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In this paper, we consider the beamspace ESPRIT algorithm for Millimeter-Wave
(mmWave) channel sensing. We provide a non-asymptotic analysis of the beamspace
ESPRIT algorithm. We derive a deterministic upper bound for the matching distance error
between the true angle of arrival (AoA) of the channel paths and the estimated AoA
considering a bounded noise model. Additionally, we leverage the insight obtained from
our theoretical analysis to propose a novel max-min criterion for beamformer design which
can enhance the performance of mmWave channel estimation algorithms, including
beamspace ESPRIT. We consider a family of multi-resolution beamformers which can
be implemented using phase shifters and introduce a design scheme for the optimal
beamformers from this family with respect to the proposed max-min criteria. We can
guarantee a minimum beamforming gain uniformly over a region of possible multipath
directions, which can lead to more robust channel estimation. We provide several
numerical experiments to verify our theoretical claims and demonstrate the superior
performance of the proposed beamformers compared to existing beamformer design
criteria.
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1 INTRODUCTION

Millimeter wave (mmWave) communication has emerged as a key technology for the next
generation of wireless communication systems due to an abundance of spectrum availability in
the mmWave bands, and the higher data rates enabled by larger bandwidths (Bai and Heath, 2014).1

However, at mmWave frequencies, the wireless channel is spatially sparse and suffers from severe
path loss. To ensure reliable communication, it becomes essential to perform beamforming in order
to combat this path loss. Due to the large number of antennas in a mmWave system, it is impractical
to implement a fully digital beamforming scheme with a dedicated radio frequency (RF) chain for
every antenna, which would incur high power consumption and cost. In order to overcome this
challenge, mmWave systems typically utilize either analog (Junyi Wang et al., 2009; Hur et al., 2013)
or hybrid beamforming approaches with a reduced number of RF chains (Alkhateeb et al., 2014a;
Han et al., 2015). Therefore, the problem of mmWave channel estimation becomes challenging, since
a high-dimensional channel matrix (whose size is given by the large number of antennas) needs to be
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estimated from only low-dimensional measurements acquired at
the output of a reduced number of RF chains, especially with
limited pilot overhead.

MmWave channel sensing has emerged as an active area of
research, with many algorithms having been developed for both
flat-fading (Alkhateeb et al., 2014b; Bogale et al., 2015; Lee et al.,
2016; Méndez-Rial et al., 2016) and frequency-selective channels
(Alkhateeb and Heath, 2016; Gao et al., 2016; González-Coma
et al., 2018; Rodríguez-Fernández et al., 2018). Under the flat-
fading model, compressed sensing based techniques that leverage
the sparse nature of the channel, have been proposed (Park and
Heath, 2018). Recently, adaptive schemes have also been
developed for estimating the channel paths by employing
hierarchical multi-resolution beamforming codebooks
(Alkhateeb et al., 2014b). However, such techniques assume
the multipath angles to be on a grid, which can potentially
introduce bias (grid-offset). The mmWave channel model
shares many similarities with the measurement models arising
in array signal processing, which enables the application of super-
resolution AOA estimation techniques such as multiple signal
classification (MUSIC) and estimating signal parameters via
rotational invariance techniques (ESPRIT) for mmWave
channel estimation (Schmidt, 1986; Roy and Kailath, 1989).
Suitable variants of these algorithms have been developed in
the beamspace which leverage the structure of beamformers to
enable super-resolution estimation of the AOAs (Guanghan Xu
et al., 1994; Zoltowski et al., 1996; Li et al., 2020; Sarangi et al.,
2020). Finally, both sparsity-based techniques (Gao et al., 2016;
Park and Heath, 2018; Rodríguez-Fernández et al., 2018) and
subspace based angular estimation algorithms (Guo et al., 2017;
Liao et al., 2017; Zhang and Haardt, 2017; Park et al., 2019; Zhang
et al., 2021) have been extended for frequency-selective channels.

In this work, we focus on the ESPRIT algorithm for channel
estimation (Liao et al., 2017; Zhang and Haardt, 2017; Wen et al.,
2018; Rakhimov et al., 2019; Ma et al., 2020; Zhang et al., 2021). In
recent times, several works (Zhang and Haardt, 2017; Rakhimov
et al., 2019; Zhang et al., 2021) have considered DFT-based
beamspace ESPRIT, inspired by earlier works in array
processing (Guanghan Xu et al., 1994; Haardt and Nossek,
1995; Mathews et al., 1996; Zoltowski et al., 1996). However,
the large number of antennas in mmWave systems lead to very
narrow DFT beams (Ma et al., 2020). To get a wide spatial
coverage, a large number of RF chains are required, which
may not be practical. A different beamspace ESPRIT is
proposed in (Liao et al., 2017) where beamformers are
designed to ensure that the low-dimensional beamspace
measurements share the same shift-invariance structure as the
high dimensional channel. However, in order to realize this,
approximately half of the antennas need to be turned off. This
strategy may suffer from a reduction in total transmitted power,
and inability to perform high-resolution channel estimation (Ma
et al., 2020). Recently in (Ma et al., 2020), Li et al. proposed a
beamspace ESPRIT scheme which is applicable for any choice of
beamformer, that satisfies some mild rank constraints. Unlike the
aforementioned variants of ESPRIT, only one antenna needs to be
turned off at a time, which results in a negligible drop in
transmitted power and signal coverage.

Despite their wide use inmmWave channel sensing, a rigorous
non-asymptotic analysis for beamspace ESPRIT is currently not
available. Existing performance analysis are either asymptotic in
the number of snapshots (Guanghan Xu et al., 1994; Mathews
et al., 1996), or based on perturbation analysis where certain
higher-order terms are ignored (Roemer et al., 2014; Steinwandt
et al., 2017). Recently, in (Li et al., 2020) the authors provided a
rigorous theoretical analysis of the single-snapshot antenna space
ESPRIT algorithm. In this work, we will extend their analysis to
multi-snapshot beamspace ESPRIT. Beyond mathematical
interest, a key motivation for such analysis is to develop
insights on how the choice of beamformer controls the error
bound. The choice of the analog/hybrid beamformer indeed
determines the quality of channel estimation. Therefore, an
important consideration for beamspace algorithms involves
developing suitable analog/hybrid beamforming schemes that
ensure reliable channel estimation. It should be noted that
typically beamformer design is performed after the channel
state information is available. However, while performing
channel estimation using beamspace algorithms, the channel
information is not available apriori and the beamformer must
be designed to ensure robust performance uniformly across a
variety of channel configurations.

DFT beamformers are a common choice for analog
beamforming since they automatically satisfy the constant
modulus constraint, and are easy to implement using purely
RF (Analog) components (Méndez-Rial et al., 2016). However,
the spatial coverage obtained using DFT beamformers is limited,
especially with few RF chains (Li et al., 2020). Several alternate
beamformer designs have been proposed that aim to
approximately ensure constant gain across a sector of interest.
Approximating ideal filters using only phase shifters or hybrid
architectures results in optimization problems with non-convex
constraints. A variety of heuristics/iterative techniques have been
proposed to solve these problems, using Orthogonal matching
pursuit (OMP) (Venugopal et al., 2017), alternating minimization
(Yu et al., 2016), fast search-based techniques (Chen and Qi,
2018). An outstanding limitation of these techniques is that they
cannot provide guarantees on the worst-case beamforming gain
over the sector of interest that is finally achieved by the design. In
particular, the gain at several points in the region of interest can
significantly drop below the desired level. This can degrade the
performance of channel estimation algorithms for several
channel realizations. In this paper, we will develop
beamformer designs based on alternative criteria to overcome
this drawback.

