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This paper addresses the detection of a signal belonging to several possible subspace
models, namely, a union of subspaces (UoS), where the active subspace that generated
the observed signal is unknown. By incorporating the persymmetric structure of received
data, we propose three UoS detectors based on GLRT, Rao, and Wald criteria to alleviate
the requirement of training data. In addition, the detection statistic and classification bound
for the proposed detectors are derived. Monte-Carlo simulations demonstrate the
detection and classification performance of the proposed detectors over the
conventional detector in training-limited scenarios.
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1 INTRODUCTION

Adaptive detection (Liu et al., 2021; Rong et al., 2021) of signals usually assumes a homogeneous
environment, namely, the clutter in the cell under test is independent and identically distributed with
the training data from adjacent cells. However, it is difficult to satisfy the homogeneity of the noise in
practice due to power fluctuations. Among the possible non-homogeneous models, the partially
homogeneous environment (PHE) is proven effective and widely used in radar signal detection
(Pulsone and Raghavan, 1999; Bandiera et al., 2007), especially for the generalized likelihood ratio
test (GLRT) and two-step GLRT (Conte et al., 2001), the adaptive cosine estimator (Kraut and Scharf,
1999), and the Rao andWald tests (Gao et al., 2020). The PHE assumes the noise in the cell under test
and the training data sharing the same covariance matrix but different power levels.

The detectors above only take rank-one signal into consideration, i.e., the nominal steering vector is
in accordance with the actual steering vector. However, the actual array radar has model errors (De
Maio, 2005; Yu et al., 2019) such as antenna pointing error, array element position error, and channel
mismatch. In practical application, if the model error is not considered, the detection performancemay
be reduced greatly. Scharf and Friedlander (1994) and Kraut et al. (2001) assume that the target signal
comes from a multi-rank subspace to illustrate the indeterminacy of the target steering vector. Besides,
more specific subspace detectors for various detecting environments have been proposed (Liu et al.,
2014; Gao et al., 2018; Mao et al., 2019). However, the data in many real-world scenarios tend to be
generated by processes that switch/operate in different modes (Lodhi and Bajwa, 2018). In such
instances, data generated through each mode of the process can be modeled as lying on a subspace, in
which case the entire data generated during the process as a whole can be best described as coming
from a union of subspaces. In recent years, UoS detection has been attracting many researchers’
attention (Joneidi et al., 2015; Wimalajeewa et al., 2015). Based on the UoS model, Lodhi and Bajwa
(2018) derived the bounds on the performances of UoS detector in terms of geometry of subspaces.

Although effective, the methods mentioned above fail to detect signals without sufficient training
data. Real scenarios are generally training-limited due to the limitations of the environment and the
radar system itself (Aubry et al., 2021; Aubry et al., 2018). The persymmetric structure of the
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covariance matrix is considered to alleviate the requirement of
training data. Persymmetric structure means that the noise
covariance matrix is Hermitian about its principal diagonal
and persymmetric about its cross diagonal, which often exists
in a uniformly distributed linear array or uniformly pulse trains.
Many methods considered the persymmetric structure in the
design of detectors. For homogeneous environments, such typical
detectors are persymmetric ACE (Gao et al., 2015), persymmetric
AMF (Pailloux et al., 2011), persymmetric invariant test (Ciuonzo
et al., 2016), persymmetric Rao and Wald tests (Wang et al.,
2016), persymmetric subspace Rao (Gao et al., 2019), and
persymmetric subspace tunable detection method (Liu et al.,
2018). For PHE, many detectors have been proposed in Hao
et al. (2012), Liu et al. (2014), and Mao et al. (2019).

To the best of the authors’ knowledge, the design of
persymmetric union subspace signal detection in PHE has not
been developed yet. In this paper, we address the detection of a
signal belonging to several possible subspace models, namely, a
union of subspaces in PHE. Not only did the active subspace of
UoS generate the observed signal, but also the power scale is
unknown. Based on GLRT, Rao, and Wald criteria, we exploit the
persymmetric structure of received data in the design of detection,
thus proposing three UoS detectors to alleviate the amount of
training data. Besides, the detection statistic and classification
bound for the proposed detectors are derived. Numerical results
demonstrate the detection and classification performance of the
proposed detectors in training-limited scenarios.

