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X-ray computed tomography (CT) is a non-invasive medical diagnostic tool that has raised
public concerns due to the associated health risks of radiation dose to patients. Reducing
the radiation dose leads to noise artifacts, making the low-dose CT images unreliable for
diagnosis. Hence, low-dose CT (LDCT) image reconstruction techniques have offered a
new research area. In this study, a deep neural network is proposed, specifically a residual
network (ResNet) using dilated convolution, batch normalization, and rectified linear unit
(ReLU) layers with fused spatial- and channel-attention modules to enhance the quality of
LDCT images. The network is optimized using the integration of per-pixel loss, perceptual
loss via VGG16-net, and dissimilarity index loss. Through an ablation experiment, these
functions show that they could effectively prevent edge oversmoothing, improve image
texture, and preserve the structural details. Finally, comparative experiments showed that
the qualitative and quantitative results of the proposed network outperform state-of-the-art
denoising models such as block-matching 3D filtering (BM3D), Markovian-based patch
generative adversarial network (patch-GAN), and dilated residual network with edge
detection (DRL-E-MP).

Keywords: low-dose CT image, denoising, deep learning, residual learning, attention modules, per-pixel loss,
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INTRODUCTION

X-ray computed tomography (CT) is one of the most used diagnostic tools in medical imaging. It
provides fine details of human internal structure noninvasively, which is ideal for detecting
abnormalities in patients. However, the use of this image modality requires the use of X-rays to
capture the region of interest. Exposure to such ionizing radiation can cause health risks including
cancer (Z. Wang et al., 2020). Although some may argue that the effects of radiation from
commercial CT scans is overstated, the dramatic expansion of the CT usage has already
increased the global annual cumulative ionizing radiation dose by 34% (Tahmasebzadeh et al.,
2021). Hence, researchers have been exploring effective ways to reduce radiation dose for medical
imaging diagnosis without decreasing the accuracy of the image quality due to the added presence
of noise.

Generally, radiation reduction is usually performed by controlling the X-ray current tube or by
minimizing the X-ray photon count (Kulathilake et al., 2021). This process degrades the signal-to-
noise ratio (SNR) of the X-ray signals, resulting in lower-quality CT images with noise artifacts,
making clinical diagnosis less reliable. Various methods of radiation reduction have been introduced,
which have already achieved improved results including sinogram domain filtering, iterative
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reconstruction (IR), and image denoising using deep learning
techniques, all of which aim to follow the “as low as reasonably
achievable” (ALARA) principle (Yi and Babyn, 2018).

Projection domain filtering uses raw projection data before
analytic CT image reconstruction. For noise removal, the noise
present in the projection space should be well characterized
(Wang et al., 2008). A recent study by Ma et al. (2021)
proposed an attention deep residual dense convolutional
neural network (CNN) with the intent of extracting noise
features from the LDCT projection data in order to extract the
clean sinogram for reconstruction. Although the fusion of the
local and global feature information during this pre-processing of
the sinogram data obtained pleasing results, acquiring raw
sinogram data remains quite challenging from commercial CT
scanners (Ma et al., 2021). Model-based iterative reconstruction
(MBIR) techniques perform image reconstruction based on
object projections. A continuous sequence of comparing an
image assumption with the real time measured values for this
method made it almost impossible for the early scanners to
perform the method (Pickhardt et al., 2012). However, with
the rapid advancement of computer technology, this technique
can now be handled and can achieve higher image quality in
terms of the image texture and spatial resolution (Hashimoto and
Takamaeda-Yamazaki, 2021). Learned experts’ assessment-based
reconstruction network (LEARN) has been introduced, which
utilizes the regularization and parameters used during the IR
training process to effectively recover the images while trying to
reduce the computational costs (Chen et al., 2018). A continued
drawback is that the results are still susceptible to noise artifacts
and the computational cost is high and similar to the sinogram
domain filtering; there is also a limitation regarding the collection
of projection data. Manifold and graph integrative convolutional
(MAGIC) network simultaneously extracts pixel-level and
topological features by using spatial and graph convolutions in
an attempt to address the data limitation issue but still faces some
potential issues regarding the optimization of the network design
(Xia et al., 2021b).