2 OUR CONTRIBUTIONS

Our contributions are twofold (i) non-asymptotic analysis of the
beamspace ESPRIT algorithm, and (ii) design of beamformers
that can enhance the performance of mmWave channel
estimation algorithms (including beamspace ESPRIT). We first
provide a non-asymptotic analysis of beamspace ESPRIT
algorithm in (Ma et al., 2020), tailored to the flat-fading
channel model. Inspired by the analysis of Single Snapshot

Frontiers in Signal Processing | www.frontiersin.org February 2022 | Volume 1 | Article 8206172

Shahsavari et al. Beamspace ESPRIT and Beamformer Design

https://www.frontiersin.org/journals/signal-processing
www.frontiersin.org
https://www.frontiersin.org/journals/signal-processing#articles


element-space ESPRIT in (Li et al., 2020), we obtain error bounds
on the matching distance error between the true angle of arrival
(AoA) of the channel paths and the estimated AoA. Our error
analysis is non-asymptotic in the number of snapshots, does not
require any statistical assumption on the noise distributions, and
the error bounds are applicable for any beamformer satisfying
suitable rank constraints. Furthermore, the analysis reveals that
the error bounds are controlled by the smallest singular value of a
suitable matrix which is shaped by the beamformer and the AoAs.
We leverage this insight from our theoretical analysis to propose a
novel max-min criterion for beamforming, with the goal of
boosting the performance of beamspace ESPRIT. We consider
a family of multi-resolution beamformers, that exploits the
geometric coupling between the antenna array manifold and
the beamformer. Our design can guarantee a minimum
beamforming gain uniformly over a region of possible
multipath directions and can be implemented with phase
shifters (analog-only implementation).

3 MEASUREMENT MODEL

We consider a single user mmWave uplink system consisting of a
single-antenna Mobile Station (MS), and a Base Station (BS)
equipped with M > 1 antennas. We assume that the BS antennas
are arranged in the form of a large Uniform Linear Array (ULA)
with an inter-antenna spacing of λ/2, where λ denotes the carrier
wavelength. It is well-known that mmWave channels exhibit
sparse scattering, where each scatterer is often assumed to
contribute to a single channel path (Raghavan and Sayeed,
2010; Ayach et al., 2014; Alkhateeb et al., 2014b). Based on
this geometric model (Alkhateeb et al., 2014a; Alkhateeb et al.,
2014b; Park and Heath, 2018), we consider a channel with S
scattering paths, with θs ∈ [0, π] denoting the angle of arrival
(AoA) of the sth path between the BS and the MS. Assuming that
the AoAs remain unchanged during the training period, the
uplink channel at the tth snapshot is given by (Park and
Heath, 2018)

ht �∑S
s�1

xs,ta fs( ), t � 1, 2, . . . , T (1)

Here T denotes the number of time snapshots in the training
period, and xs,t represents the (time-varying) gain of the sth path.
The array response vector (or steering vector) associated with the
sth channel path is given by

a fs( )[ ]m � e−jπmfs , m � 0, . . . ,M − 1

where fs≔ sin (θs) denotes the spatial frequency determined by
the AoA θs. Notice that, Eq. 1 corresponds to a flat-fading channel
model, which is of interest in this paper.2 We further consider a

low-mobility scenario where the AoA’s do not change over the
training period T (although the path gains can change).

Let F ≔ {fi}Si�1 be the set of all spatial frequencies. The
received signal at the physical array is given by

rt � A F( )xtst + nt t � 1, . . . , T (2)

Here st represents the (known) transmitted pilot signal,3

xt � [x1,t, x2,t, . . . , xS,t]T, A(F ) � [a(f1), . . . , a(fS)] ∈ CM×S is
the antenna array manifold, and nt ∈ CM represents the channel
noise at time t. Since st is known, without loss of generality, we
assume that st � 1 for the entire training duration
(Haghighatshoar and Caire, 2016; Park and Heath, 2018).

In mmWave systems, the number of deployed antennas is very
large, and a dedicated RF chain for every antenna significantly
increases the hardware complexity and power consumption.
Therefore, in order to reduce the number of RF chains, the
signals received at the antennas are linearly combined in the
analog domain using a network of analog beamformers, where
the number of beamformers is given by the number of RF chains.
Due to a limited number of RF chains, the measurement at the
output of the RF chains is a low-dimensional projection of the
signal received at the antennas. In this work, we assume that the BS
is equipped with N < M RF chains. Let W ∈ RM×N be an analog
beamforming matrix, that performs a linear combination of the
received signal rt to obtain a compressed signal yt. It is typically
realized using analog circuitry, such as switches or phase shifters.
The measurements at the output of the RF chains is given by

yt � WHrt � WHA F( )xt +WHnt, t � 1, . . . , T (3)

Denoting Y � [y1, y2, . . . , yT] ∈ CN×T, we have

Y � WHA F( )X +WHN (4)

where X � [x1, . . . , xT], N � [n1, . . . , nT]. Given Y ∈ CN×T, our
objective is to estimate the mmWave channel Eq. 1, which is
equivalent to estimating fi and xi, i � 1, . . . , S.

4 REVIEW OF BEAMSPACE ESPRIT FOR
MMWAVE CHANNEL ESTIMATION

In recent times, there has been a renewed interest in utilizing
classical subspace-based techniques from array signal processing
for mmWave channel estimation, due to similarities between the
two measurement models at mmWave frequencies (Guo et al.,
2017; Liao et al., 2017; Zhang andHaardt, 2017;Ma et al., 2020). An
obvious advantage of these subspace-based algorithms is that they
enable “gridless super-resolution” estimation of the AoAs that
grid-based sparse techniques fail to achieve. Specifically, variants of
subspace algorithms in the beamspace have been proposed that can
produce high-resolution estimates of channel parameters evenwith
a limited number of RF chains. In (Ma et al., 2020), Li et al.
proposed a beamspace ESPRIT scheme which is applicable for any

2The results can also be extended to channels that exhibit frequency selectivity by
considering orthogonal frequency-division multiplexing (OFDM), where the
channel vector at each subcarrier can be described by Eq. 1.

3For multi-user system, we can reduce the problem to single-user using orthogonal
pilots.
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choice of beamformer, that satisfies some mild rank constraints.
This approach requires only one antenna to be turned off at a time,
and has several advantages such as a negligible drop in transmitted
power and spatial coverage.

In this paper, we will analyze this variant of the beamspace
ESPRIT algorithm. For ease of exposition, we will consider a flat-
fading single carrier system, although extensions are possible.
Our analysis will not require any specific assumptions on the
distribution of noise, other than assuming it to be bounded.
Unlike the prior asymptotic analysis in (Guanghan Xu et al., 1994;
Mathews et al., 1996), we will not assume a large number of
snapshots, or ignore higher-order perturbation terms (Roemer
et al., 2014; Steinwandt et al., 2017). We first review the algorithm
from (Ma et al., 2020) in the noiseless setting adapted to the flat-
fading scenario.