Notations: Vector and matrix are denoted by boldface lower
case and upper case letters, respectively. (·)*, (·)T, and (·)H denote
complex conjugate, transpose, and complex conjugate transpose,
respectively. The notation ∼ denotes “be distributed as.” |·|
represents the determinant of a matrix, and tr(·) represents the
trace of a matrix.

2 PROBLEM FORMULATION

In this section, we formulate the problemmodel of UoS detection.
There are N pulses over a coherent processing interval (CPI). In
this paper, we assume that the target signal s ∈ CN×1 comes from
a union of subspaces. Let K0 different subspaces Sk, k � 1, . . . , K0

represent different characteristics of the target signal. Then, the
target s can be expressed by s � Hkαk, k � 1, . . . , K0, where
Hk ∈ CN×q denotes the kth subspace matrix, and αk the
corresponding coordinate.

The collected test data are modeled as x ∈ CN×1. If a target
signal is detected, the test data can be expressed by x � s + n,
where n ∼ CN (0, σ2M) represents the clutter in a non-
homogeneous environment, where σ2 denotes the power
scaling factor, and M the covariance matrix of clutter. Thus,
the UoS signal detection problem can be formulated by

H0:
x � n,
xp � np, p � 1, . . . , N0;
{

Hk:
x � s + n, s ∈ Sk, k � 1, . . . , K0

xp � np, p � 1, . . . , N0;
{ (1)

where xp, p � 1, . . . , N0 denotes the training data collected from
adjacent range cells of the test data, which contain clutter
np ∼ CN (0,M), p � 1, . . . , N0 only. Moreover, the detection
problem can be formulated as two hypotheses: the null
hypothesis H0 indicating that there is no target signal in the
observation, and an alternative hypothesisHk (Lodhi and Bajwa,
2018) representing that a UoS signal is detected. In traditional
signal detection, the target signal can be seen as belonging to a
low-dimensional subspace. In contrast, our purpose is to
detect the UoS signal, so we assume the case of the target
signal s belonging to a union of low-dimensional subspaces:
s ∈ ∪ K0

k�1Sk, and this is referred to as the detection stage.
After detecting the UoS signal, we deal with the problem of
active subspace detection, whose goal is to identify the subspace
Sk to which s belongs, and this stage is referred to as the
classification stage.

3 THE PROPOSED PERSYMMETRIC UOS
DETECTORS

In this section, we exploit the persymmetric structure to propose
three UoS detectors, by resorting to GLRT, Rao, and Wald
criteria.

First, a unitary matrix is used to transform the collected data
and the assumed UoS matrix, where the unitary matrix is
denoted as

T �

1�
2

√ IN/2 JN/2

jIN/2 −jJN/2

⎡⎣ ⎤⎦forN even,

1�
2

√
I N−1( )/2 0 J N−1( )/2

0
�
2

√
0

jI N−1( )/2 0 −jJ N−1( )/2

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦forN odd.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩
(2)

where J denotes the permutation matrix.
The transforming process can be formulated by

~x � Tx, ~xp � Txp, ~Hk � THk,
~n � Tn, ~np � Tnp,R � TMTH.

(3)

It is worth noting that R denotes a real symmetric matrix.
Thus, the detection problem in Eq. 1 is rewritten as:

H0:
~x � ~n,
~xp � ~np, p � 1, . . . , N0;
{

Hk:
~x � ~s + ~n, ~s ∈ ~Sk, k � 1, . . . , K0

~xp � ~np, p � 1, . . . , N0;
{ (4)

3.1 P-UoS-GLRT Detector Design
The GLRT detector can be formulated by

max
σ2

max
αk

f1 ~x( )
max
σ2

f0 ~x( )
Hk

W
H0

c, (5)
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where f1(~x) denotes the probability density function (pdf) of ~x
under the alternative hypothesis, and f0(~x) represents the pdf of
~x under hypothesis H0. These two statistics can be expressed as
follows:

f1 ~x( ) � 1
πNσ2N|R| exp − ~x − ~Hkαk( )HR−1 ~x − ~Hkαk( )/σ2[ ] (6)

f0 ~x( ) � 1
πNσ2N|R| exp −~xHR−1~x/σ2[ ] (7)

