‖yi − fθ̂,Ẑ xi( )‖2. (2)

The decoder can also use fθ̂,Ẑ(x) to reconstruct the attributes y at
an arbitrary position x ∈ R3. LVAC minimizes the distortion

D(θ̂, Ẑ) subject to a constraint on the bit rate, R(θ̂, Ẑ)≤R0. This

is done by minimizing the Lagrangian J(θ̂, Ẑ) � D(θ̂, Ẑ) +
λR(θ̂, Ẑ) for some Lagrange multiplier λ > 0 matched to R0.

In the regime of interest in our work, θ has about 250-10 K

parameters, while Z has about 500 K-8 M parameters. Hence the

focus of this paper is on compression of Z. We assume that the

simple CBN parameterized by θ can be compressed using model

compression tools, e.g., (Bird et al., 2021; Isik, 2021), to a few bits

per parameter with little loss in performance. Alternatively, we

assume that the CBN may be trained to generalize across many

point clouds, obviating the need to transmit θ. In Section 5, we

explore conservative bounds on the performance of each

assumption. In this section, however, we focus on

compression of the latent vectors Z = [zn].

We first describe the linear components of our framework

that many conventional methods share (de Queiroz and Chou,

2016; Sandri et al., 2018, Sandri et al., 2019 G. P.; Krivokuca et al.,

2021; Pavez et al., 2021) and then discuss how we achieve the

state-of-the-art compression with the additional non-linearity

introduced by CBNs and an end-to-end optimization of the rate-

distortion Lagrangian loss via back propagation.

4.2.1 Linear components
Following RAHT (de Queiroz and Chou, 2016) and

followups (Sandri et al., 2018, Sandri et al., 2019 G. P.;

Krivokuca et al., 2021; Pavez et al., 2021), the problem of

point cloud attribute compression can be modeled as

compression of a piecewise constant volumetric function,

y � fZ x( ) � ∑
n

zn1Bn x( ). (3)

This is the same as (1) with an extremely simple CBN: fθ(x; z) = z.

For the linear case, each latent zn ∈ R3 directly represents a color,

which is constant across block Bn. It is clear that the squared

error ‖f − fZ‖2 is minimized by setting every zn to the average

(DC) value of the colors of the points in Bn. It would be

inefficient to quantize and entropy code the colors Z = [zn]

directly without transforming them into a domain that separates

important (DC) and unimportant components. Therefore, the

convention is to first transform the N × C matrix Z using a

geometry-dependent N × N analysis transform Ta, to obtain the

N × C matrix of transform coefficients V = TaZ, most of which
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may be near zero. (N is the number of blocksBn that are occupied,

i.e., that contain points, and C is the number of latent features.)

Then V is quantized to V̂ and efficiently entropy coded. Finally

Ẑ � TsV̂ is recovered using the synthesis transform Ts � T−1
a .

The analysis and synthesis transforms Ta and Ts are defined

in terms of a hierarchical space partition represented by a binary

tree. The root of the tree (level ℓ = 0) corresponds to a large block

B0,0 containing the entire point cloud. The leaves of the tree (level

ℓ = L) correspond to the N blocks BL,n � Bn in (Equation 3),

which are voxels of a voxelized point cloud. In between, for each

level ℓ = 0, 1, . . . , L − 1, each occupied block Bℓ,n at level ℓ is split

into left and right child blocks of equal size, say Bℓ+1,nL and

Bℓ+1,nR, at level ℓ + 1. The split is along either the x, y, or z axis

depending on whether ℓmod 3 is 0, 1, or 2. Only child blocks that

are occupied by any point in the point cloud are retained in the

tree. To perform the linear analysis transform TaZ, one can start

at level ℓ = L − 1 and work back to level ℓ = 0, computing the

average (DC) value of each block Bℓ,n as

zℓ,n � wnL

wnL+wnR

zℓ+1,nL +
wnR

wnL+wnR

zℓ+1,nR, (4)

where wnL � wℓ+1,nL and wnR � wℓ+1,nR are the weights of, or

number of points in, the left and right child blocks of Bℓ,n.

The global DC value of the entire point cloud is z0,0. Along the

way, the difference between the DC values of each child block and

its parent are computed as

δzℓ+1,nL � zℓ+1,nL − zℓ,n and δzℓ+1,nR � zℓ+1,nR − zℓ,n. (5)
These differences are close to zero and efficient to entropy code.