The key idea behind the ESPRIT algorithm is exploiting
the so-called shit invariance property, which refers to arrays
with two identical subarrays that are separated by a common
displacement. Let A1(F ), and A2(F ) denote two subarrays
of A(F ) comprising of the first and last M − 1 antenna
elements. The array A(F ) exhibits shit invariance property
since

A2 � A1Φ F( ) (5)

where Φ(F ) � diag(e−jπf1 , . . . , e−jπfS). One way to realize such
subarrays and the corresponding shift invariance is by
successively turning off the first and the last antennas. In (Ma
et al., 2020), a two-stage approach was utilized to obtain this
invariance structure. In the first stage, theMth antenna is turned
off, which corresponds to a beamforming matrix
~W1 ≔ [WH, 0N]H ∈ CM×N. In the second stage, the first
antenna is turned off, yielding a beamforming matrix
~W2 ≔ [0N,WH]H ∈ CM×N. Here W ∈ C(M−1)×N is an analog
beamforming matrix which satisfies the following rank condition:

rank ~W
H

1 A F( )( )) � rank ~W
H

2 A F( )( ) � S for all F (6)

A necessary condition for Eq. 6 is N ≥ S. Let
~Y1 � ~W

H
1 AM(F )X, and ~Y2 � ~W

H
2 AM(F )X be the beamspace

measurements acquired using this scheme. We define an
augmented observation ~Y as

~Y ≔
~Y1
~Y2
[ ] � ~W

H

1

~W
H

2

⎡⎣ ⎤⎦AM F( )X (7)

Define

B ≔ WHA1

WHA1Φ
[ ] (8)

where Φ(F ) � diag(e−jπf1 , . . . , e−jπfS ), and A1(F ) ∈ C(M−1)×S,
A2(F ) ∈ C(M−1)×S comprise of the first and last M − 1 rows of
AM(F ), respectively. For the rest of paper, we suppress the
dependence on F and simply use A1, A2, Φ. Thus, Eq. 7 can
be represented as

~Y � BX � WHA1

WHA1Φ
[ ]X (9)

Note that under the assumption Eq. 6, we have rank(B) �
S. We further assume that X has full row rank which together
with rank(B) � S implies that rank(~Y) � S. Let UyΣyVH

y � ~Y
be a reduced singular value decomposition (SVD) of ~Y ∈ C2N,
where Uy ∈ C2N×S,Σy ∈ CS×S,Vy ∈ CT×S. Since rank(B) � S, its
columns form a basis for R(~Y)4 (which coincides
with R(Uy)). Thus, there exists an invertible matrix
P ∈ CS×S which provides a mapping between these two
bases for R(~Y),

Uy � BP (10)

LetU1, andU2 be two submatrices ofUy, comprising of its first
and last N rows, respectively. Then,

Uy � U1

U2
[ ] � WHA1P

WHA1ΦP
[ ] (11)

U2 � U1P
−1ΦP (12)

Notice that Ψ ≔ U†
1U2 � P−1ΦP.5 Since Ψ is diagonalized by

P, we can determine the AoAs (contained in Φ) from the S
eigenvalues {λi}Si�1 of Ψ as follows:

fi � −arg λi( )
π

, i � 1, . . . , S (13)

where arg(λ) ∈ [−π, π) denotes the phase of the complex
number λ.

The noiseless beamspace ESPRIT described above can
be directly extended to a noisy setting. Consider the
following noisy version of the measurement model
introduced in Eq. 7:

Ŷ � Ŷ1

Ŷ2
[ ] � ~W1

~W2
[ ] AM F( )X +N( ) (14)

where N ∈ CM×T denotes the additive noise. The noisy version
of the beamspace ESPRIT algorithm follows on similar lines as
its noiseless version, and is summarized in Algorithm 1.

4R(~Y) denotes the range space of ~Y.
5U†

1 denotes the Moore-Penrose Pseudo-inverse of the rectangular matrix U1.
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5 PERFORMANCE ANALYSIS OF
BEAMSPACE ESPRIT

We will analyze the performance of the noisy beamspace ESPRIT
algorithm. Our analysis extends the recent results from (Li et al.,
2020) (for single-snapshot ESPRIT), to beamspace and multi-
snapshot scenarios. Our error bounds will explicitly capture the
role of the beamforming matrixW, and provide insights into how
the error is shaped by the interaction between the AOA (F ) and
beamforming matrix (W). We will use this characterization to
develop new criteria for robust beamformer design in Section 2.

We first define some key quantities and metrics. The wrap
around distance between two spatial frequencies fi, fj ∈ [0, 1] over
the unit interval is defined as:

|fi − fj|Tu
≔ min

n∈ 0,1{ }
|fi − fj − n|

Our error metric will be the “matching distance” between the
estimated F̂ and ground truth F , defined as:

md F , F̂( ) ≔min
ψ

max
i

|f̂ψ i( ) − fi|Tu
(15)

where ψ is taken over all permutations of {1, 2, . . . , S}. Matching
distance between the eigenvalues of Ψ̂ and Ψ is similarly
defined as

md Ψ, Ψ̂( ) ≔min
ψ

max
i

|λ̂ψ i( ) − e−jπfi |Tu
(16)

We will use the notation σk(Q) to denote the kth largest
singular value of a matrix Q.

The following theorem provides an upper bound on the
matching distance error between the true AoAs F and its
estimate F̂ obtained from beamspace ESPRIT:

Theorem 1. Consider the noisy measurement model Eq. 14. Let
F̂ be the estimated frequencies obtained from the beamspace
ESPRIT algorithm (Algorithm 1). Assume that rank(BX) � S. If
the noise level is moderately small such that

‖N‖2 ≤ σS B( )σS X( )σS U1( )
16

�
S

√ ‖W‖2 (17)

then the matching distance error between F̂ andF is bounded as

md F , F̂( )≤ CS1.5‖B‖2‖W‖2‖N‖2
σS B( )2σS X( )σS U1( )2 (18)

Here C is a universal constant, and U1 ∈ CN×S is defined in
Eq. 11.

Proof. The proof follows by combining Lemma 6 and 8 of
Appendix. See Supplementary Appendix for the details.

Remark 1. When S � 1, the bound Eq. 18 can be simplified to

md F , F̂( )≤ C′‖W‖2‖N‖2
‖WHa f1( )‖2‖X‖2 (19)

where C′ is a constant. The quantity ‖WHa (f1)‖2 controls the
error bound and represents the beamformer response to the

spatial frequency f1 (direction θ1). Note that a simple scaling
of the beamforming matrixW cannot improve performance since
it boosts both the noise and signal components. For N � 1, ‖WHa
(f1)‖2 � |wHa (f1)| represents the beamforming gain in direction
θ1. Of course, if we knew f1, we would choose w � a (f1) to
maximize |wHa (f1)|. In that case, ‖WHa(f1)‖2/‖W‖2 �

��
M

√
, and

the error will scale as 1/
��
M

√
. However, during channel sensing, f1

is unknown and w needs to be designed to ensure that a certain
beamforming gain is achieved over a target sector of interest. Such
a design will also decrease the error bound uniformly over that
region. In the next section, this will be the basis for beamformer
design.

6 ANALOG BEAMFORMER DESIGN FOR
MAXIMIZING THE MINIMUM GAIN
6.1 Review of Existing Beamformer Design
Approaches
As explained earlier, the choice of the beamformer is implicitly
tied to F . However, prior to channel estimation, the AoAs (F ) of
the multipaths are unknown, and it becomes impossible to
beamform along these directions. As an alternative, in order to
ensure beamforming gain over all possible multipath angles, it is
common to assume that the AoAs belong to a sector of interest
(Alkhateeb et al., 2014b; Ma et al., 2020). Let T: [fmin, fmax] be a
spatial sector of interest, and suppose we have prior knowledge
that the AoAs fi ∈ T. We will now review beamformer designs
that utilize this prior information to enhance the performance of
channel estimation algorithms when AoAs are within this sector
of interest (Chen et al., 2019; Ma et al., 2020). The most widely
used criterion for designing a hybrid beamformer for mmWave
channel sensing is to ensure (i) a constant beamforming gain over
the sector of interest, and (ii) zero gain outside the region T, i.e.,

|wHa f( )| � g, f ∈ T

0, f ∉ T
{ (20)

where g is the desired gain. The criterion Eq. 20 represents an
ideal brick-wall filter, and it cannot be realized in practice. A
common approach is to ensure the desired gain g only on a finite
grid of discretized frequencies (Chen et al., 2019; Alkhateeb et al.,
2014b; Ma et al., 2020). Specifically, Let Ag �
[a ~f1

, a ~f2
, . . . , a ~fNg

] ∈ CM×Ng be a dictionary of steering vectors

a(~fk) corresponding to Ng grid points with

~fk �
k − 1( )
Ng

, 1≤ k≤Ng.