To obtain theMLE (maximum likelihood estimation) of αk, we
can resort to the derivative of f1(~x). Take the derivative of f1(~x)
with respect to αk, and set the derivative equal to zero, then the
estimation of αk is obtained:

α̂k � argmax
αk

f1 ~x( ) � ~H
H

k R
−1 ~Hk( )−1 ~HH

k R
−1~x (8)

To solve the problem shown in Eq. 5, the MLE of σ2 is
supposed to be obtained as follows:

σ̂2
1 � ~xHR−1~x − ~xHR−1 ~Hk

~H
H

k R
−1 ~Hk( )−1 ~HH

k R
−1~x[ ]/N (9)

σ̂2
0 � ~xHR−1~x( )/N (10)

Substitute Eqs 8–10 into the GLRT detector Eq. 5 to obtain the
rewritten expression of GLRT:

~xHR−1~x

~xHR−1~x − ~xHR−1 ~Hk
~H
H

k R
−1 ~Hk( )−1 ~HH

k R
−1~x

Hk

W
H0

c (11)

Obtain the MLE of R by using the training data and transform
it into a symmetric one:

R̂ � 1
N0
∑N0

p�1
xpx

H
p (12)

R̂p � THR̂T (13)

Replace R in Eq. 11 with R̂p, obtaining

~xHR̂
−1
p ~x

~xHR̂
−1
p ~x − ~xHR̂

−1
p
~Hk

~H
H

k R̂
−1
p
~Hk( )−1 ~HH

k R̂
−1
p ~x

Hk

W
H0

c (14)

Let P ~Hk
� ~Hk( ~HH

k R̂
−1
p
~Hk)−1 ~HH

k R̂
−1
p denote the projection

matrix of ~Hk. Then, Eq. 14 can be rewritten as

~xHR̂
−1
p ~x

~xHR̂
−1
p ~x − ~xHR̂

−1
p P ~Hk

~x

Hk

W
H0

c (15)

Let k̂ be the index of the maximum value of the GLRT test Eq.
15, then the P-UoS-GLRT detector can be formulated by

~xHR̂
−1
p ~x

~xHR̂
−1
p ~x − ~xHR̂

−1
p P ~Hk̂

~x

Hk

W
H0

c (16)

In order to examine the performance of classification, we have
to resort to classification probability bounds, as the exact
expressions could not be acquired directly, and the target
should be identified in a specific subspace in the UoS. Let

g(~x, ~Hk) � ~xHR̂
−1
p P ~Hk

~x, h(~x) � ~xHR̂
−1
p ~x, then the classification

probability bound of the P-UoS-GLRT test can be expressed by

PHk
~Hk( )≥max 0, PSk

h ~x( )
h ~x( ) − g ~x, ~Hk( )> c⎛⎝ ⎞⎠⎧⎨⎩

+ ∑K0

j�1,j≠k
PSk

h ~x( ) − g ~x, ~Hk( )
h ~x( ) − g ~x, ~Hj( ) > 1⎛⎝ ⎞⎠ − K0 − 1( )

⎫⎪⎬⎪⎭
(17)

3.2 P-UoS-Rao Detector Design
Assume that the unknown parameters θ � [θTr , θs]T, where θr �
αk stands for the corresponding coordinate, θs � σ2 represents the
power scaling factor which is deterministic but known, and R is
known. Thus, the Rao test is formulated by

zlnf1 ~x|θ( )
zθr

∣∣∣∣∣∣∣
T

θ�θ̂0
J−1 θ̂0( )[ ]

θr,θr

zlnf1 ~x|θ( )
zθ∗r

∣∣∣∣∣∣∣∣
θ�θ̂0

Hk

W
H0

ξ, (18)

where J(θ) is a Fisher information matrix which is given by

J θ( ) � Jθr,θr Jθr ,θs
Jθs ,θr Jθs ,θs
[ ], (19)

and

J−1 θ( )[ ]θr ,θr � Jθr,θr θ( ) − Jθr,θs θ( )J−1θs ,θs θ( )Jθs ,θr θ( )[ ]−1 (20)