The transform coefficients matrix V = TaZ consist of the global

DC value z0,0 in the first row, and N − 1 right child differences

δzℓ+1,nR in (Eq. 5) in the remaining rows.

To perform the linear synthesis transform TsV, one can start

at level ℓ = 0 and work up to level L − 1, computing the left child

differences δzℓ+1,nL (Eq. 5) from the right child differences δzℓ+1,nR
(Eq. 5) in V using the constraint

0 � wnL

wnL+wnR

δzℓ+1,nL +
wnR

wnL+wnR

δzℓ+1,nR, (6)

which is obtained from (Eq. 4) using (Eq. 5). Then the equations

in (Eq. 5) are inverted to obtain zℓ+1,nL and zℓ+1,nR from zℓ,n,

ultimately computing the values zL,n = zn for blocks at level L.

Expressions for the matrices Ta and Ts can be worked out

from the above linear operations. In particular, it can be shown

that each row ofTs computes the color zL,n of some leaf voxelBL,n

by summing the color z0 of the root block with the color

differences δzℓ at levels of detail ℓ = 1, . . . , L from the root

to the leaf. One challenge in the quantization step is each

transform coefficient in V = TaZ requires a different

quantization step, i.e., uniform quantization would be

suboptimal, since important coefficients should be quantized

with finer precision. We can avoid this complication by

orthonormalizing Ta and Ts. In fact, Ta and Ts can be

orthonormalized by multiplication by a diagonal matrix S =

diag (s1, . . . , sN), where.

s1 � # points in point cloud( )−1/2, (7)

sm � wℓ+1,nL wℓ+1,nL+wℓ+1,nR( )
wℓ+1,nR

( )
−1/2

, (8)

where element s1 of S corresponds to row one of V (the global

DC value z0,0) and element sm of S corresponds to row m > 1 of

V (a right child difference δzℓ+1,nR). That is, S
−1Ta and TsS are

orthonormal (and transposes of each other). This implies that

every row of the normalized coefficients �V � S−1V should be

now quantized uniformly with the same step size Δ, or

equivalently that the rows of the unnormalized coefficients

V = TaZ should be quantized with scaled step sizes smΔ.
This scaling is crucial as it quantizes with finer precision the

coefficients that are more important. The more important

coefficients are generally associated with blocks with more

points.

4.2.2 Nonlinear components
Now, we provide more details on the nonlinear components

in our framework and how they are jointly optimized (learned)

with the linear components in the loop to quantize and entropy

code the latent vectors zn ∈ RC (where now C ≫ 3 typically) for

the blocks Bn in (Eq. 1).

LVAC performs joint optimization of distortion and bit rate

by querying points x at a target level of detail L—lower

(i.e., coarser) than the voxel level. Thus the blocks BL,n

contain not just one point but say Nx × Ny × Nz voxels, only

some of which are occupied. Then the attributes (typically,

colors) of the occupied voxels in BL,n are represented by the

volumetric function fθ(x − n; zn) of a CBN at level L, which

better models the attributes within the block at certain bit rates

than a purely linear transform such as (de Queiroz and Chou,

2016; Sandri et al., 2018, Sandri et al., 2019 G. P.; Krivokuca

et al., 2021; Pavez et al., 2021). Since the latent vectors zn ∈ RC

are not themselves the attributes of the occupied voxels, they are

not a direct input to the encoder (see Figure 3). Hence the

encoder cannot apply the analysis transform Ta to Z = [zn] to

obtain the transform coefficients V. Instead, LVAC learns V

through back-propagation, without an explicit Ta, first through

the distortion measure and volumetric function (2), and then

through the synthesis transform Ts and scaling matrix S. The

coefficients θ of the CBN are jointly optimized at the same time.

Learning gives LVAC the opportunity to optimize V not just to

minimize the distortion D, (i.e, to optimize the fit of the model

to the data) but to minimize the ultimate rate-distortion

objective D + λR, which minimizes the distortion subject to

a bit rate constraint.