For this study, CT image post-reconstruction is implemented
using deep learning methods, which offers a more robust solution
to overcome the issues regarding the mentioned iterative
methods. Deep learning methods have been evolving
throughout recent years and have been effectively providing
reliable outcomes when applied in different fields especially in
computer vision. These methods take advantage of the graphics
processing unit (GPU) parallel computing in accelerating the
training process when a network model contains deeper layers,
which tends to have the vanishing gradient problem. Numerous
state-of-the-art deep learning models have been developed in
terms of reducing noise artifacts in LDCT images. Generally, the
CT reconstruction process involves mapping features of normal-
dose CT (NDCT) images with the low-dose images (LDCT), and
this can be done through the denoising algorithms. Block-
matching 3D (BM3D) is a transformation domain technique
in which the same patches are stacked into 3D groups by block
matching and transformed into wavelet domain during the
reconstruction process (Dabov et al., 2007). Further, recent
developments of generative adversarial networks (GANs) are

also booming in the LDCT denoising research community due
to the framework’s ability to produce fine details of denoised
images (Goodfellow et al., 2020). A GAN main framework
typically consists of a generator that generates fake denoised
images which will then be sent off to the discriminator. The
discriminator gives a score on how fake denoised images compare
with the NDCT images. This sequence repeats until the generated
image becomes acceptable (L. Chen et al., 2020). Even though this
framework certainly preserves the structural information of the
images, problems like blurring remain noticeable. Sharpness-
aware GAN (SAGAN) focused on addressing this problem of
blurring effect and introduced an additional sharpness detection
network for measuring the sharpness of the denoised image (Yi
and Babyn, 2018). Moreover, boosting attention fusion GAN
(BAFGAN) implements sub-modules that can include long-range
dependencies of the LDCT images to produce higher-quality
denoised images (Lyu et al., 2020). Similarly, U-Net-based
discriminator in GAN framework (DU-GAN) simultaneously
learns both local and global differences between the LDCT
and NDCT images for a better regularization of the model
(Huang et al., 2021). Although this framework can reliably
provide exceptional outputs, the deep and complex
architecture is also prone to instability due to the oscillating
number of parameters during the training process. The local
parameters for each sub-network of GAN must be trained as well
as the parameters of the overall GAN during the training process,
which is the main challenge with GAN architectures. As the
accuracy of the discriminator increases, the performance of the
generator gets worse during the training process. The unbalanced
performance of the discriminator and the generator can cause
vanishing gradient, making the whole system unstable (Arjovsky
and Bottou, 2017).

A simpler but more stable denoising structure is the use of
residual network (ResNet), in which skip connections between
pre- and post-convolutional layers during the denoising process
are implemented (He et al., 2016). The structure of a residual
network provides decreased computational costs than GANs
without deteriorating the quality of the denoised images. A
residual encoder–decoder CNN (RED-CNN) demonstrates the
effectiveness of using symmetric convolution and
deconvolutional network using skip connections in denoising
LDCT images at high computational speed (Chen et al., 2017a;
Chen et al., 2017b). A parameter-dependent framework (PDF)-
based RED-CNN network has also been introduced, which is
trained simultaneously via two multilayer perceptrons (MLPs)
that are used for modulating the feature maps of CT
reconstruction process (Xia et al., 2021a). A ResNet merged
with U-Net is able to learn both local and global image
features, avoiding the vanishing gradient system, which is
similar to the objective of DU-GAN but has a very
comprehensive architecture while achieving the same results
(Liu et al., 2021). The feasibility of a residual neural network
was also explored by applying the concept of transfer learning for
LDCT image denoising especially when an unknown noise level is
present (Zhong et al., 2020). In addition, dilated residual learning
with an edge detection layer (DRL-E-MP), composed of a Sobel
kernel, integrated the advantages of having dilated convolutions
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instead of the standard convolution and symmetric shortcut
connections for conserving the data features as well as
capturing the structural details at the image boundaries better
(Gholizadeh-Ansari et al., 2019). Further, a similar network uses a
dilated residual learning with perceptual loss and structural
dissimilarity (DRLPS), in which the focus is to take into
consideration the structural detail in low contrast regions
(Ataei et al., 2020a).