θ̂0 � [θ̂Tr,0, θ̂s,0]T denotes the MLE of θ under null hypothesis
H0. The pdf of ~x under the alternative hypothesis is given by

f1 ~x|θ( ) � 1

πσ2( )N|R| exp − ~x − ~Hkαk( )HR−1 ~x − ~Hkαk( )
σ2

⎡⎢⎢⎢⎣ ⎤⎥⎥⎥⎦. (21)

The Fisher information matrix is expressed as follows:

J θ( ) � E
zlnf1 ~x|θ( )

zθ∗
[ ] zlnf1 ~x|θ( )

zθT
[ ]{ }. (22)

It is straightforward to obtain the derivative

zlnf1 ~x|θ( )
zθr

� 2
σ2

~x − ~Hkαk( )HR−1 ~Hk[ ]T, (23)

zlnf1 ~x|θ( )
zθ∗r

� 2
σ2

~H
H

k R
−1 ~x − ~Hkαk( )[ ]. (24)

Thus, the Jθr,θr(θ) under H0 can be obtained as follows:

Jθr,θr θ0( ) � 4
σ2

~H
H

k R
−1 ~Hk. (25)

Since Jθr,θs(θ) is a null matrix, we can obtain

J−1 θ0( )[ ]θr ,θr � J−1θr,θr θ0( ) � σ2

4
~H
H

k R
−1 ~Hk( )−1 (26)
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Substituting Eqs. 23, 24, and 26 into the Rao test Eq. 18, the
rewritten expression of Rao can be formulated as

~xHR−1 ~Hk
~H
H

k R
−1 ~Hk( )−1 ~HH

k R
−1~x

σ2

Hk

W
H0

λ (27)

Next, the MLE of σ2 under H0 is obtained as follows:

θ̂s,0 � σ̂20 � argmax
σ2

f0 ~x|θ( ) � ~xHR−1~x/N (28)

where f0(~x|θ) denotes the pdf of ~x under H0, which can be
expressed by

f0 ~x|θ( ) � 1
πNσ2N|R| exp −~x

HR−1~x
σ2

( ) (29)

Substituting it into Eq. 27, the Rao test can be rewritten as

~xHR−1 ~Hk
~H
H

k R
−1 ~Hk( )−1 ~HH

k R
−1~x

~xHR−1~x

Hk

W
H0

λ (30)

Replacing R by its symmetric MLE R̂p, the P-UoS-Rao
detector can be formulated as

~xHR̂
−1
p
~Hk

~H
H

k R̂
−1
p
~Hk( )−1 ~HH

k R̂
−1
p ~x

~xHR̂
−1
p ~x

Hk

W
H0

λ, (31)

which equals

~xHR̂
−1
p P ~Hk

~x

~xHR̂
−1
p ~x

Hk

W
H0

λ (32)

Let k̂ be the index of the maximum value of the Rao test Eq. 32,
then the P-UoS-Rao detector can be formulated by

~xHR̂
−1
p P ~Hk̂

~x

~xHR̂
−1
p ~x

Hk

W
H0

λ (33)

Finally, the classification probability bound of the P-UoS-Rao
detector can be derived as

PHk
~Hk( )≥max 0, PSk

g ~x, ~Hk( )
h ~x( ) > c⎛⎝ ⎞⎠⎧⎨⎩

+ ∑K0

j�1,j≠k
PSk

g ~x, ~Hk( )
g ~x, ~Hj( ) > 1⎛⎝ ⎞⎠ − K0 − 1( )

⎫⎪⎬⎪⎭
(34)

3.3 P-UoS-Wald Detector Design
The Wald test is formulated by

θ̂r,1 − θr,0( )H J−1 θ̂1( )[ ]
θr,θr

{ }−1 θ̂r,1 − θr,0( )Hk

W
H0

ξ. (35)

where θr,1 denotes the coordinate αk under the alternative
hypothesis.