Figure 4 shows the compression pipeline that produces Ẑ �
[ẑn] from V, through which the back-propagation must be

performed. The diagonal matrix S (defined in (Eqs. 7, 8)
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scales the coefficients in V to produce �V � S−1V, but is constant
across channels c = 1, . . . , C. The diagonal matrix Δ = diag (Δ1,

. . . , ΔC) applies different step sizes Δc to each channel in �V to

produce U � �VΔ−1, but is constant across coefficients. The

quantizer rounds the real matrix U elementwise to produce

the integer matrix Û � �U�, which is then entropy coded to

produce a bit string of length R in total. The integer matrix Û is

also transformed by Δ, S, and Ts in sequence to produce

Ẑ � TsSÛΔ. Note that learnable parameters in Figure 4 are V,

Δ, and parameters of the entropy coder. Mathematically it does

not matter if we optimizeV or the normalized version �V � SV. In

our implementation, we optimize �V.

As the quantizer and entropy encoder are not differentiable,

they must be replaced by differentiable proxies during

optimization. There are various differentiable proxies for the

quantizer (Ballé et al., 2017; Agustsson and Theis, 2020; Luo et al.,

2020), and we use the proxy

Q U( ) � U +W, (9)
whereW is iid unif (−0.5, 0.5). Various differentiable proxies for

the entropy coder are also possible. As the number of bits in the

entropy code for U = [um,c], we use the proxy

R(U) � −∑m,c log2pϕ
ℓ,c
(um,c), where

pϕ
ℓ,c

u( ) � CDFϕ
ℓ,c

u + 0.5( ) − CDFϕ
ℓ,c

u − 0.5( ) (10)

(Ballé et al., 2017). The CDF is modeled by a neural network

with parameters ϕℓ,c that depend on the channel c and also the

level ℓ (but not the offset n) of the coefficient um,c. At inference

time, the bit rate is R(�U�) instead of R(U). These functions are

provided by the Continuous Batched Entropy (cbe) model in

(Ballé et al., 2021).

Note that the parameters Δc as well as the parameters ϕℓ,c, for

all ℓ and c, must be transmitted to the decoder. However, the

overhead for transmitting Δc is negligible, and the overhead for

transmitting ϕℓ,c can be circumvented by using a backward-

adaptive entropy code in its place at inference time. (See

Section 5.4).

4.3 Coordinate based network

Any CBN can be used in the LVAC framework, but in our

experiments we usually use a two-layer MLP,

y � fθ x; z( ) � σ b3 +W3×Hσ bH +WH× 3+C( ) x, z[ ]( )( ), (11)

where θ = (b3, W3×H, bH, WH×(3+C)), H is the number of hidden

units, and σ(·) is pointwise rectification (ReLU). (Here we take x,

y, and z to be column vectors instead of the row vectors we use

elsewhere.) Note that there is no positional encoding of x.

Alternatively, we use a two-layer position-attention (PA)

network,

y � fθ x; z( ) � b3 + z ⊙ sin bC +WC×3x( ), (12)

where θ = (b3, bC, WC×3) and ⊙ is pointwise multiplication. The

PA network is a simplified version of the modulated periodic

activations in (Mehta et al., 2021), with many fewer parameters

than MLPs while an efficient representation at low bit rates.

Once the latent vectors Z = [zn] are decoded from Û as Ẑ �
[ẑn] and θ is decoded as θ̂, the attributes ŷ of any point x ∈ R3 can

be queried as illustrated in Figure 3.

5 Experimental results

5.1 Dataset and experimental details

Our dataset comprises (i) seven full human body voxelized

point clouds derived from meshes created in (Guo et al., 2019;

Meka et al., 2020) (shown in Figure 1) and (ii) seven point

clouds—four full human bodies and three objects of art—from

the MPEG PCC dataset (d’Eon et al., 2017; Alliez et al., 2017)

(see the Supplementary Material). Integer voxel coordinates are

used as the point positions xi. The voxels (and hence the point

positions) have 10-bit resolution. This results in an octree of

depth 10, or alternatively a binary tree of depth 30, for every

point cloud. For most experiments, we train all variables

FIGURE 4
LVAC pipeline for compressing latents Z =[zn]. Z is represented by difference latents V, normalized by S across levels and blocks to obtain �V,
divided by step sizes Δ across channels to obtain U, quantized by rounding to obtain Û � �U�, and reconstructed as Ẑ � TsSÛΔ. V (or equivalently �V in
practice) is optimized by back-propagating through D (θ, Z)+ λR (θ, Z) and the pipeline using differentiable proxies for the quantizer and entropy
coder.
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(latents, step sizes, an entropy model per binary level, and a

CBN at the target level L) on a single point cloud, as the

variables are specific to each point cloud. However, for the

generalization experiments in Section 5.4, we train only the

latents, step sizes, and entropy models on the given point cloud,

while using a CBN pre-trained on a different point cloud.

