
Distributed Proximal Splitting
Algorithms with Rates and
Acceleration
Laurent Condat*, Grigory Malinovsky and Peter Richtárik

Visual Computing Center, King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia

We analyze several generic proximal splitting algorithms well suited for large-scale convex
nonsmooth optimization.We derive sublinear and linear convergence resultswith new rates on
the function value suboptimality or distance to the solution, as well as new accelerated
versions, using varying stepsizes. In addition, we propose distributed variants of these
algorithms, which can be accelerated as well. While most existing results are ergodic, our
nonergodic results significantly broaden our understanding of primal–dual optimization
algorithms.

Keywords: convex nonsmooth optimization, proximal algorithm, splitting, convergence rate, distributed
optimization

1 INTRODUCTION

We propose new algorithms for the generic convex optimization problem:

minimize
x∈X

Ψ(x) :� 1
M

∑M
m�1

Fm(x) +Hm(Kmx)() + R(x)⎧⎨⎩ ⎫⎬⎭, (1)

where M ≥ 1 is typically the number of parallel computing nodes in a distributed setting; the
Km: X → Um are linear operators;X and Um are real Hilbert spaces (all spaces are supposed of finite
dimension); R and Hm are proper, closed, convex functions with values in R ∪ {+∞}, the proximity
operators of which are easy to compute; and the Fm are convex LFm-smooth functions; that is ∇Fm is
LFm-Lipschitz continuous, for some LFm > 0.

This template problem covers most convex optimization problems met in signal and
image processing, operations research, control, machine learning, and many other fields,
and our goal is to propose new generic distributed algorithms able to deal with nonsmooth
functions using their proximity operators, with acceleration in presence of strong
convexity.

1.1 Contributions
Our contributions are the following:

(1) New algorithms: We propose the first distributed algorithms to solve (Eq. 1) in whole generality,
with proved convergence to an exact solution, and having the full splitting, or decoupling,
property: ∇Fm, proxHm,Km andK*

m are applied at them-th node, and the proximity operator of R

Edited by:
Hadi Zayyani,

Qom University of Technology, Iran

Reviewed by:
Junfeng Yang,

Nanjing University, China
Olivier Fercoq,

Télécom ParisTech, France

*Correspondence:
Laurent Condat

laurent.condat@kaust.edu.sa

Specialty section:
This article was submitted to

Signal Processing for
Communications,

a section of the journal
Frontiers in Signal Processing

Received: 14 September 2021
Accepted: 20 October 2021
Published: 25 January 2022

Citation:
Condat L, Malinovsky G and

Richtárik P (2022) Distributed Proximal
Splitting Algorithms with Rates

and Acceleration.
Front. Sig. Proc. 1:776825.

doi: 10.3389/frsip.2021.776825

Frontiers in Signal Processing | www.frontiersin.org January 2022 | Volume 1 | Article 7768251

ORIGINAL RESEARCH
published: 25 January 2022

doi: 10.3389/frsip.2021.776825

http://crossmark.crossref.org/dialog/?doi=10.3389/frsip.2021.776825&domain=pdf&date_stamp=2022-01-25
https://www.frontiersin.org/articles/10.3389/frsip.2021.776825/full
https://www.frontiersin.org/articles/10.3389/frsip.2021.776825/full
https://www.frontiersin.org/articles/10.3389/frsip.2021.776825/full
http://creativecommons.org/licenses/by/4.0/
mailto:laurent.condat@kaust.edu.sa
https://doi.org/10.3389/frsip.2021.776825
https://www.frontiersin.org/journals/signal-processing
www.frontiersin.org
https://www.frontiersin.org/journals/signal-processing#articles
https://www.frontiersin.org/journals/signal-processing
https://www.frontiersin.org/journals/signal-processing#editorial-board
https://doi.org/10.3389/frsip.2021.776825

is applied at the master node connected to all others. No
other more complicated operation, like an inner loop or a
linear system to solve, is involved.

(2) Unified framework: The foundation of our distributed
algorithms consists in two general principles, applied in a
cascade, which are new contributions in themselves and
could be used in other contexts:
(a) We show that problem (Eq. 1) with M � 1, i.e. the

minimization of F + R +H◦K, can be reformulated as the
minimization of ~F + ~R + ~H in a different space, with
preserved smoothness and strong convexity properties.
Hence, the linear operator disappears and the Davis–Yin
algorithm (Davis and Yin, 2017) can be applied to this
new problem. Through this lens, we recover many
algorithms as particular cases of this unified
framework, like the PD3O, Chambolle–Pock,
Loris–Verhoeven algorithms.

(b) We design a non-straightforward lifting technique, so
that the problem (Eq. 1), with any M, is reformulated as
the minimization of F̂ + R̂ + Ĥ◦K̂ in some
product space.

(3) New convergence analysis and acceleration: Even when
M � 1, we improve upon the state of the art in two ways:
(a) For constant stepsizes, we recover existing

algorithms, but we provide new, more precise,
results about their convergence speed, see Theorem
1 and Theorem 5.

(b) With a particular strategy of varying stepsizes, we exhibit
new algorithms, which are accelerated versions of them.
We proveO(1/k2) convergence rate on the last iterate, see
Theorem 3 and Theorem 4, whereas current results in
the literature are ergodic, e.g. Chambolle and Pock
(2016b).

1.2 Related Work
Many estimation problems in a wide range of scientific fields
can be formulated as large-scale convex optimization
problems (Palomar and Eldar, 2009; Sra et al., 2011; Bach
et al., 2012; Bubeck, 2015; Polson et al., 2015; Chambolle and
Pock, 2016a; Glowinski et al., 2016; Stathopoulos et al., 2016;
Condat, 2017a; Condat et al., 2019b). Proximal splitting
algorithms (Combettes and Pesquet, 2010; Boţ et al., 2014;
Parikh and Boyd, 2014; Komodakis and Pesquet, 2015; Beck,
2017; Condat et al., 2019a) are particularly well suited to
solve them; they consist of simple, easy to compute, steps
that can deal with the terms in the objective function
separately.

These algorithms are generally designed as sequential
ones, for M � 1, and then they can be extended by lifting
in product space to parallel versions, well suited to minimize
F + R + ∑mHm ○ Km, see for instance Condat et al., 2019a,
Section 8. However, it is not straightforward to adapt lifting
to the case of a finite-sum F � 1

M∑mFm, with each function Fm
handled by a different node, which is of primary importance
in machine learning. This generalization is one of our
contributions.