Inspired by DRL-E-MP, DRLPS, and BAFGAN denoising
models (Gholizadeh-Ansari et al., 2019; Ataei et al., 2020a;
Lyu et al., 2020), fused attention modules in dilated residual
learning network (FAM-DRL) is introduced. This proposed
network applies the concept of the attention modules from
BAFGAN. Since BAFGAN has a complex architecture and
faced instability issues, the proposed denoiser utilizes dilated
convolutional layers and skip connections for faster network
training, better stability, and more effective fusion of the
feature attention modules. In this experiment, FAM-DRL
would be optimized using the combination of perceptual loss
via VGG-16 Net for the prevention of edge oversmoothing,
structural dissimilarity loss (DSSIM) for texture enhancement,
and per-pixel loss for the symmetry between NDCT and LDCT
images (Kulathilake et al., 2021). The main contribution of this
paper is the unique architecture of the proposed denoising
network which achieves the following:

1) protection of edges from blurring,
2) enhancement of image textures, and
3) preservation of structural details of the CT images.

The remainder of this paper is organized as follows: Network
Architecture provides full detail of the components used for the
proposed network; Experiments discusses the data, training
details and environment, and the evaluation method for the
experiment. The Results section presents the quantitative and
visual results, followed by the Discussion section where analytic
observations are documented. Finally, the Conclusion
summarizes the overall findings of this study.

NETWORK ARCHITECTURE

In this section the proposed network containing the fused
attention modules for the fusion of spatial- and channel-wise
features of the images is presented.

Proposed Dilated Residual Network
Shown in Figure 1, the proposed denoiser network is constructed
using 3 × 3 dilated convolution layers with a dilation rate of 2,
batch normalization (BN), and ReLU layers in order to extract the
shallow features. Further, the number of filters used for each
convolutional layers follows the standard setting of 64 (Zhong
et al., 2020). For this process, 512 × 512 LDCT images, x, are used
as an input. More details about the datasets are discussed in
Experiments section of this paper. Next is the generation of the
multi-dimensional deep features in the cascaded boosting module
groups (BMG). For this experiment, three BMG blocks are

implemented. In each BMG, a stack of n ϵ{1, . . . , N} boosting
attention fusion blocks (BAFB) contain the fusion of the spatial
and channel attention modules as shown in Figure 2, which will
be further discussed in Fused Attention Modules. Lastly,
deconvolution + BN + ReLU make up the reconstruction layers
as represented by the three post-convolutional layers after the
BMG modules in Figure 1. To prevent the vanishing gradient
problem, symmetric skip connection (SSC) between the pre-and
post-convolutional blocks are applied. To test the accuracy of the
overall network, peak signal-to-noise ratio (PSNR) and structural
similarity index metrics (SSIM) are used for comparing the
structural information of the NDCT-LDCT image pairs.

Fused Attention Modules
The long-range dependencies of the CT image can be obtained by
passing the input through several convolutional layers. A
simple Conv + BN + ReLU operation cannot simply achieve
the high- and low-frequency information of the feature map
present during the pre-convolutional process. Hence, as
demonstrated inside the BAFBs in Figure 1, the integration
of a spatial and channel-attention modules are implemented,
which is shown in Figure 2A. The fusion of these boosting
attention modules captures the long-range dependencies of the
image during the feature extraction process. The structure of
the attention modules is based on the boosting modules used in
BAFGAN (Lyu et al., 2020). Without additional supervision,
the fused attention mechanism allows the network to focus on
the most relevant features. Hence, avoiding the use of similar
feature maps instead highlights the primary features that are
useful for LDCT denoising tasks (Sinha and Dolz, 2021).