Suppose k1 and k2 are respectively the smallest and largest
integers such that ~fk1

, ~fk2
∈ T. We introduce a vector g ∈ CNg :

g[ ]k � gejϕi , k1 ≤ k≤ k2
0, otherwise
{ ,

which enforces the gain constraints Eq. 20 at the discretized
directions ~fk. Note that a phase term ϕi is introduced to the
response to provide additional flexibility of design. The first step
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towards designing the desired beamformer w involves estimating
an ideal beamformer (v*) design by solving the following least
square problem (Alkhateeb et al., 2014b; Chen and Qi, 2018;
Chen et al., 2019; Ma et al., 2020):

v* � arg min
v∈CM

‖AH
g v − g‖2 (21)

Typically, the grid is chosen to satisfy Ng > M, which implies
that rank (Ag) � M, and a closed form solution for the design is
given by v* � (AgAH

g )−1Agg � 1/MAgg. The beamformers are
normalized to obtain v0 � v*/‖v*‖2. In a typical hybrid mmWave
system, the beamformer v0 is realized by a hybrid structure where
WRF ∈ CM×N is an RF (analog) beamformer implemented using
phase shifters, i.e.

WRF[ ]m,n � ejϕm,n , 1≤m≤M, 1≤ n≤N,

and a digital beamformer wBB ∈ CN×1. Therefore, the second
stage of the beamformer design involves approximating the ideal
design v0 under these additional constraints imposed by the
hardware, resulting in the following optimization problem
(Alkhateeb et al., 2014b; Chen et al., 2019)

min
WRF∈CM×N ,wBB∈CN

‖v0 −WRFwBB‖2
WRF[ ]m,n � ejϕm,n , ‖WRFwBB‖2 � 1

(22)

Several algorithms have been proposed to approximately solve
Eq. 22 based on Orthogonal Matching Pursuit (Ayach et al., 2014;
Alkhateeb et al., 2014b), alternating minimization (Yu et al., 2016;
Chen et al., 2019), and fast search based techniques (Chen and Qi,
2018; Chen et al., 2019) using suitable initialization schemes.

Recently, instead of enforcing the constraint Eq. 20, the
authors in (Ma et al., 2020) consider parametric beamformers
of the following form, parameterized by a ∈ R

w a( )[ ]m,n � g
��
M

√
2

ej m−1( )π−a( )f n−1( ) − ej m−1( )π−a( )f n( )

j M − 1( )π − a
( ) (23)

where each beamformer is responsible for a partition of T

determined by {f(n)}Nn�0 ∈ T. They propose to maximize the
following ratio as a function of the parameter a

S a( ) ≔ ∫T|w a( )Ha f( )|2df
∫1
0
|w a( )Ha f( )|2df (24)

The numerator of S(a) represents the power concentrated in
the sector of interest T, and the denominator represents the total
power. This criterion is maximized by performing a grid-based
search over a after simplifying the ratio Eq. 24. One drawback of
both of the aforementioned beamforming strategies is that the
design is not guaranteed to ensure a constant gain of g even on the
grid points. More importantly, the beamforming gain can drop
below the desired level (g) at several regions in T. There is no
analytical characterization of how small the gain can become in
these regions. This can lead to significant performance
degradation of beamspace channel sensing techniques,
especially if the multipath directions are aligned with the
above regions where gain is small. In order to overcome these

drawbacks, in the next section, we will propose a new “max-min”
criterion for beamformer design to boost the minimum
beamforming gain over T. Such a criterion will allow more
robust channel estimation uniformly over T.

6.2 Beamformer Design Strategy
Wemotivate our approach for beamformer design by focusing on
the quantity σS(W

HA), and relate it to the beamforming gain. It
can be seen from Eq. 18 that larger the value of σS(W

HA), smaller
the error of beamspace ESPRIT. Hence, one can aim to designW
that maximizes σS(W

HA). But such a W will depend on A(F ),
and we do not know the AoA’s F to begin with. In many cases
however, we can assume that the AoA belong to a region/sector of
interest given by T ≔ [fmin, fmax]. In other words

fi ∈ T, i � 1, 2, . . . , S

In this case, we wish to ensure that σS(WHA(F )) stays
uniformly large over the entire set T. Let αW be the smallest
value that σS(WHA(F )) can assume over T, i.e.,

αW ≔min
F∈TS

σS WHA F( )( )
We wish to design W in order to maximize αW (under

constant modulus constraints on W), which leads to the
following problem:

α+ ≔ max
W∈CM×N

αW, s.t. |Wm,n|∈ 0, 1{ } (25)

This problem belongs to the family of non-convex max-min
optimization problems, and it is challenging to solve it for the
most general setting. In the next section, we focus on providing
the solution of such an optimization problem for the scenario
when there is a single source S � 1, single RF chain N � 1, and
contrast the distinctions between the proposed criteria to the
existing beamformer designs reviewed in Section 1.

6.3 Optimal Solution for Single Source and
Single RF Chain
We consider the single path scenario (S � 1) where the channel is
given by ht � αta(f). This model has been widely used in the
mmWave communication literature where the path losses are
high and the channel is assumed to have only a single Line of
Sight (LOS) path that is dominant (Alkhateeb et al., 2014b;
Chiu et al., 2019). Our goal will be to optimize the design of a
single RF chain (N � 1), which is again motivated by typical
hybrid mmWave hardware systems that are equipped with
large antenna arrays but often just 1 RF chain (Roh et al.,
2014). For S � 1, N � 1, it can be verified that
σS(WHA(F )) � σ1(wHa(f)) � |wHa(f)|. We first develop a
framework for designing w that is optimized to maximize the
minimum gain over the entire sector of interest. Specifically,
this yields the following max-min problem:

ηT* ≔ max
w∈CM

min
f∈T

|wHa f( )|,
s.t. |wm|∈ 0, 1{ }, m � 1, 2, . . . ,M

(26)
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Notice that Eq. 26 aims to maximize the minimum (or
worst case) gain of the beamformer over the sector T. At this
point, we will like to distinguish the criterion Eq. 26 from
those discussed in Section 1. Although the quantity of
interest is wHa(f) in both cases, the design criteria
reviewed in Section 1 are fundamentally different from
Eq. 26. Firstly, the approaches in (Alkhateeb et al., 2014b;
Chen and Qi, 2018; Chen et al., 2019) solve a grid-based least
square loss Eq. 21, and therefore the obtained design is not
guaranteed to ensure constant gain g even on the grid points.
Indeed, there could be an adversarial multipath angle f0 ∈ T

where the observed gain is lower:

wH
0 a f0( )<g

In contrast, the criterion Eq. 26 can uniformly guarantee
beamforming gain of at least η+T in the entire sector T. This is
illustrated in Figure 1 where we plot the gain of two different
beamformers against the max-min design over the sector of
interest T � [0, 0.2]. As can be seen, the gain for “power-ratio”
(Ma et al., 2020) and “constant gain” designs (Chen et al.,
2019) both significantly fall below the desired level along
several directions in the sector T, whereas for the max-min
design the smallest (worst case) gain is larger than the other
designs.