Frontiers in Signal Processing | www.frontiersin.org January 2022 | Volume 1 | Article 7768252

Condat et al. Distributed Proximal Splitting Algorithms

https://www.frontiersin.org/journals/signal-processing
www.frontiersin.org
https://www.frontiersin.org/journals/signal-processing#articles

There is a vast literature on distributed optimization to
minimize 1

M∑mFm + R, with a focus on strategies based on
(block-)coordinate or randomized activation, as well as
replacing the gradients by cheaper stochastic estimates
(Cevher et al., 2014; Richtárik and Takáč, 2014; Gorbunov
et al., 2020; Salim et al., 2020). Replacing the full gradient by a
stochastic oracle in the accelerated algorithms with varying
stepsizes we propose is not straightforward; we leave this
direction for future research. In any case, the generalized
setting, with the smooth functions Fm at the nodes
supplemented or replaced by nonsmooth functions Hm,
possibly composed with linear operators, seems to have
received little attention. We want to make up for that.
Decentralized optimization over networks is an active
research topic (Latafat et al., 2019; Alghunaim et al.,
2021). In this paper, we focus on the centralized
client–server model, with one master node connected to
several client nodes, working in parallel. We leave the
study of decentralized algorithms for future work.

WhenM� 1 andK� I, where I denotes the identity, Davis andYin
(2017) proposed an efficient algorithm, along with an extensive
study of its convergence rates and possible accelerations. But
the ability to handle a nontrivial K is behind the success of the
Chambolle and Pock (2011) or \Condat (2013), Vũ (2013):
they are well suited for regularized inverse problems in
imaging (Chambolle and Pock, 2016a), for instance with
the total variation and its variants (Bredies et al., 2010;

Condat, 2014, 2017b; Duran et al., 2016); other examples
are computer vision problems (Cremers et al., 2011),
overlapping group norms for sparse estimation in data
science (Bach et al., 2012), and trend filtering on graphs
(Wang et al., 2016). Another prominent case is when H is an
indicator function, so that the problem becomes: minimize
F(x) + R(x) subject to Kx � b. If K is a gossip matrix like the
minus graph Laplacian, decentralized optimization over a
network can be tackled (Shi et al., 2015; Scaman et al., 2017;
Salim et al., 2021).

WhenM � 1 andK is arbitrary, there exist algorithms to solve (Eq.
1) in full generality, for example, the Combettes and Pesquet (2012),
Condat, (2013), Vũ (2013), PD3O (Yan, 2018) and PDDY (Salim
et al., 2020) algorithms. However, their convergence rates and possible
accelerations are little understood. Our main contribution is to derive
new convergence rates and accelerated versions of the PD3O and
PDDY algorithms, and their particular cases, including Chambolle
and Pock (2011) and Loris andVerhoeven (2011) algorithms. In order
to do this, we show that these two algorithms can be viewed as
instances of the Davis–Yin algorithm. This reformulation technique is
inspired by the recent one of O’Connor and Vandenberghe
(O’Connor and Vandenberghe, 2020); it makes it possible to split
the composition H°K and to derive algorithms, which call the
operators proxH, K, K* separately. This technique is fundamentally
different from the one in Salim et al. (2020), showing that the PD3O
and PDDY algorithms are primal–dual instances of the operator
version of Davis–Yin splitting to solve monotone inclusions.
Notably, we can derive convergence rates with respect to the
objective function and accelerations, which is not possible with
the primal–dual reformulation of Salim et al. (2020). On the other
hand, the latter encompasses the Condat–Vũ algorithm (Condat,
2013; Vũ, 2013), which is not the case of our approach. So, these are
complementary interpretations.

1.3 Organization of the paper
In Section 2, we propose new nonstationary versions (i.e. with
varying stepsizes) of several algorithms for optimization
problems made of three terms, and we analyze their
convergence rates. The derivation details are pushed to the
end of the paper in Section 5 for ease of reading. In Section
3, we further propose distributed algorithms, which canminimize
the sum of an arbitrary number of terms. Again, the derivation
details are deferred to Section 6. Numerical experiments
illustrating the good match between our theoretical results and
practical performance are shown in Section 4.

2 MINIMIZATION OF 3 FUNCTIONS WITH A
LINEAR OPERATOR

Let us focus on the problem (Eq. 1) when M � 1:

minimize
x∈X

Ψ(x) � F(x) + R(x) +H(Kx), (2)

where K: X → U is a linear operator, X and U are real Hilbert
spaces, R and H are proper, closed, convex functions, and F is a

Frontiers in Signal Processing | www.frontiersin.org January 2022 | Volume 1 | Article 7768253

Condat et al. Distributed Proximal Splitting Algorithms

https://www.frontiersin.org/journals/signal-processing
www.frontiersin.org
https://www.frontiersin.org/journals/signal-processing#articles

convex and LF-smooth function. We will see in Section 3 that
using an adequate lifting technique, (2) can be extended to (1)
and, accordingly, parallel or distributed versions of the sequential
algorithms to solve (Eq. 2) will be derived. That is why we first
study the case M � 1. For any function G, we denote by μG ≥ 0
some constant such that G is μG-strongly convex; that is, G − (μG/
2)‖ ·‖2 is convex.

The dual problem to (Eq. 2) is

minimize
u∈U

(F + R)∗(−K∗u) +H∗(u), (3)

where K* is the adjoint operator ofK andG* is the convex conjugate
of a function G (Bauschke and Combettes, 2017); we recall the
Moreau identity: proxτG(z) � z − τ proxG*/τ(z/τ) (Bauschke and
Combettes, 2017). We suppose that the following holds:

Assumption 1. There exists x* ∈ X such that 0 ∈ ∇F(x*) + zR(x*)
+ K*zH(Kx*), which implies that x* is a solution to (Eq. 2); see for
instance Combettes and Pesquet, 2012, Proposition 4.3 for
sufficient conditions on the functions for this property to hold.

2.1 Deriving the Nonstationary PD3O and
PDDY Algorithms
Themain difficulty in (Eq. 2) is the presence of the linear operator
K. Indeed, ifK � I, the Davis–Yin algorithm (Davis and Yin, 2017)
is well suited to minimize F + R + H. Note that there is a minor
mistake in the way Algorithm 3 in Davis and Yin (2017) is
initialized. This is corrected here. Thus, the Davis–Yin algorithm
is as follows:

Let (ck)k∈N be a sequence of stepsizes. Let x0
H ∈ X and u0 ∈ X .