Spatial Attention Module
On the one hand, the spatial attention module (SAM), fSAM(·),
in Figure 2B uses the feature maps obtained from the third
convolutional block, fCR1(x), of the network as an input. The
process can be represented as follows:

Fup � fup
SAM1(fCR1(x)) ⊕ fCR1(x) (1)

Further, it uses SoftMax activation function also known as the
normalized exponential function for a smoother normalization in
different dimensions, making each component to be in the interval
[0, 1]. This helps in incorporating the prior assumptions based on
the topological spatial-wise in the structure of the image. For this
spatial network, the assumption is that the feature vectors would be
dependent on each other in a spatially smooth consistent way
(Miladinovi`c et al., 2021). The main purpose is to improve the
performance of FAM-DRL with the additional spatial dependency
layers, shown in Figure 2B.

Channel Attention Module
On the other hand, the channel attention module (CAM),
fCAM(·), also uses the same input as SAM, but this module
also captures the channel-wise features instead of capturing the
long-range dependencies only. The channel attention module
pipeline is demonstrated in Figure 2C, which can also be
represented as follows:
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Fdown � fdown
CAM1(fCR1(x)) ⊕ fCR1(x) (2)

This module uses average pooling, which permits a
small amount of invariance in the image and could
extract more features than normal max pooling.
This enhances the features from all the channels,
increasing feature discriminability for preserving structural
details of the image. A sigmoid activation function or the
logistic function is used to also capture nonlinearities, which
allows the network to learn more complex structures in
the data.

Overall Attention Module
In order for the spatial and channel-wise characteristics to
complement each other, a fusion, ffused(·), between the two is

applied as well as implementing inner skip connections.
Mathematically,

ffuse � Fup©Fdown©f
up
CAM2(Fup)©f downSAM2(Fdown) (3)

where ⊕ denotes element-wise addition and © represents channel
concatenation in this case. At the end of this module, the new
generated features are fed into a convolutional layer, fc,
producing the spatial-channel attention features.

Loss Functions
For this research, the combination of three loss functions 1)
mean-squared error (MSE), 2) perceptual loss, and 3) structural
similarity index is proposed for the optimization of the overall
network.

FIGURE 1 | Proposed fused attention modules in dilated residual network, in which the attention modules are located inside the boosting attention fused block
(BAFB).

FIGURE 2 | (A) Boosting attention fusion blocks (BAFB) composed of (B) spatial attention and (C) channel attention modules.
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Per Pixel Loss
Mean squared error (MSE), considered as a per-pixel
loss function, is one of the most common accuracy
measurements that calculates the difference between the
LDCT, xi and NDCT, yi images. Then, all the absolute errors
between pixels are added:

LMSE � 1
N

∑
N

i�1
‖yi − x2

i ‖ (4)

The application of MSE can cause oversmoothing problem
along the edges of CT images during the training process as
observed in a CycleGAN and FFDNet denoising models (Zhang
et al., 2018; Gu and Ye, 2021).