Solving Eq. 26 over the set of all unimodular w can be a
challenging problem, and it can be difficult to quantify and
analyze the optimal solution. To make Eq. 26 tractable so that
we can obtain a closed form solution with “quantifiable”
minimum beamforming gain over the entire sector T, we
propose to choose w from a parametric class WT of
beamformers, which already obey the unimodular constraints.
We defineWT as follows. Given a “center frequency” fc ∈ T, and
an integer ma, 1 ≤ ma ≤ M, define b(fc,ma) ∈ CM as

b fc,ma( )[ ]m � exp −jfcπ m − 1( )( ), m≤ma

0, m>ma
{

Hence, b (fc,ma) represents a DFT beamformer withma active
antennas and whose pass band is centered at fc. Let
mr ≔ min{ 4

fmax−fmin
,M}. Given an integer ma satisfying 1 ≤ ma

≤ mr, we define Cma,T ⊂ CM as the set of all DFT beamformers
with ma active antennas, generated by varying the center
frequency fc over the interval [fmax − 2

ma
, fmin + 2

ma
]:

Cma,T � b fc,ma( ) ∈ C
M, fc ∈ fmax − 2

ma
, fmin + 2

ma
[ ]{ }

All beamformers in Cma,T therefore have the same beamwidth
determined byma with the flexibility of shifting the beam centers
to any location fc such that the desired coverage region T remains
in the main lobe of the beam, i.e., T ⊂ [fc − 2

ma
, fc + 2

ma
]. Finally,

we define the set WT that comprises of DFT beamformers of all
possible mainlobe widths, i.e.,

WT ≔ ⋃
mr

ma�1
Cma,T (27)

Using this class WT, we propose to solve

�ηT* ≔max
w∈WT

min
f∈T

|wHa f( )| (28)

Notice that the class of beamformers WT is quite broad,
consisting of multi-resolution beams of varying beam widths
(determined by ma), and for each resolution/beamwidth the
permissible beams are shifted copies of each other. Such
beamformers have two fold-advantages (i) they inherently
satisfy the desired constant modulus constraint for hardware
implementation using phase shifters and switches, and (ii) they
are amenable to theoretical analysis due to the parametric

FIGURE 1 | Comparison of beam patterns of two different beamformer
designs against the max-min design. Here N � 10, M � 128, T � [0,0.2].

FIGURE 2 | Effect of the number of active antennas on the realizable
beam patterns in WT with a single RF chain (N � 1, M � 40).
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structure. A key distinction compared to the designs described in
Section 1 is that we are only considering purely RF or analog
beamformers, without any baseband processing. As will be shown
in the simulations, with the same budget of RF chains, this max-
min design strategy yields superior performance compared to the
hybrid designs, especially for adversarial multipath
configurations.

The max-min design criterion involves a natural trade-off
between gain and coverage. As shown in Figure 2, when ma is
large the resulting beams are sharper and can offer higher
gains. Despite their higher gain, their coverage is limited
owing to the narrow main lobes. Since our goal is to ensure a
certain minimum gain uniformly across the entire sector T,
we must design the beam centers and select the widths
appropriately to satisfy this objective. The parametric
structure of WT allows us to obtain the following
expression for the beamforming gain for w � b (fc, ma):

‖wHa f( )‖22 � sin f − fc( ) πma
2

sin
f−fc( )π

2( )
⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝ ⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠

2

Owing to the structure of WT, searching for the optimum w
reduces to finding the optimum center fc and active antennas ma

that jointly maximize the minimum gain over the entire sector of
interest T. Theorem 2 provides the optimal choice of this design.

Theorem 2. Let T � [fmin, fmax] ∈ [0, 1], Δf≔fmax − fmin. Given
the class of beamformers WT defined in Eq. 27, the optimal value
of Eq. 28 is given by

�ηT* �

sin
2

Δf

[ ]Δfπ/4( )
sin Δfπ/4( ) if Δf ≥

2
M

sin MΔfπ/4( )
sin Δfπ/4( )
∣∣∣∣∣∣∣∣∣∣

∣∣∣∣∣∣∣∣∣∣ if Δf ≤
2
M

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩
. (29)

The optimal value is attained by the beamformer
b(fc*, ma*) ∈ WT where

fc* � fmid � fmax + fmin

2

ma* �
2
Δf
[ ] if Δf ≥

2
M

M if Δf ≤
2
M

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
(30)

where notation [x] refers to the closest integer to x.
Proof. The problem Eq. 28 is equivalent to the following

problem

max
fc,ma( )∈DM,T

min
f∈T

|b fc,ma( )Ha f( )| (31)

where DM,T denotes the set of (fc, ma) pairs such
that b(fc,ma) ∈ WT:

DM,T � fc,ma( )|fc ∈ fmax − 2
ma

, fmin + 2
ma

[ ], ma ≤mr{ }
Fix ma. Define g(fc,ma): T → R+ as:

g fc,ma( ) f( ) ≔ |b fc,ma( )Ha f( )| � ∑ma−1

i�0
ejπ fc−f( )i

∣∣∣∣∣∣∣∣∣
∣∣∣∣∣∣∣∣∣

�
sin fc − f( )maπ

2
( )
sin π

fc − f

2
( )

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
(32)

The function g(fc,ma)(f) is symmetric around fc, and is
monotonically increasing for f ∈ [fc − 2/ma, fc] and
monotonically decreasing for f ∈ [fc, fc + 2/ma]. Since
(fc,ma) ∈ DM,T, we have T ⊂ [fc − 2/ma, fc + 2/ma] for all
(fc,ma) ∈ DM,T. Therefore, it holds that

min
f∈T

g fmid ,ma( ) f( ) � g fmid ,ma( ) fmin( ) � g fmid ,ma( ) fmax( )
(33)

We first consider

fc >fmid (34)

Based on the definition of g(fc,ma)(f), for all (fc,ma) ∈ DM,T

we have

g fmid ,ma( ) fmin( ) � g fc,ma( ) fmin + fc − fmid( )( ), (35)

Further the fact (fc,ma) ∈ DM,T along with Eq. 34 implies
that

fc − 2/ma <fmin <fmin + fc − fmid( )<fc (36)

Thus

g fc,ma( ) fmin( )≤g fc,ma( ) fmin + fc − fmid( )( ) (37)

Using Eqs 33–35, 37 we have

min
f∈T

g fmid ,ma( ) f( ) � g fmid ,ma( ) fmin( )
� g fc,ma( ) fmin + fc − fmid( )( )
≥
a( )
g fc,ma( ) fmin( )

≥
b( )
min
f∈T

g fc,ma( ) f( )
where the inequality (a) follows from the monotonically
increasing behavior of g over the interval [fc − 2/ma, fc], and
Eq. 36 which implies fmin ∈ [fc − 2/ma, fc]. The inequality (b)
follows from the fact that fmin ∈ T. Hence, we get

min
f∈T

g fmid ,ma( ) f( )≥ min
f∈T

g fc,ma( ) f( ) (38)

Using a similar argument we can show that Eq. 38 also holds
when fc ≤ fmid.

Notice Eq. 32 implies that
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argmaxma ≤mr
g fmid ,ma( ) fmin( )∣∣∣∣∣ ∣∣∣∣∣ � argmax

ma ≤mr

sin Δf
maπ

4
( )∣∣∣∣∣∣∣

∣∣∣∣∣∣∣ (39)

Therefore, it can be easily verified that the maximum value of
g(fmid ,ma)(fmin) over all (fc � fmid, ma) ∈ DM,T pairs is given as

max
fc�fmid ,ma( )∈DM,T

g fmid ,ma( ) fmin( ) (40)

� max
fc�fmid ,ma( )∈DM,T

g fmid ,ma( ) fmax( )

�

sin
2
Δf
[ ]Δfπ/4( )

sin Δfπ/4( ) if Δf ≥
2
M

sin MΔfπ/4( )
sin Δfπ/4( )
∣∣∣∣∣∣∣∣∣∣

∣∣∣∣∣∣∣∣∣∣ if Δf ≤
2
M

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩
(41)

which will be attained at

ma* �
2
Δf
[ ] if Δf ≥

2
M

M if Δf ≤
2
M

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩ (42)

Optimality of (fmid, ma*) implies that for all
(fc � fmid, ma) ∈ DM,T we have,

min
f∈T

g fmid,ma*( ) f( )≥ min
f∈T

g fmid,ma( ) f( ) (43)

Hence as the result of Eq. 38, and Eq. 43, for any
(fc,ma) ∈ DM,T we have

min
f∈T

g fc,ma( ) f( )≤ min
f∈T

g fmid ,ma( ) f( )≤ min
f∈T

g fmid ,ma*( ) f( )
which completes the proof.