Additional experimental details are given in the

Supplementary Material.

The entire point cloud constitutes one batch. All

configurations are trained in about 25 K steps using the Adam

optimizer and a learning rate of 0.01, with low bit rate

configurations typically taking longer to converge. Each step

takes 0.5–3.0 s on an NVIDIA P100 class GPU in eager mode

with various debugging checks in place. We will open-source our

code on https://github.com/tensorflow/compression/tree/

master/models/lvac/upon publication.

As the experimental results below will show, the relative

performance gains of various LVAC configurations and the

baselines are largely consistent over all human body point

clouds as well as object point clouds. This consistency may

be explained in part by all variables in LVAC being trained on

the given point cloud; hence LVAC is instance-adaptive (except

in our generalization studies). No average-case models are

trained to fit all point clouds. Thus we expect consistent

behavior across other types of point clouds, e.g., room scans.

We acknowledge, however, that some types of point clouds,

such as dynamically-acquired LIDAR point clouds, may have a

special structure that our framework does not take advantage of.

Indeed, MPEG G-PCC has special coding modes for such point

clouds.

5.2 Baselines

5.2.1 RAHT
Our first baseline is RAHT, which is the core transform in the

MPEG G-PCC, coupled with the adaptive Run-Length Golomb-

Rice (RLGR) entropy coder (Malvar, 2006). Figure 5A shows the

rate-distortion (RD) performance of RAHT + RLGR in RGB

PSNR (dB) vs. bit rate (bits per point, or bpp). As PSNR is a

measure of quality, higher is better. In RAHT + RLGR, the RAHT

coefficients are uniformly scalar quantized. The quantized

coefficients are concatenated by level from the root to the

leaves and entropy coded using RLGR, independently for each

color component. The RD performances using RGB and YUV

(BT.709) colorspaces are shown in Figure 5A in blue with filled

and unfilled markers, respectively. At low bit rates, YUV provides

a significant gain in RGB PSNR, but this falls off at high bit rates.

5.2.2 Deep-PCAC
As a secondary baseline, we provide a comparison with

Deep-PCAC (Sheng et al., 2021)—see Figure 5B. As

mentioned earlier, Deep-PCAC is based on PointNet, which is

not volumetric. Therefore, it cannot be used for other scenarios

such as radiance fields and also lacks point cloud features such as

infinite zoom. We still compare LVAC with Deep-PCAC just to

show that learned point cloud attribute compression is not trivial

and requires all the crucial steps that we discussed in this work.

5.2.3 Linear LVAC
Finally, level = 30, model = cbe + linear (3 × 3) in Figure 5A

shows the RD performance of our LVAC framework when 3-

FIGURE 5
(A) Baselines. RAHT + RLGR (RGB) and (YUV) are shown against 3×3 linear models at levels 30, 27, 24, and 21, which optimize the colorspace by
minimizing D + λR using the cbe entropy model. Since level = 30, model = cbe + linear(3x3) outperforms RAHT + RLGR (YUV) we discard the latter
and use the others as baselines for more complex CBNs. (B) RD performance (YUV PSNR vs bit rate) comparison with RAHT + RLGR (RGB) (de
Queiroz and Chou, 2016) and Deep-PCAC (Sheng et al., 2021).
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channel latents (C = 3) are quantized and entropy coded using

the Continuous Batched Entropy (cbe) model with the Noisy

Deep Factorized prior from Tensorflow Compression (Ballé

et al., 2021) followed by a simple 3 × 3 linear matrix as the

CBN, at binary target level 30. The performance of this simple

linear model agrees with that of RAHT-RLGR (YUV) at low rates,

and outperforms it at high rates. Therefore, it is useful as a

pseudo baseline and we show it in all subsequent plots along with

our first baseline RAHT-RLGR (RGB). Figure 5A also shows that

at lower target levels (27, 24, 21), LVAC with the 3 × 3 matrix

saturates at high rates, since the 3 × 3 matrix has no positional

input, and thus represents the volumetric attribute function as a

constant across each block. These constant functions serve as

baselines for more complex CBNs at these levels, described next.