For k � 0, 1, . . . iterate⎢⎢⎣
xk+1 � proxckR(xk

H + cku
k)

uk+1 � uk + 1
ck

(xk
H − xk+1)

xk+1
H � proxck+1H xk+1 − ck+1u

k+1 − ck+1∇F(xk+1)().
(4)

To make this algorithm applicable to K ≠ I, we reformulate the
problem (Eq. 2) as follows:

(1) We choose a value η ≥‖K‖2; we recommend to set η � ‖K‖2 in
practice. Then there exists a real Hilbert spaceW and a linear
operator C: W → U such that KK* + CC* � ηI. C is not
unique, for instance, we can set C � (ηI − KK*)1/2. We
actually don’t need to exhibit C, its existence is sufficient
here and there will be no call to C in the algorithms.

(2) Now, the problem (Eq. 2) can be rewritten as:

minimize
x∈X ,w∈W

~F(x, w) + ~R(x, w) + ~H(x, w), (5)

where ~F: (x,w)1F(x) + μF
2 ‖w‖2, ~R: (x, w)1R(x) + ı0(w),

where ı0: w1 0{ if w � 0, + ∞ otherwise}, and
~H: (x, w) � H(Kx + Cw). Indeed, we introduce the variable
w, but also the constraint that w � 0. Since ~F(x, 0) � F(x),
~R(x, 0) � R(x), ~H(x, 0) � H(Kx), the equivalence between
(2) and (5) follows.

We have ∇~F(x, w) � (∇F(x), μFw),
prox ~R(x, w) � (proxR(x), 0). Most importantly, for every c >
0, we have (O’Connor and Vandenberghe, 2020):

prox ~H
∗
/c(x, w) � (K∗u, C∗u), where u

� proxH∗/(cη) (Kx + Cw)/η(). (6)

Note that in O’Connor and Vandenberghe (2020), the authors
use ~F(x, w) � F(x), whereas we add μF

2 ‖w‖2. This difference is
essential, so that ~F is LF-smooth and μF-strongly convex. Also, ~R
is μR-strongly convex.

Then, we can apply the Davis–Yin algorithm (4) to solve the
problem (Eq. 5). We set F, R,H in (Eq. 4) as ~F, ~R, ~H, respectively.
The details of the substitutions yielding the algorithms are
deferred to Section 5 for the convenience of reading; most
notably, whenever CC* appears, it is replaced by ηI − KK*.
The obtained algorithms turns out to be a nonstationary
version of the PD3O algorithm (Yan, 2018), shown above. On
the other hand, if we exchange the two functions and set F, R,H in
(Eq. 4) as ~F, ~H, ~R, we obtain a different algorithm. It turns out to
be a nonstationary version of the PDDY algorithm proposed
recently (Salim et al., 2020), shown above too. With constant
stepsizes ck ≡ c ∈ (0, 2/LF), for both the PD3O and PDDY
algorithms, xk and uk converge to some solutions x* and u* of (Eq.
2) and (Eq. 3), respectively; this result was known for η > ‖K‖2
(Yan, 2018; Salim et al., 2020) and shown for η � ‖K‖2 for the
PD3O algorithm in O’Connor and Vandenberghe (2020), but
convergence with η � ‖K‖2 for the PDDY algorithm, as stated in
Theorem 2, is new.

Particular cases of the PD3O and PDDY algorithms, which are
shown above, are the following:

(1) If K � I and η � 1, the PD3O algorithm reverts to the
Davis–Yin algorithm (Eq. 4); the PDDY algorithm too, but
with H and R exchanged in (Eq. 4).

(2) If F � 0, the PD3O and PDDY algorithms revert to the forms I
and II (Condat et al., 2019a) of the Chambolle–Pock
algorithm, a.k.a. Primal–Dual Hybrid Gradient algorithm
(Chambolle and Pock, 2011), respectively.

(3) If R � 0, the PD3O and PDDY algorithms revert to the
Loris–Verhoeven algorithm (Loris and Verhoeven, 2011),
also discovered independently as the PDFP2O (Chen et al.,
2013) and PAPC (Drori et al., 2015) algorithms; see also
Combettes et al. (2014); Condat et al. (2019a) for an analysis
as a primal–dual forward–backward algorithm.

(4) If F � 0 in the Davis–Yin algorithm or K � I and η � 1 in
the Chambolle–Pock algorithm, we obtain the
Douglas–Rachford algorihm; it is equivalent to the
ADMM, see the discussion in Condat et al. (2019a).

(5) If H � 0, the PD3O and PDDY algorithms revert to the
forward–backward algorithm, a.k.a. proximal gradient descent.
The Loris–Verhoeven algorithm with K � I and η � 1, too.

2.2 Convergence Analysis
We first give convergence rates for the PD3O algorithm with
constant stepsizes.

Frontiers in Signal Processing | www.frontiersin.org January 2022 | Volume 1 | Article 7768254

Condat et al. Distributed Proximal Splitting Algorithms

https://www.frontiersin.org/journals/signal-processing
www.frontiersin.org
https://www.frontiersin.org/journals/signal-processing#articles

Theorem 1. (convergence rate of the PD3O algorithm). In the
PD3O algorithm, suppose that ck ≡ c ∈ (0, 2/LF) and η ≥‖K‖2. Then
xk and uk converge to some solutions x* and u* of (2) and (3),
respectively. In addition, suppose that H is continuous on an open
ball centered at Kx*. Then the following hold:

(i) Ψ(xk) − Ψ(x*) � o(1/ �
k

√).
Define the weighted ergodic iterate �xk � 2

k(k+1)∑k
i�1ixi, for every

k ≥ 1. Then

(ii) Ψ(�xk) − Ψ(x*) � O(1/k).
Furthermore, if H is L-smooth for some L > 0, we have a faster

decay for the best iterate so far:

(iii) min
i�1,...,k

Ψ(xi) − Ψ(x*) � o(1/k).

Proof. The convergence of xk follows from Davis and Yin, 2017,
Theorem 2.1 and the convergence of uk follows from the one of
the variable ukB � (zk − xk

A)/c in the notations of Davis and Yin
(2017). (i) follows from Davis and Yin, 2017, Theorem 3.1, using
the following facts; first, in this theorem, the function corresponding
to ~H is supposed to be Lipschitz-continuous on a certain ball,
but since the rate is asymptotic and Kxk → Kx*, it is sufficient to
consider the property around Kx*; second, it is well known that if a
convex real-valued function is continuous on a convex open set, it is
Lipschitz-continuous on every compact subset of this set (Unknown
author, 1972); third, if H is continuous, ~H is continuous too. (ii)
follows from Davis and Yin (2017), Theorem 3.2 and (iii) follows
from Theorem D.5 in the preprint of Davis and Yin
(2017). □

Theorem 1 applies to the particular cases of the PD3O
algorithm, like the Loris–Verhoeven, Chambolle–Pock,
Douglas–Rachford algorithms. Our results are new even for them.