6.4 A Sub-band Splitting Design for Multiple
RF Chains
We now develop a heuristic for N > 1 RF chains that utilizes the
optimal design from Theorem 2. When N > 1, let W �
[w1,w2, . . . ,wN] ∈ CM×N be the analog beamforming matrix.
In this case, σS(W

Ha(f)) assumes the form

‖WHa f( )‖22 �∑N

k�1 ‖wH
k a f( )‖22

Similar to our prior objective, we now wish to ensure the
minimum value of ‖WHa(f)‖22 is maximized:

�ηI* ≔ max
w1 ,...,wN∈WT

min
f∈T

∑N
k�1

|wH
k a f( )|22 (44)

Instead of exactly solving Eq. 44, we will use our design for 1
RF chain to develop a subband splitting approach for designing
w1, w2, . . . , wN. In particular, given the interval T and a budget of
N RF-chains, we partition T into N subbands,

T � ⋃
N

k�1
Tk (45)

where Tk ≔ [fmin + (Δf) k−1N , fmin + (Δf) k
N] represents the kth

partition or subband of the sector. Such a subband design was also
considered in (Ma et al., 2020), but the criterion was different. In
particular, in (Ma et al., 2020), each beamformer is responsible for
maximizing the ratio Eq. 24 in the subband. Instead of
maximizing the power-ratio, we propose to maximize the
worst-case gain within each subband, which will prove to be
more robust, especially for adversarial settings. We solve N
different optimization problems to find wi, i � 1, 2, . . . , N as
follows

max
wk∈WTk

min
f∈Tk

|wH
k a f( )|, 1≤ k≤N (46)

As a result of the partition (Stewart, 1990), we can adopt the
optimal design obtained from Theorem 2 for each of the N
problems in (Hansen, 1987). This approach greedily designs
the columns of the matrix W such that the kth beamformer
wk maximizes the minimum gain over Tk. Let f

(k)
c and m(k)

a be
the center and number of active antenna for the optimum wk that
solves Eq. 46. Then, Theorem 2 dictates

f k( )
c � fmin + Δf( ) 2k − 1

2N
,m k( )

a � min
2N
Δf
[ ],M( ) (47)

This design follows from Theorem 2, where each of the N
intervals {Tk}Nk�1 are of length Δf/N, hence the optimal value of
m(k)

a is given by Eq. 30. In this case, we can obtain a lower bound
on ‖WHa(f)‖22 by using the gain characterization from
Theorem 2.

An example of this sub-band max-min design scheme is
illustrated in Figure 3, where the sector of interest T � [0, 0.5]
is partitioned into 5 subbands (partitions are shown using the

FIGURE 3 | Subband splitting approach for designing N � 5
beamfomers by partitioning the region of interest into N � 5 subbands and
choosing the optimal beamformer within each subband. A single RF chain is
responsible for maximizing the minimum gain in each subband/partition.
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dotted lines). Each of the available 5 RF chains maximize the
beamforming gain in each subband. The solid line indicates the
overall gain in the sector of interest showing reduced gain drop
over T.

7 NUMERICAL RESULTS

In this section, we experimentally validate our analysis of
beamspace ESPRIT (in Theorem 1), and also evaluate the
performance of the max-min beamformer proposed in Section 2.

In the first experiment, we study the effect of varying the
number (M) of antennas on the matching distance error. We fix
the AOAs of the channel paths to be F � {0.21, 0.29, 0.36, 0.38},
which belong to the region of interest T � [0.2, 0.4]. For each M,
the channel gains X are normalized to satisfy ‖X‖2 � 1. The
received signal in Eq. 4 is corrupted by bounded random noise,
normalized to satisfy ‖N‖2 � ϵ. We keepX fixed and only the noise
is randomly generated during the Monte Carlo experiments. We
compute the average matching distance error of beamspace
ESPRIT for this channel configuration averaged over L � 500
different noise realizations. In Figure 4, we plot the average
matching distance error of the beamspace ESPRIT algorithm
using the max-min beamformer proposed in Section 2. Although
the design was proposed for S � 1, it can be deployed for channels
with S > 1 multipath components as well. We vary the number of
antennas fromM � 32 toM � 128 for two different noise levels ϵ �
0.1, 0.5. From Theorem 1, for a fixed channel configuration (fixed
S, and F ), the matching distance error bound is proportional to
βM(W, N), given by

βM W,N( ) � ‖B‖2‖W‖2‖N‖2
σS B( )2σS X( )σS U1( )2

In order to validate the trend predicted by our theoretical
result, we overlay the average βM(W, N) (averaged over the noise
realizations), scaled by a factor of 10–3. As shown in Figure 4, the
average matching distance error follows the trend predicted by
the bound in Theorem 1. As expected, both the empirical error
and the trend based on βM(W, N) increase with ϵ. The
fluctuations in error (which are also consistent with the
fluctuations in the bound) can be attributed to the fact that as
we vary M, the gain of the beamformers at the (fixed) AoAs also
fluctuate.

We now compare the proposed max-min beamformer against
three other beamformer design strategies (Li et al., 2020; Chen
et al., 2019) which were reviewed in Section 1. In all of the
following experiments, we choose T � [0, 0.2] as our region of
interest. In all figures, “Power-Ratio” refers to the beamformer
designed using Eq. 23 (Li et al., 2020), “PS-ICD” refers to the
design in (Chen et al., 2019) which approximates the solution of
Eq. 21 using phase shifters, and “DFT” refers to a sub-selection of
the columns of a DFT matrix (according to the region of interest
and number of available RF chains). “Max-Min design” denotes
the beamformer described in Section 2, where we partition the
region of interest T and construct the optimal beamformers
corresponding to each region.

We first generate a single LOS path with
F � {0.18} ∈ T � [0, 0.2], and a fixed channel gain matrix X
satisfying ‖X‖2 � M. Similar to the previous setting, we
consider bounded noise with ‖N‖2 � ϵM to ensure that the
ratio ‖X‖2/‖N‖2 is fixed. In Figure 5, we plot the average
matching distance error for three different beamformers, and
overlay the average trend predicted by βM(W, N). The empirical
average matching distance error exhibits a similar trend as
predicted by βM(W, N). The performance gap observed
between the bounds is also reflected in the actual matching

FIGURE 4 | Comparative study of matching distance error as a function
of the number of antennas M, using the max-min beamforming scheme for a
multipath channel with S � 4 paths, N � 20 RF chains, T � 50 Snapshots. The
dotted lines illustrate the trend predicted by the bounds in Theorem 1.

FIGURE 5 | Comparative study of matching distance error as a function
of the number of antennas M, using the max-min and power ratio
beamforming schemes for a LOS channel with S � 1 path along F � [0.18],
N � 10 RF chains, T � 5 snapshots, and noise level ϵ � 0.5. The dotted
lines illustrate the trend predicted by the bounds in Theorem 1.
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distance error, hence, illustrating the effectiveness of the proposed
beamformer design by leveraging the error analysis.

In Figures 6–12, we assume that the path gains are i. i.d
random variables distributed as xs,t ∼ NC(0, σx). Furthermore,
the noise are assumed to be i. i.d random variables distributed as
nm,t ∼ NC(0, σn) and independent from the channel gains. We
define SNR as

SNR ≔ 10log
σx

σn

In Figures 6–8, we compare the average Matching Distance
error of beamspace ESPRIT as a function of SNR, using different

beamformers. In Figures 6, 7, the channel is assumed to have a
single LOS path, withM � 64 antennas, N � 5 RF chains, and T �
50 snapshots. In Figure 8, we consider a multi-path channel with
S � 4 paths, M � 128 antennas, N � 10 RF chains, and T � 50
temporal snapshots. We considered a specific channel
configuration where the AoAs are chosen from the set
F � {0.02, 0.1, 0.16, 0.18}. As can be observed, the max-min
design outperforms other schemes uniformly over the entire
range of SNR, maintaining a gap in error of about 10 dB. In
Figure 7, we further show how the performance of all the
beamformers degrade when the SNR becomes very small. In

FIGURE 6 | Comparison of performance of max-min beamformer
against power-ratio, PS-ICD and DFT beamformers as a function of SNR, with
channel path directions given by F � [0.18]. Each beamformer design is
realized with N � 5 RF chains where M � 64.