Similar observations can be made from the plots in the

Supplementary Material for the ten other point clouds.

Alternative baselines are considered in Section 5.9.

5.3 Coordinate based networks

We now compare configurations of the LVAC framework

with four different CBNs: linear(3x3) with 9 parameters (as a

baseline), mlp(35 × 256 × 3) with 9,987 parameters, mlp(35 ×

64 × 3) with 2,499 parameters, and pa(3 × 32 × 3) with

227 parameters, at different target levels. The mlp(35 ×

256 × 3) and mlp(35 × 64 × 3) CBNs are two-layer MLPs

with 35 inputs (3 for position and 32 for a latent vector, i.e., C =

32) and 3 outputs, having respectively 256 and 64 hidden nodes.

The pa(3 × 32 × 3) CBN is a Position-Attention (PA) network

also with 35 inputs (3 for position and 32 for a latent vector) and

3 outputs. All configurations use the Continuous Batched

Entropy (cbe) model for quantization and entropy coding of

the 32-channel latents.

Figures 6A–C shows (in green, red, purple) the RD

performance of these CBNs at different target levels (27, 24, 21),

along with the baselines (in blue, orange). We observe that first, at

each target level L = 27, 24, 21, the CBNs with more parameters

outperform the CBNs with fewer parameters. In particular,

especially at higher bit rates, the MLP and PA networks at level

L improve more than 5–10 dB over the linear network at level L,

whose RD performance saturates as described earlier, for each L.

Second, at each target level L = 27, 24, 21, there is a range of bit rates

over which theMLP and PA networks improve by 2–3 dB over even

the level = 30, model = cbe + linear(3x3) baseline, which does not

saturate. The range of bit rates in which this improvement is

achieved is higher for level 27, and lower for level 21, reflecting

that higher quality requires CBNs with smaller blocksizes. In the

Supplementary Material, we show these same data factored by CBN

type instead of by level, to illustrate again that for each CBN type,

each level is optimal for a different bit rate range. Figure 5B

demonstrates that LVAC provides a gain of 2–5 dB over our

secondary baseline, Deep-PCAC (Sheng et al., 2021). Comparison

plots for other point clouds are provided in the Supplementary

Material.

The nature of a volumetric function fθ(x; z) represented by a

CBN is illustrated in Figure 7. To illustrate, we select the CBN

mlp(35 × 256 × 3) trained on the rock point cloud at target level

L = 21, and we plot cuts through the volumetric function fθ(·; z)
represented by this CBN. Specifically, let n be a randomly selected

node at the target level L, let ẑn be the quantized cumulative latent

at that node, and let xn = (xn, yn, zn) be the position of a randomly

selected point within the block at that node. Then we plot the first

(red) component of the function fθ(x; ẑn), where x varies from

(0, yn, zn) to (Nx, yn, zn), whereNx is the width of a block at level L.

We do this for many randomly selected nodes n to get a sense of

the distribution of volumetric functions represented at that level.

(The distribution looks similar for green and blue components,

and for cuts along y and z axes.) We observe that for many values

of ẑn, fθ(·; ẑn) is a roughly constant function. Thus, ẑn must

encode the colors of the palette used for these functions.

However, we also observe that for some values of ẑn, fθ(·; ẑn)
is a ramp or some other nonlinear function across its domain.

Finally, we observe almost no energy at frequencies higher than

the Nyquist frequency (half the sampling rate), where the

sampling occurs at units of voxels. We conclude that fθ(·; ẑ)
acts like a codebook of volumetric functions defined onNx ×Ny ×

Nz, fit to the point cloud at hand.

5.4 Generalization

We also explore the degree to which the CBNs can be

generalized across point clouds; that is, whether they can be

trained to represent a universal family of volumetric functions.

Figure 8 below show that the CBNs can indeed generalize across

point clouds at low bit rates. We provide the corresponding plots

for other point clouds in the Supplementary Material.

5.5 Side information

When the latents, step sizes, entropy models, and CBN are all

optimized for a specific point cloud, quantizing and entropy

coding only the latent vectors [zn] is insufficient for

reconstructing the point cloud attributes. The step sizes [Δc],

entropy model parameters [ϕℓ,c], and CBN parameters θ must

also be quantized, entropy coded, and sent as side information.