Remark 1. We can note that the forward–backward algorithm
xk+1 � proxcR(x

k − c∇F(xk)), which is a particular case of the
PD3O algorithm when H � 0, is monotonic. So, the best iterate so
far is the last iterate. Hence, Theorem 1 (iii) yieldsΨ(xk) −Ψ(x*) �
o(1/k) for the forward–backward algorithm.

For the PDDY algorithm, we cannot derive a similar theorem,
since ~R is not continuous around (x*, 0). Still, we can establish
convergence of the variables:

Theorem 2. (convergence of the PDDY algorithm). In the PDDY
algorithm, suppose that ck ≡ c ∈ (0, 2/LF) and η ≥‖K‖2. Then xk

and xkR both converge to some solution x* of (Eq. 2), and uk

converges to some solution u* of (Eq. 3).

Proof. The convergence of xk and xk
R to the same solution x* of

(Eq. 2) follows from Davis and Yin, 2017, Theorem 2.1. The
convergence of the variable ukB � (zk − xk

A)/c, in the notations of
Davis and Yin (2017), implies in our setting, according to (6), that
K*uk and C*uk both converge to some elements. But since ηuk �
KK*uk + CC*uk, uk converges to some element u* ∈ U . Finally, we
have x* � proxcR(x* − c∇F(x*) − cK*u*), so that 0 ∈ zR(x*) +

∇F(x*) + K*u*, and u* � proxH*/(cη)(u* + 1
cηKx

), so that Kx ∈
(zH)−1(u*). Hence, u* is a solution to (Eq. 3). □

We now give accelerated convergence results using
varying stepsizes, when F or R is strongly convex; that is, μF
+ μR > 0. In that case, we denote by x* the unique solution
to (Eq. 2).

Theorem 3. (convergence rate of the accelerated PD3O
algorithm). Suppose that μF + μR > 0. Let κ ∈ (0, 1) and c0 ∈
(0, 2(1 − κ)/LF). Set c1 � c0 and

ck+1 �
−c2kμFκ + ck

�����������������
(ckμFκ)2 + 1 + 2ckμR

√
1 + 2ckμR

, for every k≥ 1.

(7)

Suppose that η ≥‖K‖2. Then in the PD3O algorithm, there exists
c0 > 0 (whose expression is given in Section 5) such that, for every k
≥ 1,

‖xk+1 − x*‖2 ≤ c2k+1
1 − ck+1μFκ

c0 � O 1/k2().
Proof. This result follows from Davis and Yin, 2017, Theorem 3.3,
stated for convenience as Lemma 1 in Section 5. □

Note that with the stepsize rule in (Eq. 7), we have k ck → 1/
(μFκ + μR) as k→ +∞, so that ck � O(1/k) and ck+1/ck→ 1. Also,
when F � 0, LF can be taken arbitrarily small, so that we can
choose any c0 > 0.

Theorem 3 is new for the PD3O and Loris–Verhoeven
algorithms, but has been derived in O’Connor and
Vandenberghe (2020) for the Chambolle–Pock algorithm.
For the forward–backward algorithm, strong convexity
yields linear convergence with constant stepsizes, so this
nonstationary version does not seem interesting.

Concerning the PDDY algorithm, ~H is not necessarily
strongly convex, even if H is. So, we only consider the case
where F is strongly convex. As a consequence of Lemma 1, we get:

Theorem 4. (convergence rate of the accelerated PDDY
algorithm). Suppose that μF > 0. Let κ ∈ (0, 1) and c0 ∈ (0, 2(1
− κ)/LF). Set c1 � c0 and

ck+1 � −c2kμFκ + ck

�����������
(ckμFκ)2 + 1

√
, for every k≥ 1. (8)

Suppose that η ≥‖K‖2. Then in the PDDY algorithm, there exists c0
> 0 (whose expression is given in Section 5) such that, for every k ≥ 1,

‖xk+1 − x*‖2 ≤ c2k+1
1 − ck+1μFκ

c0 � O 1/k2().
Moreover, if η > ‖K‖2, ‖xk

R − x*‖2 � O(1/k2) as well.
Finally, we consider the case where, in addition to strong

convexity of F or R,H is smooth; in that case, the algorithms with
constant stepsizes converge linearly; that is, as a consequence of
Lemma 2, we have:

Theorem 5. (linear convergence of the PD3O and PDDY
algorithms). Suppose that μF + μR > 0 and that H is LH-

Frontiers in Signal Processing | www.frontiersin.org January 2022 | Volume 1 | Article 7768255

Condat et al. Distributed Proximal Splitting Algorithms

https://www.frontiersin.org/journals/signal-processing
www.frontiersin.org
https://www.frontiersin.org/journals/signal-processing#articles

smooth, for some LH > 0. Let x* and u* be the unique solutions to
(2) and (3), respectively. Suppose that ck ≡ c ∈ (0, 2/LF) and η
≥‖K‖2. Then the PD3O algorithm converges linearly: there exists ρ
∈ (0, 1] such that, for every k ∈ N,

‖xk+1 − x*‖2 ≤ (1 − ρ)k ‖cq0 − x* + c∇F(x*) − cK*(u0 − u*)‖2(
+c2η‖u0 − u*‖2 − c2‖K*(u0 − u*)‖2).

The PDDY algorithm converges linearly too: there exists ρ ∈ (0, 1]
such that, for every k ∈ N,

‖xk+1
R − x*‖2 ≤ 4(1 − ρ)k ‖x0

R − x* + cK*(u0 − u*)‖2(
+c2η‖u0 − u*‖2 − c2‖K*(u0 − u*)‖2).

Linear convergence of the other variables in the algorithms can
be derived as well, see Proposition 1. Lower bounds for ρ can be
derived from Theorem D.6 in the preprint version of Davis and
Yin (2017). We don’t provide them, since they are not tight, as
noticed in Remark D.2 of the same preprint. For instance, for the
PDDY or Loris–Verhoeven algorithms with μF > 0,

ρ � cμF(2 − cLF)
(1 + cηLH)2 .

IfH � 0, by setting LH � 0, we get ρ � cμF(2 − cLF). But then the
PDDY algorithm reverts to the forward–backward algorithm, for
which it is known that 1 − ρ � (1 − cμF)2 whenever c ≤ 2/(LF +
μF), which corresponds to the larger value ρ � cμF(2 − cμF).

We emphasize that linear convergence comes for free with the
algorithms, if the conditions are met, without any modification.
That is, there is no need to know μF, μR, LH, since the conditions on
the two parameters c and η do not depend on these values. For the
particular case of the Chambolle–Pock algorithm, as pointed out in
O’Connor and Vandenberghe (2020), this is in contrast to existing
linear convergence results (Chambolle and Pock, 2016a), derived
for a modified version of the algorithm, which depends on these
values.