Perceptual Loss
In order to address blurring issue, the proposed model also
utilizes the perceptual loss calculated from using the VGG16-
pretrained network (Simonyan and Zisserman, 2015). Unlike
MSE, perceptual loss takes high level features into
consideration in order to more accurately correspond to the
human visual system. This is due to its ability of learning the
features more accurately as proven in DRL-E-MP and cascaded
CNN (Gholizadeh-Ansari, Alirezaie, and Babyn 2019; Ataei et al.,
2020b). This perceptual loss utilizes the feature maps, ϕi, that are
extracted from the last convolutional layer in blocks i � 1, 2, 3, 4
of the VGG16Net with size hi × wi × di, which can be expressed
as follows:

LPL � ∑
N

i�1

1
hiwidi

‖ϕi(x) − ϕi(y)
����2 (5)

Structural Similarity Index Metrics
Finally, structural similarity index metrics (SSIM) have the
ability to compare the structural information of the image such
as the texture, contrast, luminance, and the compression
(Kulathilake et al., 2021). The SSIM between the LDCT and
NDCT can be calculated as follows:

SSIM(x, y) � (2μxμy + c1)(2σxy + c2)
(μ2x + μ2y + c1)(σ2x + σ2

y + c2)
(6)

where μ, σ, and σxy stand for the mean, sample standard deviation,
and sample covariance, respectively. However, this cannot be applied
directly to the network as a loss function since the objective of this
expression is to maximize the output value close to 1 and would
provide higher values as the loss. Therefore, structural dissimilarity
(DSSIM) expressed in Eq. 7 is implemented which is the SSIM
equivalent as a kernel loss function.

LSSIM � 1 − SSIM(x, y)
2

(7)

Overall Objective Function
The overall objective function for the proposed network can be
represented as follows:

L(Ŷ, Y) � γ1LMSE(Ŷ, Y) + γ2LPL(Ŷ, Y) + γ3LSSIM(Ŷ, Y)
∑n

i�1γi
(8)

where γ1, γ2, γ3 are the sum-to-one weights for the three loss
components and (Ŷ, Y) is the LDCT and ground-truth image
pair. Each of the weights is determined during the training
process, where the maximum value of the losses after each
epoch is used for updating the values of the weights. The loss
function that obtained the greatest loss would receive a higher
scale than the other functions.

EXPERIMENTS

Dataset
For this research, five different datasets are used: NDCT–LDCT
image pairs of a deceased Piglet and Phantom Thoracic datasets by
Yi and Babyn and three more datasets from the Cancer Imaging
ArchiveMayoClinic are provided (Yi and Babyn, 2018;McCollough
et al., 2021). The Piglet and Thoracic datasets are simulated and
evaluated by expert radiologists including the co-author, Dr. Paul
Babyn. The clinical datasets from theMayo clinic (Abdomen, Chest,
andHead) are gathered from the American Association of Physicists
in Medicine (AAPM) grand challenge database, which contains
normal-dose and simulated low-dose images and have more realistic
noise assumptions. Head and abdomen datasets are provided at 25%
of the routine dose, and chest cases are provided at 10% of the
routine dose (McCollough et al., 2021). The specification for each
dataset is summarized in Table 1. The standard partition, 70–30%,
of the training and testing is applied. In addition, the training dataset
of size 512 × 512 is subdivided into 32 × 32 overlapping patches to
increase the number of training samples and minimize the
computational load of the network.

Training Environment
The training operation of the model especially with the
parameters in the BMGs are the same with implementation
done with BAFGAN (Lyu et al., 2020). The proposed network
for this research was trained for 200 epochs with a batch size of 4
and using the ADAM optimizer with a learning rate of 0.0002,
β1 � 0.01, and β2 � 0.999. The implementation of this model was
done with Tensorflow-Keras API on Windows operating system
with Intel® Core™i7 CPU @2.80 GHz processor and NVIDIA
GeForce GTX 1080 graphics card.

Evaluation
To further strengthen the validity of the proposed structure of the
proposed loss functions, three modifications of the network
model have been done: FAM-DRL with only MSE, FAM-DRL
with only perceptual loss, FAM-DRL with only DSSIM, and
finally, FAM-DRL with integration of the three loss functions
as the proposed model. The results are also compared with the
results from the implementation of DRL-E-MP (Gholizadeh-
Ansari et al., 2019), modified BM3D (Dabov et al., 2007;
Makinen et al., 2020), and self-attentive spectral normalized
Markovian patch-GAN or modified patch-GAN (Bera and
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Biswas, 2020) models. The quantitative results are mainly based
on the PSNR and SSIM.