Sending side information incurs additional bit rate and

distortion. Note that the side information for the step sizes is

negligible, as there is only one step size for each of C = 32

channels.

5.5.1 Side information for the entropy models
We first consider the side information for the entropy

models. Figure 9 shows the penalty required to transmit side
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information, for the entropy model for point cloud rock. We use

the Tensorflow Compression’s Continuous Batched Entropy

(cbe) model with the Noisy Deep Factorized prior. For

32 channels, this model has 23,296 parameters. If each

parameter is represented with 32 bits, then 0.89 bits per point

of side information is required for the point cloud rock, which has

837, 434 points. This would shift the RD performance from the

solid green line to the dashed green line in the figure, for level =

27, model = cbe + mlp(35 × 256 × 3). However, fortunately, this

costly side information can be avoided, by using cbe during

training but using the adaptive Run-Length Golomb-Rice

(RLGR) entropy coder Malvar (2006) during inference time.

Since RLGR is backward adaptive, it can adapt to Laplacian-like

distributions without sending any side information. Of course its

coding efficiency may suffer, but our experiments show that this

degradation is almost negligible. Henceforth we report RD

performance using only RLGR. The resulting RD performance

is shown in the dotted line with unfilled markers—an almost

negligible degradation. The corresponding plots for other point

clouds are given in the Supplementary Material.

5.5.2 Side information for the CBNs
Next, we consider the side information for the CBNs. For

each point cloud, there is one CBN, at the target level L.

Allocating 32 bits per floating point parameter would give the

most pessimistic estimate for the side information. However, it is

likely that 32 bits per floating point parameter is an order of

magnitude more than necessary. Prior work has shown that

simple model compression can be performed at 8 bits (Banner

et al., 2018; Wang et al., 2018; Sun et al., 2019) or even more

aggressively at 1–4 bits per floating point parameter (Han et al.,

2015; Xu et al., 2018; Oktay et al., 2019; Stock et al., 2019; Wang

et al., 2019; Isik et al., 2021a; Isik et al., 2022) with very low loss in

performance, even with CBNs such as NeRF (Bird et al., 2021;

Isik, 2021). Alternatively, the CBNs may be generalized by pre-

training on other point clouds to avoid having to transmit any

side information. Figure 10 shows RD performance under the 32-

bit assumption as well as under generalization. We refer the

reader to the Supplementary Material for the corresponding plots

for other point clouds.

Now, we turn to a key ablation study.

5.6 Orthonormalization

One of our main contributions is to show that naïve uniform

scalar quantization and entropy coding of the latents leads to

poor results, and that properly normalizing the coefficients

before quantization achieves over a 30% reduction in bit rate.

In this ablation study, we remove our orthonormalization by

setting the scale matrix S in (Eqs. 7, 8) and Figure 4 to the identity

FIGURE 6
Coordinate Based Networks, by target level. (A–C) each show mlp(35 × 256 × 3), mlp(35 × 64 × 3), and pa(3 × 32 × 3) CBNs, along with
baselines, at levels 27, 24, 21. More complex CBNs outperform less complex. Higher levels are better for higher bit rates.

FIGURE 7
Cuts through the volumetric function (R, G, B)= fθ((x, yn, zn);
zn) represented by a CBN, along the x-axis through a randompoint
xn =(xn, yn, zn) in the point cloud within a node n, for various
occupied nodes n at target level 21. It can be seen that the
CBN specifies a codebook of volumetric functions defined on
blocks, fit to the point cloud at hand.
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matrix, thus removing any dependency of the attribute

compression on the geometry. This corresponds to a naïve

approach to compression, for example by assuming a fixed

number of bits per latent as in (Takikawa et al., 2021).

Table 1 shows that compared to this naïve approach, our

normalization achieves over 30% reduction in bit rate

(computed using (Bjøntegaard, 2001; Pateux and Jung, 2007)).

This quantifies the reduction in bit rate due to conditioning the

attribute compression on the geometry. We give the results

averaged over all point clouds in Table 1, results for rock

point cloud in Figure 11, and provide results for each point

cloud in the Supplementary Material.