3 DISTRIBUTED PROXIMAL ALGORITHMS

We now focus on the more general problem (Eq. 1) and we derive
distributed versions of the PD3O and PDDY algorithms to solve
it. For this, we develop a lifting technique: we recast the
minimization of R(x) + 1

M∑M
m�1(Fm(x) +Hm(Kmx)) as the

minimization of

R̂(x̂) + F̂(x̂) + Ĥ(K̂x̂),
as follows. Let (ωm)Mm�1 be a sequence of positive weights, whose
sum is 1; they can be used to mitigate different ‖Km‖, by setting
ωm ∝ 1/‖Km‖2, or different LFm, by setting ωm ∝ L2Fm

, as a rule
of thumb.

We introduce the Hilbert space X̂ � X ×/ × X (M times),
endowed with the inner product

〈· , ·〉X̂ : (x̂, x̂′)1 ∑M
m�1

ωm〈xm, xm′〉,

and the Hilbert space Û � U1 ×/ × UM, endowed with the inner
product

〈· , ·〉Û : (û, û′)1 ∑M
m�1

ωm〈um, um′〉.

Furthermore, we introduce
K̂: x̂ � (xm)Mm�1 ∈ X̂1(K1x1, . . . , KMxM) ∈ Û , and the
functions ı�: x̂ ∈ X̂1 0{ if x1 � / � xM, + ∞ otherwise,
R̂: x̂ ∈ X̂1R(x1) + ı�(x̂), Ĥ: û ∈ Û1 1

M∑M
m�1Hm(um), and

F̂: x̂ ∈ X̂1 1
M∑M

m�1Fm(xm). We have to be careful when
defining the gradient and proximity operators, because of the
weighted metrics; see in Section 6 for details.
Doing these substitutions in the PD3O and PDDY algorithms, we
obtain the new Distributed PD3O and Distributed PDDY
algorithms, shown above. Their particular cases, also shown
above, are the distributed

Frontiers in Signal Processing | www.frontiersin.org January 2022 | Volume 1 | Article 7768256

Condat et al. Distributed Proximal Splitting Algorithms

https://www.frontiersin.org/journals/signal-processing
www.frontiersin.org
https://www.frontiersin.org/journals/signal-processing#articles

Davis–Yin algorithm when Km ≡ I and η � 1, the distributed
Loris–Verhoeven algorithm when R � 0, the distributed
Chambolle–Pock algorithm when Fm ≡ 0, the distributed
Douglas–Rachford algorithm when Fm ≡ 0, Km ≡ I and η � 1,
the (classical) distributed forward–backward algorithm when Hm

≡ 0.

We can easily translate Theorems 1–5 to these distributed
algorithms; the corresponding theorems are given in Section 6. In
a nutshell, we obtain the same convergence results and rates with
any number of nodesM ≥ 1 as in the non-distributed setting, for
any c0 ∈ (0, 2/LF̂) and η≥ ‖K̂‖2, where LF̂ and K̂ are detailed in
Section 6. Hence, to our knowledge, we are the first to propose
distributed proximal splitting methods with guaranteed, possibly
accelerated, convergence, to minimize an arbitrary sum of

smooth or nonsmooth functions, possibly composed with
linear operators.

Frontiers in Signal Processing | www.frontiersin.org January 2022 | Volume 1 | Article 7768257

Condat et al. Distributed Proximal Splitting Algorithms

https://www.frontiersin.org/journals/signal-processing
www.frontiersin.org
https://www.frontiersin.org/journals/signal-processing#articles

4 EXPERIMENTS

4.1 Image Deblurring RegularizedWith Total
Variation
We first consider the non-distributed problem (Eq. 2), for the
imaging inverse problem of deblurring, which consists in restoring
an image y corrupted by blur and noise (Chambolle and Pock,
2016a). So, we set

F: x1
1
2
‖Ax − y‖2,

where the linear operator A corresponds to a 2-D convolution
with a lowpass filter, with LF � 1. The filter is approximately
Gaussian and chosen so that F is μF-strongly convex with μF �
0.01. y is obtained by applying A to the classical 256 × 256
Shepp–Logan phantom image, with additive Gaussian noise. R �
ı0 enforces nonnegativity of the pixel values. H°K corresponds to
the classical ‘isotropic’ total variation (TV) (Chambolle and Pock,
2016a; Condat, 2017b), withH � 0.6 times the l1,2 norm and K the
concatenation of vertical and horizontal finite differences.

We compare the nonaccelerated, i.e. with constant ck, and
accelerated versions, with decaying ck, of the PD3O, PDDY and
Condat–Vũ algorithms. We initialize the dual variables at zero
and the estimate of the solution as y. We set c0 � 1.7, κ � 0.15,
η � 8 ≥‖K‖2 (except for the accelerated Condat–Vũ algorithm
proposed in Chambolle and Pock (2016b), for which η � 16 and
c � 0.5).

The results are illustrated in Figure 1 (implementation in
Matlab). We observe that the PD3O and PDDY algorithms have
almost identical variables: the pink, red, blue curves are
superimposed; we know that both algorithms are identical and
revert to the Loris–Verhoeven algorithm when R � 0. Here R ≠ 0
but the nonnegativity constraint does not change the solution
significantly, which explains the similarity of the two algorithms.

Note that xk in the PDDY algorithm is not feasible with
respect to nonnegativity, and the red curve actually shows
F(xk) + H(Kxk) − Ψ(x*). In the nonaccelerated case, Ψ(xk)
decays faster than O(1/k) but slower than O(1/k2), which is
coherent with Theorem 1. The same holds for ‖xk −
x*‖2 ≤ 2

μF
(Ψ(xk) − Ψ(x*)).

The accelerated versions improve the convergence speed
significantly: Ψ(xk) and ‖xk − x*‖2 decay even faster than O(1/k2),
in line with Theorem 3 and Theorem 4. In all cases, the Condat–Vũ
algorithm is outperformed. Also, there is no interest in considering the
ergodic iterate instead of the last iterate, since the former converges at
the same asymptotic rate as the latter, but slower.

4.2 Image Deblurring Regularized With
Huber-TV
We consider the same deblurring experiment as before, but we
make H smooth by taking the Huber function instead of the l1
norm in the total variation; that is, λ|·| in the latter is replaced by

h : t ∈ R1

λ

2]
t2 if |t|≤],

λ |t| −]
2

() otherwise,

⎧⎪⎪⎪⎨⎪⎪⎪⎩
for some] > 0 and λ > 0 (set here as 0.1 and 0.6, respectively). We
can also write h without branching as
h(t) � λ

2]max(] − |t|, 0)2 + λ(|t| −]
2). It is known that h is Lh-

smooth with Lh � λ/]. For any c > 0 and t ∈ R, we have
proxh*/c(t) � t/max(|t|/λ, 1 +]

λc). Except for H, everything is
unchanged.