RESULTS

Quantitative Results
This section provides the quantitative results of the variation
of the models as well as the different algorithms: 1) modified
BM3D, 2) patch-GAN, 3) DRL-E-MP, 4) FAM-DRL with MSE,
5) FAM-DRL with perceptual loss (PL), 6) FAM-DRL with

SSIM, and 7) the proposed FAM-DRL with MSE + PL + MSE.
Table 2 summarizes the PSNR and SSIM obtained, while
Figures 3 and 4 show separate charts for the trend of
models in terms of PSNR and SSIM, respectively.

Each model of the models is run using the five datasets in
order to obtain the average PSNR and SSIM. For the Piglet
dataset, the average PSNR of the models ranges from 39 to 42,
while the average ranges from 0.7 to 0.9 as shown in Table 2. In
terms of PSNR, it shows in Figure 3 that the proposed FAM-
DRL has gained a slightly higher improved PSNR (42.93)
compared to the other models for Piglet dataset. This

TABLE 1 | NDCT-LDCT image dataset specifications.

Dataset Number of pairs Scanner specs

Piglet 146 100 KVp, 0.625 mm thickness, 300 mAs (NDCT), 15 mAs (LDCT)
Thoracic 90 120 KVp, 0.75 mm thickness, 480 mAs (NDCT), 60 mAs (LDCT)
Abdomen 209 100 KVp, 5 mm thickness, 502 mAs (NDCT), 498 mAs (LDCT)
Chest 278 120 KVp, 5 mm thickness, 712 mAs (NDCT), 690 mAs (LDCT)
Head 40 120 KVp, 5 mm thickness (unknown X-ray current tube info)

TABLE 2 | Summary of the average PSNR and SSIM of the denoising algorithms for Piglet, Thoracic, Abdomen, Chest, and Head datasets.

Models Piglet Thoracic Abdomen Chest Head

PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM

Modified BM3D 40.23 0.8444 28.73 0.4461 38.12 0.8602 30.24 0.4461 39.82 0.5677
Patch GAN 39.23 0.7524 30.37 0.5435 38.32 0.8746 31.28 0.5435 40.86 0.6217
DRL-E-MP 41.66 0.9529 27.31 0.4181 37.64 0.8578 31.33 0.6636 38.64 0.4893
FAM-DRL (MSE) 41.64 0.9313 30.36 0.5459 39.84 0.8834 33.23 0.5544 41.51 0.5272
FAM-DRL (PL) 41.15 0.9272 30.42 0.5888 39.97 0.8862 33.84 0.5623 41.57 0.5798
FAM-DRL (SSIM) 40.48 0.9687 29.24 0.6342 38.44 0.8992 32.03 0.6674 39.93 0.6723
FAM-DRL (proposed) 42.93 0.9765 31.07 0.6388 40.33 0.9102 34.26 0.6971 42.64 0.6870

The bold values highlights the highest PSRN/SSIM value for each column.

FIGURE 3 | Average PSNR chart of the denoised outputs using the different algorithms.
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pattern can also be observed with the PSNR results when using
the other datasets. Observing the PSNR trend in Figure 3,
FAM-DRL with only perceptual loss (FAM-DRL-PL), FAM-
DRL with only MSE loss (FAM-DRL-MSE), and DRL-E-MP
are comparatively close and can be considered second best
after the proposed model. The modified BM3D and patch-
GAN show huge difference when compared to the PSNR of the
proposed network.