5.7 Convex hull

For different bit rate ranges and for different assumptions on

the cost of side information, different configurations of the

LVAC framework may be optimal. Figure 12 shows the

convex hull, or Pareto fontier, of all configurations under

various assumptions of 0 (Figure 12A), 8 (Figure 12B), and

32 (Figure 12C) bits per floating point parameter. All

configurations that we have examined in this paper appear in

Figure 12. However, only those that participate in the convex hull

appear in the legend and are plotted with a solid line. (The others

are dotted.) The convex hull is 2–4 dB over the baselines. We

observe: first, when the side information costs nothing (0 bits per

parameter), the convex hull contains exclusively the largest CBN

(mlp(35 × 256 × 3)), at higher target levels for higher bit rates.

Second, as the cost of the side information increases, the smaller

CBNs (mlp(35 × 64 × 3) and pa(3 × 32 × 3)) begin to participate

in the convex hull, especially at lower bit rates. Eventually, at

32 bits per parameters, the largest CBN is excluded entirely.

Third, the generalizations never participate in the convex hull,

FIGURE 8
Coordinate Based Networks with generalization, by level (A–C) and by network (D–F). CBNs that are generalized (i.e., pre-trained on another
point cloud) are able to outperform the baselines at low bit rates.

FIGURE 9
Side information for entropy model. Sending 32 bits per
parameter for the cbe entropy model would reduce RD
performance from solid to dashed green lines. But the backward-
adaptive RLGR entropy coder (dotted, unfilled) obviates the
need to send side information with almost no loss in performance.
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despite not incurring any penalty due to side information. This

could be because they are trained only on a single other point

cloud in these experiments. Training the CBNs on more

representative data would probably improve their

generalization performance but is left for future work. The

corresponding plots for other points clouds are provided in

the Supplementary Material.

5.8 Subjective quality

Figure 13 shows compression quality at around 0.25 bpp,

under the assumption of 0 bits per floating point parameter.

Additional bit rates are shown in the Supplementary Material.

5.9 Baselines, revisited

We now return to the matter of baselines. Figure 14 shows

our previous baseline, RAHT + RLGR, for both RGB and YUV

FIGURE 10
Effect of side information for coordinate based networks mlp(35 × 256 × 3) (A–C), mlp(35 × 64 × 3) (D–F), and pa(3 × 32 × 3) (G–I) at levels
27 (A,D,G), 24 (B,E,H), and 21 (C,F,I). Sending 32 bits per parameter for the CBN would degrade RD performance from solid to dashed lines. The
degradation would be inversely proportional to compression ratio if model compression is used. Alternatively, generalization (pre-training the CBN
on one ormore other point clouds), whichworks well at low bit rates, would obviate the need to transmit any side information. Generalization is
indicated by “gen” in the legend.

TABLE 1 BD-Rate reductions due to normalization, averaged over
point clouds. Normalization is crucial for good performance.
Without normalization, there is no dependence on geometry.

CBN level

30 27 24 21

linear (3 × 3) −31.6% −18.6% −28.3% −37.7%

mlp (35 × 256 × 3) N/A −29.9% −34.3% −27.4%

mlp (35 × 64 × 3) N/A −23.8% −32.1% −31.1%

pa (3 × 32 × 3) N/A −41.1% −40.3% −38.7%
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colorspaces (blue lines). Although RAHT is the transform

used in MPEG G-PCC, the reference software TMC13 v6.0

(July 2019) offers improved RD performance (green lines)

compared to RAHT + RLGR, due principally to better entropy

coding. In particular, TMC13 uses context-adaptive binary

arithmetic coding with various coding modes, while RAHT +

RLGR uses RLGR. We use RAHT + RLGR as our baseline

because our experiments use RLGR as our entropy coder; the

specific entropy coder used in TMC13 is difficult to extract

from the standard. The latest version, TMC13 v14.0 (October

FIGURE 11
RD performance improvement due to normalization, corresponding to entries in Table 1, i.e., columns 1, 2, 3, 4 correspond to levels 30, 27, 24,
21, respectively, and rows 1, 2, 3, 4 correspond to linear(3x3), mlp(35 × 256 × 3), mlp(35 × 64 × 3), pa(3 × 32 × 3), respectively.