The results are illustrated in Figure 2. Again, the PD3O and
PDDY algorithms behave very similarly; they converge linearly,
as proved in Theorem 5, and achieve machine precision in finite
time. xk in the PDDY algorithm is not feasible and F(xk) +H(Kxk)
−Ψ(x*) (red curve) takes negative values (not shown in log scale);
so, xk

R is the variable to study in this setting. We tested the
‘accelerated’ versions of the algorithms with decaying ck, but in
this scenario, they are much slower and not suitable. Again, the
Condat–Vũ algorithm is outperformed and the ergodic sequences
converge much slower. Interestingly, the image x* is visually the
same with TV and with Huber-TV.

4.3 SVM With Hinge Loss
Here we consider Problem (Eq. 1) in the special case with
X � Rd, for some d ≥ 1, Fm ≡ 0, and Km ≡ I; that is, the
problem of minimizing

Ψ(x) � 1
M

∑M
m�1

Hm(x) + R(x). (9)

In particular, to train a binary classifier, we consider the
classical SVM problem with hinge loss, which has the form
(Eq. 9) with R(x) � α

2‖x‖2, for some α > 0, and
Hm(x) � max(1 − bmaTmx, 0), with data samples am ∈ Rd and
bm ∈ { − 1, 1}.

For any c > 0 we have proxcR(x) � x/(1 + cα). We could view
the dot product x1bmaTmx as a linear operator Km, but it is more
interesting to integrate it in the functionHm. Indeed, as is perhaps
not well known, the proximity operator of Hm has a closed form:
for any c > 0,

proxcHm : x ∈ Rd1x − bm
ηm

max min(bmaTmx − 1, 0),−ηmc()am,

Frontiers in Signal Processing | www.frontiersin.org January 2022 | Volume 1 | Article 7768258

Condat et al. Distributed Proximal Splitting Algorithms

https://www.frontiersin.org/journals/signal-processing
www.frontiersin.org
https://www.frontiersin.org/journals/signal-processing#articles

where ηm � aTmam � ‖am‖2. Thus, we use the Distributed
Douglas–Rachford algorithm, a particular case of the distributed
PD3O and PDDY algorithms. Since R is α-strongly convex, we
also use the accelerated version of the algorithm with varying
stepsizes, like in Theorem 3. We can note that in the context of
Federated learning (Konečný et al., 2016; Malinovsky et al.,
2020), where each m corresponds to the smart phone or
computer of a different user with its own data (am, bm)
stored locally, the problem is solved in a collaborative way
but with preserved privacy, without the users sharing their data.

The method was implemented in Python on a single machine
and tested on the dataset ‘australian’ from the LibSVM base
(Chang and Lin, 2011), with d � 15 andM � 680. We set ωm ≡ 1/
M, α � 0.1, c0 � 0.1, and we used zero vectors for the initialization.
The results are shown in Figure 3. Despite the oscillations, we
observe that both the objective suboptimality and the squared
distance to the solution converge sublinearly, with rates looking
like o(1/ �

k
√) and O(1/k2) for the nonaccelerated and accelerated

algorithms, respectively, as guaranteed by Theorem 1 and
Theorem 3. The proposed accelerated version of the
distributed Douglas–Rachford algorithm yields a significant
speedup.

5 DERIVATION OF THE ALGORITHMS

In this section, we give the details of the derivation of the PD3O
and PPDY algorithms, and their particular cases, to solve:

minimize
x∈X

F(x) + R(x) +H(Kx),

with same notations and assumptions as above. Let η ≥‖K‖2, let
W be a real Hilbert space and C: W → U be a linear operator,
such that KK* + CC* � ηI. We set Q : (x, w)1Kx + Cw. We have
QQ* � ηI. Let (ck)k∈N be a sequence of positive stepsizes.

5.1 The Davis–Yin Algorithm
In this section, we state the results on the Davis–Yin algorithm,
which we be needed to analyze the PD3O and PPDY
algorithms.

The Davis–Yin algorithm to minimize the sum of 3 convex
functions ~F + G + J over a real Hilbert space Z (assuming that
there exists a solution z* such that 0 ∈∇~F(z*) + zG(z*) + zJ(z*))
is (Davis and Yin, 2017):

Let z0J ∈ Z, u0G ∈ Z. For k � 0, 1, . . . iterate:

FIGURE 1 | Convergence error, in log-log scale, for the experiment of image deblurring regularized with the total variation, see Section 4.1 for details.

FIGURE 2 | Convergence error, in log-log scale, for the experiment of image deblurring regularized with the smooth Huber-total-variation, so that linear
convergence occurs, see Section 4.2 for details.

Frontiers in Signal Processing | www.frontiersin.org January 2022 | Volume 1 | Article 7768259

Condat et al. Distributed Proximal Splitting Algorithms

https://www.frontiersin.org/journals/signal-processing
www.frontiersin.org
https://www.frontiersin.org/journals/signal-processing#articles

⎢⎢⎢⎣
zk+1G � proxckG(zkJ + cku

k
G)

uk+1
G � uk

G + 1
ck

(zkJ − zk+1G)

zk+1J � proxck+1J zk+1G − ck+1u
k+1
G − ck+1∇~F(zk+1G)().

(10)

Equivalently, introducing the variable rk:� zkJ + cku
k
G: let

r0 ∈ Z. For k � 0, 1, . . . iterate:

⎢⎢⎣

zk+1G � proxckG(rk)

zk+1J � proxck+1J 1 + ck+1
ck

()zk+1G − ck+1
ck

rk − ck+1∇~F(zk+1G)()
rk+1 � zk+1J + ck+1

ck
(rk − zk+1G).

(11)

Equivalently: let r0 ∈ Z. For k � 0, 1, . . . iterate:⎢⎢⎢⎣
zk+1G � proxckG(rk)

uk+1
J � proxJ*/ck+1

1
ck+1

+ 1
ck

()zk+1G − 1
ck
rk − ∇~F(zk+1G)()

rk+1 � zk+1G − ck+1∇~F(zk+1G) − ck+1u
k+1
J .

(12)

In our notations, Theorem 3.3 of Davis and Yin (2017)
translates into Lemma 1 as follows; we assume that ~F is
L~F-smooth and μ~F-strongly convex and that G is μG-strongly
convex, for some L~F > 0, μ~F ≥ 0, μG ≥ 0.