From f1(~x|θ) denoted in Eq. 21, we can obtain the MLE
of θr,1,

θ̂r,1 � argmax
αk

f1 ~x|θ( )
� ~H

H

k R
−1 ~Hk( )−1 ~HH

k R
−1~x,

(36)

and θr,0 � 0q×1. According to Eq. 22, Jθr,θr(θ̂) under the alternative
hypothesis is given by

Jθr,θr θ̂1( ) � 4
σ2

~H
H

k R
−1 ~Hk. (37)

Since Jθr,θs(θ̂1) is a null matrix, it is straightforward that

J−1 θ̂1( )[ ]
θr,θr

� J−1θr ,θr θ̂1( ) � σ2

4
~H
H

k R
−1 ~Hk( )−1. (38)

Substituting Eqs. 36, 38 into the Wald test Eq. 35, the
rewritten expression of Wald can be formulated by

~xHR−1 ~Hk
~H
H

k R
−1 ~Hk( )−1 ~HH

k R
−1~x

σ2

Hk

W
H0

ξ (39)

TheMLE of σ2 under the alternative hypothesis is expressed as
follows:

θ̂s,1 � σ̂21

� argmax
σ2

f1 ~x|θ( )

� 1
N

~xHR−1~x − ~xHR−1 ~Hk
~H
H

k R
−1 ~Hk( )−1 ~HH

k R
−1~x[ ]

(40)

Moreover, by replacing σ2 in Eq. 39 by θ̂s,1, Eq. 39 could be
rewritten as

~xHR−1 ~Hk
~H
H

k R
−1 ~Hk( )−1 ~HH

k R
−1~x

~xHR−1~x − ~xHR−1 ~Hk
~H
H

k R
−1 ~Hk( )−1 ~HH

k R
−1~x

Hk

W
H0

ξ (41)

Substitute Eq. 13 into Eq. 41, then obtain the P-UoS-Wald
detector

~xHR̂
−1
p P ~Hk

~x

~xHR̂
−1
p ~x − ~xHR̂

−1
p P ~Hk

~x

Hk

W
H0

ξ (42)

Let k̂ be the index of the maximum value of the Wald test
Eq. 42, then the P-UoS-Wald detector can be formulated by

~xHR̂
−1
p P ~Hk̂

~x

~xHR̂
−1
p ~x − ~xHR̂

−1
p P ~Hk̂

~x

Hk

W
H0

ξ (43)

Finally, the classification probability bound of P-UoS-Wald
can be derived by
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FIGURE 1 | Probability of detection comparison forN � 8. (A)N0 � 10 (B)
N0 � 16 (C) N0 � 32.

FIGURE 2 | Probability of classification comparison forN � 8. (A)N0 � 10
(B) N0 � 16 (C) N0 � 32.
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PHk
~Hk( ) ≥max 0, PSk

g ~x, ~Hk( )
h ~x( ) − g ~x, ~Hk( )> c⎛⎝ ⎞⎠⎧⎨⎩

+ ∑K0

j�1,j≠k
PSk

g ~x, ~Hk( ) h ~x( ) − g ~x, ~Hj( )( )
g ~x, ~Hj( ) h ~x( ) − g ~x, ~Hk( )( )> 1⎛⎝ ⎞⎠ − K0 − 1( )

⎫⎪⎬⎪⎭
(44)

4 NUMERICAL RESULT

In this section, numerical results are provided to illustrate the
detection and classification performance of the proposed
detectors named P-UoS-GLRT, P-UoS-Rao, and P-UoS-Wald
over the traditional ones [UoS-GLRT, UoS-Rao, and UoS-Wald
(Pan et al., 2021)].

We use 104 Monte Carlo trials to evaluate the threshold and
the probability of detection and classification. If not otherwise
specified, we set N � 8, ρ � 0.9, σ2 � 0.7, SNR � 10dB, the Doppler
frequency fd � [0.09, 0.1], and the number of training data N0 �
10, 16, 32, respectively, throughout this paper. For each false
alarm probability PFA, the statistics of detectors in each trial of the
Monte Carlo experiment can be obtained. Arrange these statistics
in descending order, then the threshold is the last statistic that
occupies the preceding false alarm probability of all statistics. The
detection probability and classification probability can be
obtained by comparing the statistics obtained by using the
observation with the threshold.