Looking at the SSIM trend in Figure 4, the difference
between the average SSIM of the models is slightly smaller
using the different datasets. Despite these small gaps between
the SSIM of the models, the proposed model with the
integration of the objective functions still ranks first when it
comes to the highest SSIM. Moreover, FAM-DRL with only
SSIM loss function ranks second as expected since the use of
SSIM as loss function aims to minimize the distinction of the
structural information between the NDCT and LDCT image
pairs. As for the other models, it shows that there is no clear
pattern of which model comes next after the proposed model
and the model with only SSIM kernel function. This
discrepancy is due to the variation of the structural
information of the different datasets.

Visual Results
In Figure 5 sample results are displayed utilizing the first slice of
each dataset. The marked regions in Figure 5 correspond to
structural details of the image where the differences between the
algorithms are pronounced.

The marked regions as shown in each dataset slice image in
Figure 5 are highlighted in Figures 6i–10i along with the visual
results of the algorithms, Figures 6–10ii–viii. Investigating the
visual results of BM3D, there is an obvious oversmoothing
problem that can be observed in Figures 6, 8, 10ii as well as
apparent checkbox artifacts in Figures 7, 8, 9ii. Markovnian
patch-GAN and FAM-DRL (MSE) show slightly better visual
results than BM3D but still display similar problems. This is due
to the fact that these algorithms only use MSE as loss function,
which is well known for causing oversmoothing along the edges.
In comparison to visual results of FAM-DRLwith only perceptual
loss in Figures 6iii–10iii, FAM-DRL (SSIM) shows evident
artifacts in Figures 6–10iv. Despite the apparent artifacts,
FAM-DRL (SSIM) is able to preserve the textural details of the
images. The combination of these three objective functions
embedded in the proposed network presents well-structured
denoised images closer to the NDCT or ground-truth images,

FIGURE 4 | Average SSIM of the outputs using the different algorithms.

FIGURE 5 | Sample LDCT image slices for each dataset with the marked regions (Figures 6–10), where the difference between algorithms and ground-truth
images are more noticeable.

Frontiers in Signal Processing | www.frontiersin.org February 2022 | Volume 1 | Article 8121937

Marcos et al. LDCT Denoising by ResNet-FAM

https://www.frontiersin.org/journals/signal-processing
www.frontiersin.org
https://www.frontiersin.org/journals/signal-processing#articles


as demonstrated in Figures 6vii–10vii and Figures 6viii–10viii,
respectively.

DISCUSSION

The overall results show that the proposed FAM-DRL with the
integration of the three loss functions outperforms the
benchmark models as well as variations of the model itself.

While FAM-DRL with only perceptual loss obtained higher
PSNR compared with the other two variations of the proposed
model (FAM-DRL with MSE, FAM-DRL with SSIM), FAM-DRL
with only SSIM gained higher values in terms of SSIM as
demonstrated in Figure 4. For the visual results,
oversmoothing along edges is noticeable when only MSE was
applied to the network; enhancement of the perceptual quality is
visible but introduced some abnormalities when perceptual loss is
used, and image texture is more enhanced when SSIM is applied.

FIGURE 6 | Sample results of the highlighted sections from Figure 5i from first slice of the LDCT deceased piglet dataset using the different algorithms.

FIGURE 7 | Sample results of the highlighted sections from Figure 5ii from first slice of the LDCT phantom thoracic dataset using the different algorithms.

FIGURE 8 | Sample results of the highlighted sections from Figure 5iii from first slice of the LDCT abdomen (patient L058) dataset using different algorithms.
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Despite the drawbacks displayed by each loss function, the output
of the combination of the three in the network complement their
limitations individually. Hence, the overall proposed model
shows promising results when compared to the state-of-the-art
models.

The modified BM3D and patch-GAN acquired the lowest
PSNR and SSIM values, summarized in Table 2, which are
slightly lower than the FAM-DRL with MSE loss function
only. These models implemented the use of MSE loss
function. Although the outputs from MSE are acceptable
quantitatively, this does not guarantee having appealing visual
results since this loss function typically causes blurring effects.
The regions shown in Figures 6–10 correspond to structural
details of the image where the differences between the algorithms
are most pronounced as marked in Figure 5. The visual results of
the models that utilized MSE as loss functions are shown in
Figures 6–10ii–iii. Based on these results, blurring effects and
noise artifacts stand out when compared to the variations of the
proposed models.