Lemma 1. (accelerated Davis–Yin algorithm). Suppose that
μ~F + μG > 0. Let z* be the unique minimizer of ~F + G + J; that
is, 0 ∈∇~F(z*) + zG(z*) + zJ(z*). Let u*G be such that u*G ∈ zG(z*)
and 0 ∈∇~F(z*) + zJ(z*) + u*G. Let κ ∈ (0, 1) and
c0 ∈ (0, 2(1 − κ)/L~F). Set c1 � c0 and

ck+1 �
−c2kμ~Fκ + ck

�����������������
(ckμ~Fκ)2 + 1 + 2ckμG

√
1 + 2ckμG

, for every k≥ 1.

Then, for every k ≥ 1,

‖zk+1G − z*‖2 ≤ c2k+1
1 − ck+1μ~Fκ

c0 � O 1/k2(),
where

c0 � 1 − c0μ~Fκ

c20
‖z1G − z*‖2 + ‖u1

G − u*
G‖2.

Note that u1G � (r0 − z1G)/c0.
Linear convergence occurs in the following conditions,

according to Theorem D.6 in the preprint version of Davis
and Yin (2017), which translates into Lemma 2 as follows. We
assume that ~F is L~F-smooth and μ~F-strongly convex, G is μG-
strongly convex, and J is μJ-strongly convex, for some L~F > 0,
μ~F ≥ 0, μG ≥ 0, μJ ≥ 0. We consider constant stepsizes ck ≡ c, for
some c ∈ (0, 2/L~F).

Lemma 2. (linear convergence of the Davis–Yin algorithm).
Suppose that μ~F + μG + μJ > 0 and that G is LG-smooth, for
some LG > 0, or J is LJ-smooth, for some LJ > 0. Let z* be the
unique minimizer of ~F + G + J; that is,
0 ∈∇~F(z*) + zG(z*) + zJ(z*). The dual problem of minimizing
(~F + J)*(−u) + G*(u) over u ∈ Z is strongly convex too; let u*G be
its unique solution. We have u*G ∈ zG(z*) and
0 ∈∇~F(z*) + zJ(z*) + u*G. Set r* � z* + cu*G. Then, the
Davis–Yin algorithm (Eq. 11) converges linearly: there exists ρ
∈ (0, 1] such that, for every k ∈ N,

‖rk − r*‖2 ≤ (1 − ρ)k‖r0 − r*‖2. (13)

Loose lower bounds for ρ are given in Davis and Yin, 2017,
Theorem D.6.

We have the following corollary of Lemma 2:

Proposition 1. (linear convergence of the other variables in the
Davis–Yin algorithm). In the same conditions and notations as in
Lemma 2, we have, for every k ∈ N,

FIGURE 3 | Convergence error, in log-log scale, for the SVM binary classification experiment with hinge loss, see Section 4.3 for details.

Frontiers in Signal Processing | www.frontiersin.org January 2022 | Volume 1 | Article 77682510

Condat et al. Distributed Proximal Splitting Algorithms

https://www.frontiersin.org/journals/signal-processing
www.frontiersin.org
https://www.frontiersin.org/journals/signal-processing#articles

‖zk+1G − z*‖2 ≤ (1 − ρ)k‖r0 − r*‖2
‖zk+1J − z*‖2 ≤ 4(1 − ρ)k‖r0 − r*‖2. (14)

Also, in the form (Eq. 12) of the algorithm,

‖uk+1
J + uG* + ∇~F(z*)‖2 ≤ 4

c2
(1 − ρ)k‖r0 − r*‖2

and, in the form (Eq. 10) of the algorithm,

‖uk+1
G − uG* ‖2 ≤ 1

c2
(1 − ρ)k‖r0 − r*‖2.

Proof. Let k ∈ N. By nonexpansiveness of the proximity operator,
in view of the first line in (Eq. 11), we have ‖zk+1G − z*‖≤ ‖rk − r*‖,
so that (Eq. 14) follows from (Eq. 13). In addition, in view of the
second line in (Eq. 11), we have

‖zk+1J − z*‖2 ≤ ‖2(zk+1G − z*) − (rk − r*) − c(∇~F(zk+1G)
− ∇~F(z*))‖2
� ‖(zk+1G − z*) − (rk − r*) + (I − c∇~F)(zk+1G)

− (I − c∇~F)(z*)‖2
� ‖(I − proxcG)(rk) − (I − proxcG)(r*) + (I − c∇~F)(zk+1G)

− (I − c∇~F)(z*)‖2

and, by nonexpansiveness of I − proxcG and I − c∇~F,

‖zk+1J − z*‖2 ≤ ‖rk − r*‖ + ‖zk+1G − z*‖()2
≤ 4‖rk − r*‖2.

Using the same arguments, in view of the second line in (Eq. 12),

‖uk+1
J + uG* + ∇~F(z*)‖2 ≤

1

c2
‖rk − r*‖ + ‖zk+1G − z*‖()2

≤
4

c2
‖rk − r*‖2.

Finally, as visible in the first line of (Eq. 16), since
rk � zkJ + cku

k
G, and using the Moreau identity, we have

uk+1G � proxG*/c(1czkJ + ukG) � proxG*/c(1crk), so that

‖uk+1
G − u*

G‖2 ≤
1
c2
‖rk − r*‖2.

□
5.2 The PD3O Algorithm
We set Z � X ×W, ~F, G � ~R, J � ~H, as defined in Section 2.
Doing the substitutions in (Eq. 12), we get the algorithm:

Let s0 ∈ X and r0w ∈ W. For k � 0, 1, . . . iterate:
⎢⎢⎢⎣

xk+1 � proxckR(sk)

uk+1 � proxH* /(ck+1η) K
1

ck+1
+ 1
ck

()xk+1 − 1
ck
sk − ∇F(xk+1)()/η − Crkw/(ckη)()

sk+1 � xk+1 − ck+1∇F(xk+1) − ck+1K
*uk+1

rk+1w � −ck+1C*uk+1.

We can remove the variable rw and the algorithm becomes: Let
s0 ∈ X and u0 ∈ U . For k � 0, 1, . . . iterate:

⎢⎢⎣
xk+1 � proxckR(sk)

uk+1 � proxH* /(ck+1η)
1
η
K

1
ck+1

+ 1
ck

()xk+1 − 1
ck
sk − ∇F(xk+1)() + 1

η
CC*uk()

sk+1 � xk+1 − ck+1∇F(xk+1) − ck+1K
*uk+1.