FIGURE 7 | Comparison of channel estimation performance of max-min
beamformer against power-ratio, PS-ICD and DFT beamformers in the SNR
regime of −50 dB to −10 dB, with channel path directions given by
F � [0.18]. Each beamformer design is realized with N � 5 RF chains
where M � 64.

FIGURE 8 | Comparison of performance of max-min beamformer
against power-ratio, PS-ICD and DFT beamformers as a function of SNR, with
channel path directions given by F � [0.02, 0.1, 0.16,0.18]. Each
beamformer design is realized with N � 10 RF chains where M � 128.

FIGURE 9 |Comparison of beamspace channel estimation performance
for a LOS channel with S � 1 path, M � 64 antennas, N � 5 RF chains as a
function of SNR. The plot shows the matching distance error averaged over
K � 100 different channel realizations by varying one of the AOAs
uniformly on a grid in the region of interest.

Frontiers in Signal Processing | www.frontiersin.org February 2022 | Volume 1 | Article 82061711

Shahsavari et al. Beamspace ESPRIT and Beamformer Design

https://www.frontiersin.org/journals/signal-processing
www.frontiersin.org
https://www.frontiersin.org/journals/signal-processing#articles


such a low SNR regime, the matching distance error of one
channel path converges to half of the length of the region of
interest, i. e 20 log 10 (0.1) � −20 dB.

In the next experiment, we investigate the performance of
max-min beamformer with respect to different path directions
over the region of interest. In order to do so, we choose the path
angles from a uniform grid of size K � 100 over the region of
interest T, and plot the average matching distance error (Avg-
md) over all possible channel configurations. For a single path
LOS channel, let F k � 0.2(k−1)

K{ } be the AoA direction while F̂ k,l

refers to the estimate of F k for the lth realization. The Avg-md is
given as follows

Avg −md T, K, L( ) � 20log
1
KL
∑K
k�1
∑L
l�1

md F k, F̂ l,k( )
In Figure 9 we plot the Avg-md as a function of SNR, under a

similar setting as Figure 6. In Figure 10, we repeat this for a
multi-path channel, where three path directions are fixed, and the
AoA of the fourth path is varied over T, i. e,
F k � 0.02, 0.1, 0.18, 0.2(k−1)K{ }. The superior performance of the
Max-Min beamformer can be attributed to the fact that its
minimum gain over T is always larger than that of the other
beamformers.

Owing to a higher “worst-case gain” over the region of interest,
max-min beamformers enable a more robust channel estimation
in face of certain (adversarial) channel configurations/multipath
directions, compared to the other beamformers whose pass-band
gain can drop significantly below the desired (constant) level for
these directions, resulting in an overall degradation of the
average error.

In Figure 11, we demonstrate the effect of the total number of
temporal snapshots on the ESPRIT matching distance error
for different beamforming schemes. In this experiment, we fix
the SNR at −5 dB, and the other parameters are identical to
those used in Figure 8. The plot shows that our schemes is
effective even in the limited snapshot regime. Additionally,
the gap between the performance of Min-Max design and the
other beamformers steadily increases with the number of
snapshots.

Finally, Figure 12 compares the MSE of beamspace ESPRIT
against the beamspace Cramér-Rao Bound (CRB) for different
beamformers (Van Trees, 2004), under a similar setting as
Figure 6. As we can observe, the trend exhibited by the
empirical MSE is consistent with the trend shown by the CRB,
and the max-min beamformers exhibit a smaller CRB compared
to other beamformers.

FIGURE 10 | Comparison of beamspace channel estimation
performance for a multipath channel with S � 4 path, M � 128 antennas, N �
10 RF chains as a function of SNR. The plot shows the matching distance
error averaged over K � 100 different channel realizations by varying the
one AOA uniformly on a grid in the region of interest while three other AOAs are
fixed at [0.02, 0.1, 0.18].

FIGURE 11 | Matching distance error vs. the number of snapshots for
max-min beamformer and power-ratio, PS-ICD and DFT beamformers. The
channel path directions are given by F � [0.02, 0.1,0.16, 0.18]. Each
beamformer design is realized with N � 10 RF chains where M � 128.

FIGURE 12 | Comparative study of MSE and Cramér-Rao Bound (CRB)
as a function of SNR, using the max-min and power ratio beamforming
schemes for a LOS channel with S � 1 path alongF � [0.18],N � 5 RF chains,
M � 64 Antennas, T � 100 snapshots. The dotted lines denote
beamspace CRB.
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8 CONCLUSION

In this work, we have extended the analysis of single-snapshot
ESPRIT for beamspace and multi-snapshot scenarios. Our
analysis is non-asymptotic in the number of snapshots, and
provides an upper bound on the matching distance error
without requiring any specific distribution for the noise. The
error analysis revealed the role of the beamformer design. Based
on our theoretical analysis, we have proposed a novel max-min
criterion for designing beamformers which ensures a minimum
beamforming gain uniformly over a region of possible path
directions. We have considered a family of multi-resolution
beamformers which can be implemented with phase shifters,
and proposed the optimal beamformers from this family with
respect to the new max-min criteria. By conducting several
numerical experiments, we have empirically established the
superior performance of our designed beamformers compared
to other beamformers. In future, an interesting question would be
to extend the max-min design over a broader class of
beamformers.
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A. PROOF OF AUXILIARY LEMMAS FOR
THEOREM 1

Our proof follows similar arguments as [1] with necessary
modifications for beamspace and multi-snapshot scenario. For
completeness, we provide all auxiliary lemmas used.

Preliminaries
Let S1, S2 be any orthonormal bases for R(Uy) and R(Ûy),

respectively. The principal (or canonical) angles between the
subspaces R(Uy) and R(Ûy) are defined as the
Θ(S1, S2) ≔ [ω1,ω2, . . . ,ωS]T where ωk ∈ [0, π/2] satisfies:

cos ωi( ) � σ i SH1 S2( ) (48)

We consider the SVD of SH1 S2 � ~U~Σ~V
H
. Since ESPRIT is

invariant to the exact choice of the basis, for our analysis we
will consider the orthonormal bases for R(Uy) and R(Ûy) as
Uy � S1 ~U, and Ûy � S2 ~V. In this case, it can be verified that the
principal angles defined in (1) can be written as:

cos ωi( ) � |uH
i ûi|

Here we assumed that the singular vectors are ordered such
that ω1 ≥ ω2 ≥. . ., ≥ ωS. We also denote

sin Θ Uy, Ûy( )( ) ≔ sin ω1( ), sin ω2( ), . . . , sin ωS( )[ ]T

The augmented noise matrix is given by:

Ns ≔
N1

N2
[ ]

where N1,N2 ∈ CM−1×T represent matrices formed by selecting
the first M − 1 rows and last M − 1 rows of N, respectively. Let
~N � WHNs, we have the following bound:

‖~N‖22 ≤ ‖W‖22 ‖N1‖22 + ‖N2‖22( )
≤ 2‖W‖22‖N‖22

(49)

where the first inequality follows from the fact that
|Ns‖22 ≤ ‖N1‖22 + ‖N2‖22, and the second inequality holds since
both N1, N2 are submatrices of N.

For any matrix F, we adopt the notation σmax(F)≔‖F‖2, and
σmin(F)≔1/‖F†‖2. We first use Wedin’s theorem [2] to
bound ‖Uy − Ûy‖2.