According to Table 2, the PSNR/SSIM for DRL-E-MP is really
close to the results obtained for FAM-DRL with perceptual loss
only and with the proposed FAM-DRL with the combination of
the objective functions. This is due to the fact that both models
used the same perceptual loss functions derived from the same
blocks in VGG16-Net. This can also be observed in the PSNR and

SSIM trend in Figures 3 and 4, respectively, not only with the
quantitative results but also with the visual results as
demonstrated in Figures 6–10, in which the images show the
specific regions selected for each dataset. The models that use
perceptual loss display more natural and perceptually appealing
results. Even though the use of perceptual loss seems effective
enough, it can introduce some anomaly due to regularization and
hyper-parameter tuning since the perceptual loss applied for this
experiment used the pre-trained VGG16-Net. For example, there
is an apparent generation of fracture in Figure 7v that could
indicate a remodelled bone. Blurring effects can also be seen in
Figures 8 and 9, which contain fine details of the images.

That being said, when perceptual loss was combined with the
other loss functions, the proposed model obtained the highest
PSNR and SSIM compared with the other models for all the
datasets used. The overall visual result of the proposed model
contains the textural details close to the ground-truth image while
also maintaining high SNR and avoiding the oversmoothing
problem from applying MSE. Therefore, this study can be
deemed as successful for it meets the expected results
experimentally.

Although the improvements shown in this paper are due to the
fused attention modules, which the benchmark models do not
have, another comparison could be done for further research
which focuses on the effectiveness of using the attention modules

FIGURE 9 | Sample results of the highlighted sections from Figure 5iv from first slice of the LDCT Chest (patient C002) dataset using different algorithms.

FIGURE 10 | Sample results of the highlighted sections from Figure 5v from first slice of the LDCT Head (patient N012) dataset using different algorithms.
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by testing the accuracy of the architecture with and without the
attention modules.

Moreover, comparison metrics such as contrast-to-noise ratio
(CNR) and noise power spectrum (NPS) for measuring the
intensity difference at low-contrast regions and texture quality
of the LDCT and NDCT paired images could be used for
comparative studies (Brombal et al., 2019). However, CNR
does not capture visibility dependence of the image structure
on the detail size, which PSNR can measure. Moreover, using
NPS for measuring the accuracy would also require the
background of the images to be removed since it is highly
dependent on the various characteristic image parameters
(Dolly et al., 2016). This includes the size and number of the
region of interest, which should be constant within in the images;
otherwise it would cause statistical fluctuations. Therefore, a
Phantom-based study is desired for future work to examine
the image quality of denoised LDCT images in terms of CNR
and NPS measures.

In addition, almost all existing deep learning-based
approaches, like the proposed network, usually require
LDCT and NDCT paired training datasets. However, there
is no guarantee to have paired LDCT and NDCT images
readily available. The acquisition of the paired datasets for
post-reconstruction of CT images can be from multiple scans,
like the datasets provided by the Mayo Clinic, or from data
simulations for producing matches from unpaired data, like
the datasets provided by Yi and Babyn. For the network model
to be trained without LDCT-NDCT image pairs, unsupervised
learning method is recommended.

CONCLUSION

In this experiment, it was shown that creating feature maps by
implementing the fusion of spatial- and channel-attention
modules can enhance the SNR of the images. The use of
dilated convolutions and skip connections, main

components of the proposed model, also provided efficiency
for the possible increased computational costs of the model
that can be commonly seen in GAN-based denoising models.
In addition, we also demonstrated the individual contribution
and limitations of each objective functions used in the network
such as perceptual loss for enhancement of the perceptual
visual results and SSIM kernel loss function for image
enhancement.
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