Figure 1 shows the detection performance of the proposed
detectors and the traditional ones. It could be seen that as PFA
grows, the detection probability of detectors is improved
remarkably, among which Rao has the highest detection
probability and the GLRT detector shows the same performance
with Wald. Moreover, with the increase in the number of samples,
the detection performance is improved to some extent. As we can
see in Figure 1C, among the proposed detectors, P-UoS-Rao has
the best detection performance, followed by P-UoS-Rao and
P-UoS-Wald, but all these three detectors perform better than
their corresponding traditional ones. However, when the number
of training data turns small, as is shown in Figures 1A,B, the
detection probability of traditional detectors degrades greatly
because of the lack of training data. However, the proposed
persymmetric ones still keep high detection probability,
exceeding the traditional ones greatly. Thus, the proposed
persymmetric detectors have better detection performance in
general environment, also in training-limited scenarios.

Similar results are shown in Figure 2. Figure 2 plots the
classification performance of the proposed detectors and the
traditional ones. As we can see, the Rao detector has the
highest classification probability, followed by the GLRT
detector and the Wald detector. Figure 2C shows that P-UoS-
Rao outperforms P-UoS-GLRT and P-UoS-Wald, and these three
detectors all perform better over their corresponding traditional
ones. By comparing Figures 2A,B, we can conclude that the
proposed persymmetric detectors have higher classification
probability, in both training-sufficient and training-limited scenarios.

To better simulate the real detection scenario, the interference
model containing clutter and noise is supposed to be considered.
In the numerical experiment, we set CNR � 20dB and SNR � 20dB
and evaluate the detection and classification performance of the
proposed detectors, compared with the traditional ones. Figure 3

FIGURE 3 | Probability of detection comparison for N � 8 with regard to
CNR � 20 dB. (A) N0 � 10 (B) N0 � 16 (C) N0 � 32.
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shows the detection probability of the proposed detectors and the
traditional ones. Numerical results illustrate that the proposed
persymmetric detectors outperform the traditional ones in signal
detection both in the training-sufficient and in the training-limited
scenarios. Among them, P-UoS-Rao has the best detection

performance, followed by P-UoS-GLRT and P-UoS-Wald,
which is consistent with Figure 1. Figure 4 shows the
classification probability of the proposed detectors. Moreover,
the same simulation results with Figure 2 can be obtained; that
is, the classification probability of the proposed persymmetric UoS
detectors is higher than the traditional ones, both with sufficient
training data and with limited training data.

Figures 5–7 show the CFAR property of the proposed
detectors P-UoS-GLRT, P-UoS-Rao, and P-UoS-Wald,
respectively. Each experiment of these three are under four
kinds of interference covariance matrix with different clutters,
among which M1 represents 0.1|i−j|, M2 denotes 0.5|i−j|, M3

denotes 0.9|i−j|, and M4 stands for
0.5(i−j)

2
e−j2π·0.2(i−j) + 0.9−(i−j)

2 + δi,j. It can be seen that the PFA
under each of the four kinds of interference covariance matrix

FIGURE 4 | Probability of classification comparison for N � 8 with regard
to CNR � 20 dB. (A) N0 � 10 (B) N0 � 16 (C) N0 � 32.

FIGURE 5 | CFAR property of the P-UoS-GLRT detector.

FIGURE 6 | CFAR property of the P-UoS-Rao detector.
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approximately coincides with others, for all these three
persymmetric UoS detectors. This demonstrates that the
proposed detectors have an approximate CFAR property.

5 CONCLUSION

In this paper, we dealt with the detection of a signal that belonged
to a union of subspaces in PHE. Not only did the active subspace
of UoS generate the observed signal, but also the power scale is
unknown. Based on the GLRT, Rao, and Wald criteria, we used
the persymmetric structure of received data to design three UoS
detectors to alleviate the amount of training data. Besides, the

detection statistic and classification bound for the proposed
detectors were derived. Numerical results demonstrated the
detection and classification performance of the proposed
detectors over its competitor, especially in training-limited
scenarios.
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