FIGURE 12
Convex hull (solid black line) of RD performances of all CBN configurations across all levels, including side information using 0 (A), 8 (B), and
32 (C) bits per CBN parameter. Configurations that participate in the convex hull are listed, with baselines, in the legend and appear as solid lines.
Others are dotted. At 0 bits per parameter (bpp), the more complex CBNs dominate. At higher bpp, the less complex CBNs begin to participate,
especially at lower bit rates. CBNs generalized from another point cloud never participate.
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2021), offers even better RD performance, by introducing for

example joint coding modes for color channels that are all zero

(orange lines). It also introduces predictive RAHT, in which

the RAHT coefficients at each level are predicted from the

decoded RAHT coefficients at the previous level (Lasserre and

Flynn, 2019; 3DG, 2020b; Pavez et al., 2021). The prediction

residuals, instead of the RAHT coefficients themselves, are

quantized and entropy coded. Predictive RAHT alone

improves RD performance by 2–3 dB (red lines).

Nevertheless, in the low bit rate regime, LVAC with RLGR

and no RAHT prediction has better performance than even

TMC13 v14.0 with predictive RAHT (solid black line, from

Figure 12A). We believe that the RD performance of LVAC

can be further improved significantly. In particular, the

principal advances of TMC13 over RAHT + RLGR—better

entropy coding and predictive RAHT—are equally applicable

to the LVAC framework. For example, better entropy coding

could be done with a hyperprior (Ballé et al., 2018), and

predictive RAHT could be applied to the latent vectors.

These explorations are left for future work.

6 Discussion and conclusion

This work is the first to compress volumetric functions y =

fθ(x) modeled by local coordinate-based networks. Though we

focused on RGB attributes y, the extension to other attributes

(signed distance, density, etc.) is straightforward. Also, though

we focused on x ∈ R3, extensions to hyper-volumetric

functions (such as y = fθ(x, d) where d is a view direction)

is also straightforward. Thus LVAC should be applicable to

plenoptic point clouds (Krivokuca et al., 2018; Sandri et al.,

2018; Zhang et al., 2018; Sandri et al., 2019; Zhang et al., 2019)

as well as radiance fields (Mildenhall et al., 2020; Yu A. et al.,

2021; Martel et al., 2021; Takikawa et al., 2021; Zhang et al.,

2021) under an appropriate distance measure. We believe that

the main difference between plenoptic point clouds and

radiance fields is the distortion measure d (f, fθ). For point

clouds, d (f, fθ) is measured in the domain of f, such as the MSE

between colors on points in 3D. For radiance fields, d (f, fθ) is

measured in the domain of projections or renderings of f onto

2D images, such as the MSE between colors of pixels that are

renderings of f and fθ onto 2D images. In (de Queiroz and

FIGURE 13
Subjective quality around 0.25 bpp. (A) Original. (B) 0.258 bpp, 24.6 dB. (C) 0.255 bpp, 25.9 dB. (D) 0.255 bpp, 28.0 dB.

FIGURE 14
Baselines, revisited. In both RGB and YUV color spaces, MPEG
G-PCC reference software TMC13 v6.0 improves over RAHT +
RLGR, primarily due to context-adaptive (i.e., dependent) entropy
coding. TMC13 v14.0 improves still further, primarily due to
predictive RAHT. LVAC (black line, from Figure 12A) outperforms all
but TMC13 v14.0. However, better entropy coding (e.g.,
hyperprior) and predictive RAHT can also be applied to LVAC.
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Chou, 2017), the former distortion measures are called

matching distortions, while the latter are called projection

distortions. A change in distortion measure may be all that

is required to apply LVAC properly to radiance field

compression. This work is also among the first to compress

point cloud attributes using neural networks, outperforming

RAHT, used in MPEG G-PCC, by 2–4 dB and Deep-PCAC, a

recent learned compression framework, by 2–5 dB. Although

MPEG G-PCC uses additional coding tools to further improve

compression, such as context adaptive arithmetic coding, joint

entropy coding of color, and predictive RAHT, these tools are

also at our disposal, and may be the subject of further work. It

should be recalled that learned image compression evolved

over dozens of papers and a half dozen years, being

competitive at first with only JPEG on thumbnails, and

then successively with JPEG-2000, WebP, and BGP. Only

recently has learned image compression been able to

outperform the latest standard, VVC, in PSNR (Guo et al.,

2021). Learned volumetric attribute compression (LVAC),

like learned image compression, is a work in progress.
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