Lemma 1. (Wedin’s Theorem [2]). Consider matrices
A,B,N ∈ CM×N such that

B � A +N
Consider the Singular Value Decompositions of A and B:

A � U1 U0[ ] Σ1

Σ0
[ ] V1

V0
[ ]H

B � ~U1
~U0[ ] ~Σ1

~Σ0
[ ] ~V1

~V0
[ ]H

where U1 ∈ CM×L, ~U1 ∈ CM×L consist of the L principal
singular vectors of A and B, respectively. Define A1 ≔ U1Σ1VH

1 ,

A0 ≔ U0Σ0VH
0 , B1 ≔ ~U1~Σ1 ~V

H
1 , B0 ≔ ~U0~Σ0 ~V

H
0 . If σmax(A0) ≤ α

and σmin(B1) ≥ α + δ for some α ≥ 0 and δ > 0, the following holds

‖ sinΘ R A1( ),R B1( )( )‖∞ ≤
max ‖NV1‖2, ‖NHU1‖2{ }

δ

Lemma 2. Consider the matrices A, B1, U1, V1 defined in Lemma
1. If rank(A) � L, and ‖N‖2 ≤ σL(A)/2, the following holds

‖ sinΘ R A( ),R B1( )( )‖∞ ≤
2max ‖NV1‖2, ‖NHU1‖2{ }

σL A( )

Proof. Note that since rank(A) � L, we have A0 � 0, and σmin(A) �
σL(A). UsingWeyl’s theorem [3] formatrix perturbation, we canwrite

σmin B1( )≥ σmin A( ) − ‖N‖2 ≥ σL A( )
2

where the last inequality follows from the assumption ‖N‖2 ≤
σL(A)/2. The conditions of Lemma 1 are satisfied with α � 0 and δ
� σL(A) completing the proof of Lemma 2. □

We will also be using the following standard result from [4,
Pg. 36].

Lemma 3. For any matrices A ∈ CM×K, and B ∈ CK×T, (M > K)
where rank(A) � K, we have

σK AB( )≥ σK A( )σK B( )

Lemma 4. Let Ŷ � BX + ~N, where Rank (BX) � S. Consider the
Singular Value Decompositions: BX � UyΣyVH

y ,
Ŷ � [Ûy Ûn]Σ̂y[V̂H

y V̂
H
n ]H, where Uy, Ûy ∈ C2N×S consists of

the S principle singular vectors. Assuming that the noise is
bounded as ‖~N‖2 ≤ σS(B)σS(X)/2, the following holds

‖Uy − Ûy‖2 ≤ 2
��
2S

√ ‖~N‖2
σS B( )σS X( ) (50)

Proof. When the noise ~N is bounded by
‖~N‖2 ≤ σS(B)σS(X)/2≤ σS(BX)/2, the assumptions of Lemma 2
are satisfied for L � S, which implies

‖ sinΘ Uy, Ûy( )‖∞ ≤
2max ‖~NVy‖2, ‖~NH

Uy‖2{ }
σS BX( )

≤
2max ‖~NVy‖2, ‖~NH

Uy‖2{ }
σS B( )σS X( )

Using the fact ‖Vy‖2 � 1, ‖Uy‖2 � 1, we have

‖ sinΘ Uy, Ûy( )‖∞ ≤
2‖~N‖2

σS B( )σS X( ) (51)

Now, under the canonical basis assumption, we have
‖ sinΘ(Uy, Ûy)‖∞ � sin(ω1) and for i � 1, 2, . . ., S
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‖ûi − ui‖22 � 2 1 − cosωk( )≤ 2 1 − cos2ωk( )≤ 2 sin2ωk

Therefore,

‖Uy − Ûy‖2 ≤ ‖Uy − Ûy‖F � ∑S
i�1

‖ûi − ui‖22⎛⎝ ⎞⎠1/2

≤ 2S sin2ω1( )1/2 � ��
2S

√
sinω1

(52)

The proof is completed by combining (52) and (51). □

Lemma 5. Consider the measurement model in (14). If rank(BX) �
S, and ‖Uy − Ûy‖2 ≤ σS(U1)/2, then

‖Ψ − Ψ̂‖2 ≤ 7‖Uy − Ûy‖2
σS U1( )2 (53)

Proof. Notice that

‖Ψ − Ψ̂‖2 � ‖ Û
†

1 − U†
1( )Û2 + U†

1 Û2 − U2( )‖2
≤ ‖ Û

†

1 − U†
1( )‖2‖Û2‖2 + ‖U†

1‖2‖ Û2 − U2( )‖2
≤ ‖ Û

†

1 − U†
1( )‖2 + ‖U†

1‖2‖ Ûy − Uy( )‖2
where the last inequality follows from the fact that Û2, Û2 − U2

are submatrices of Ûy and Ûy − Uy, respectively. Therefore, we
have ‖Û2‖≤ ‖Ûy‖2 � 1, and ‖Û2 − U2‖2 ≤ ‖Ûy − Uy‖2. By the
assumption in this lemma, we have,

‖Û1 − U1‖2 ≤ ‖Ûy − Uy‖2 ≤ σS U1( )
2

(54)

We use a result from [5, Theorem 3.2] which states that a matrix F
with rank S, and its perturbed matrix ~F � F + E satisfy the
following inequality:

‖F† − ~F
†‖2 ≤ 3‖E‖2

σS F( ) σS F( ) − ‖E‖2( )
provided the perturbation satisfies ‖E‖2 < σS(F). We use this result
by substituting F with U, and ~F with Û1.

From (54), the perturbation condition is satisfied and this
result leads to:

‖Û†

1 − U†
1‖2 ≤

3‖Û1 − U1‖2
σS U1( ) σS U1( ) − ‖Û1 − U1‖2( )

≤
6‖Ûy − Uy‖2
σS U1( )2

(55)

Therefore, we have that

‖Ψ − Ψ̂‖2 ≤ 6

σS U1( )2 +
1

σS U1( )( )‖Ûy − Uy‖2

≤
7‖Ûy − Uy‖2
σS U1( )2

(56)

Lemma 6. Consider the measurement model in (14) such that (17)
holds. Then the following bound is satisfied:

‖Ψ − Ψ̂‖2 ≤ 14
��
2S

√ ‖~N‖2
σS B( )σS X( )σS U1( )2 (57)

Proof. From (17) and (49), we have

‖~N‖2 ≤ σS B( )σS X( )σS U1( )
8
��
2S

√ ≤
σS B( )σS X( )

2
(58)

where the second inequality follows from the fact that σS(U1) ≤ 1
and S ≥ 1. By applying Lemma 4, (50) holds. Now, (50) and (58)
together imply that ‖Uy − Ûy‖2 ≤ σS(U1)/2. This ensures that the
conditions of Lemma 5 are satisfied. Combining (53) and (50)
leads to the desired result. □

Lemma 7.

md F , F̂( )≤ 1
2
md Ψ, Ψ̂( ) (59)

Proof. The proof follows directly from eq. (III.1) in [1] □

Lemma 8. Consider the measurement model in (14). If rank(BX) �
S, then

md F , F̂( )≤ S‖B‖2
σS B( )‖Ψ − Ψ̂‖2 (60)

Proof. Based on (9),Ψ is diagonalizable by the invertible matrix P.
Using Bauer-Fike theorem, [6], [4, Theorem 3.3] and Lemma 7,
we have

md F , F̂( )≤ 1
2

2S − 1( )κ P−1( )‖Ψ − Ψ̂‖2 (61)

where κ(P−1) � ‖P‖2‖P−1‖2. To bound κ(P−1), we use the fact that
Uy � BP and ‖Uy‖2 � 1. This implies that

κ P−1( )≤ κ B( ) � ‖B‖2
σS B( ) (62)
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