After replacing CC* by ηI − KK*, the iteration becomes:
⎢⎢⎣
xk+1 � proxckR(sk)

uk+1 � proxH* /(ck+1η) uk + 1
η
K

1
ck+1

+ 1
ck

()xk+1 − 1
ck
sk − ∇F(xk+1) −K*uk()()

sk+1 � xk+1 − ck+1∇F(xk+1) − ck+1K*uk+1.

We can change the variables, so that only one call to ∇F andK*
appears, which yields the algorithm: Let q0 ∈ X and u0 ∈ U . For
k � 0, 1, . . . iterate:⎢⎢⎢⎣

xk+1 � proxckR ck(qk −K*uk)()
qk+1 � 1

ck+1
xk+1 − ∇F(xk+1)

uk+1 � proxH*/(ck+1η) uk + 1
η
K

1
ck
xk+1 + qk+1 − qk()().

When ck ≡ c is constant, we recover the PD3O algorithm (Yan,
2018).

To derive Theorem 3 from Lemma 1, we simply have to notice
that the variable zk+1G in the latter corresponds to the pair (xk+1, 0).
Also, in the conditions of Theorem 3, let u* be any solution of
(Eq. 3); that is, u* ∈ zH(Kx*) and 0 ∈ zR(x*) + ∇F(x*) + K*u*.
Then the constant c0 is

c0 � 1 − c0μFκ

c20
‖x1 − x*‖2 + ‖q0 − 1

c0
x1 −K*(u0 − u*) + ∇F(x*)‖2

+ η‖u0 − u*‖2 − ‖K*(u0 − u*)‖2.

If K � I and η � 1, the PD3O algorithm reverts to
the Davis–Yin algorithm, as given in (Eq. 4). In the conditions
of Theorem 3, let u* be any solution of (Eq. 3); that is, u* ∈ zH(x*)
and 0 ∈ zR(x*) + ∇F(x*) + u*. Then the constant c0 is

c0 � 1 − c0μFκ

c20
‖x1 − x*‖2 + ‖ 1

c0
(s0 − x1) + u* + ∇F(x*)‖2. (15)

5.3 The PDDY Algorithm
The PDDY algorithm is obtained like the PD3O algorithm
from the David–Yin algorithm, but after swapping the roles of
~H and ~R.
To obtain the PDDY algorithm, starting from (Eq. 10), let us

first write the Davis–Yin algorithm as: Let z0J ∈ Z and u0G ∈ Z.
For k � 0, 1, . . . iterate:

⎢⎢⎣
uk+1
G � proxG*/ck

1
ck
zkJ + uk

G()
zk+1G � zkJ − ck(uk+1

G − uk
G)

zk+1J � proxck+1J zk+1G − ck+1∇~F(zk+1G) − ck+1u
k+1
G().

Frontiers in Signal Processing | www.frontiersin.org January 2022 | Volume 1 | Article 77682511

Condat et al. Distributed Proximal Splitting Algorithms

https://www.frontiersin.org/journals/signal-processing
www.frontiersin.org
https://www.frontiersin.org/journals/signal-processing#articles

Equivalently: Let r0 ∈ Z. For k � 0, 1, . . . iterate:⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
uk+1
G � proxG*/ck

(rk/ck)
zk+1G � rk − cku

k+1
G

zk+1J � proxck+1J zk+1G − ck+1∇~F(zk+1G) − ck+1u
k+1
G()

rk+1 � zk+1J + ck+1u
k+1
G .

(16)

We set Z � X ×W, ~F, G � ~H, J � ~R, as defined in Section 2.
Doing the substitutions in (Eq. 16), we get the algorithm: Let
r0x ∈ X , r0w ∈ W. For k � 0, 1, . . . iterate:⎢⎢⎢⎣

uk+1 � proxH*/(ckη) (Krkx + Crkw)/(ckη)()
xk+1 � rkx − ckK*u

k+1

xk+1
R � proxck+1R xk+1 − ck+1∇F(xk+1) − ck+1K*uk+1()

rk+1x � xk+1
R + ck+1K*u

k+1

rk+1w � ck+1C*u
k+1.

We can remove the variable rw and rename rx as s:⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
uk+1 � proxH*/(ckη) Ks

k/(ckη) + CC*uk/η()
xk+1 � sk − ckK*u

k+1

xk+1
R � proxck+1R xk+1 − ck+1∇F(xk+1) − ck+1K*uk+1()

sk+1 � xk+1
R + ck+1K*u

k+1.

The algorithm becomes: Let s0 ∈ X , u0 ∈ U . For k � 0, 1, . . .
iterate:⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

uk+1 � proxH*/(ckη) u
k +K(sk/ck −K*uk)/η()

xk+1 � sk − ckK
*uk+1

xk+1
R � proxck+1R xk+1 − ck+1∇F(xk+1) − ck+1K*uk+1()

sk+1 � xk+1
R + ck+1K*u

k+1.

Equivalently: Let x0R ∈ X , u0 ∈ U . For k � 0, 1, . . . iterate:⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣ u
k+1 � proxH*/(ckη) u

k +Kxk
R/(ckη)()

xk+1 � xk
R − ckK*(uk+1 − uk)

xk+1
R � proxck+1R xk+1 − ck+1∇F(xk+1) − ck+1K*u

k+1().
We can write the algorithm with only one call of K* per

iteration by introducing an additional variable p: Let x0
R ∈ X ,

u0 ∈ U . Set p0 � K*u0. For k � 0, 1, . . . iterate:⎢⎢⎢⎣

uk+1 � proxH*/(ckη) uk + 1
ckη

Kxk
R()

pk+1 � K*uk+1

xk+1 � xk
R − ck(pk+1 − pk)

xk+1
R � proxck+1R xk+1 − ck+1∇F(xk+1) − ck+1p

k+1().
When ck ≡ c is constant, we recover the PDDY algorithm

(Salim et al., 2020).
Let us now derive Theorem 4 from Lemma 1. The variable zk+1G

in the latter corresponds to the pair (xk+1, ckC*(uk − uk+1)), so
that ‖zk+1G − z*‖2 becomes

‖xk+1 − x*‖2 + ‖ckC*(uk − uk+1)‖2
� ‖xk+1 − x*‖2 + c2k〈CC*(uk − uk+1), uk − uk+1〉
� ‖xk+1 − x*‖2 + c2k〈(ηI −KK*)(uk − uk+1), uk − uk+1〉
� ‖xk+1 − x*‖2 + c2kη‖uk − uk+1‖2 − c2k‖K*(uk − uk+1)‖2. (17)

Therefore, in the conditions of Theorem 4, let u* be any
solution of (Eq. 3); that is, u* ∈ zH(Kx*) and 0 ∈ zR(x*) + ∇F(x*)
+ K*u*. Then the constant c0 is

c0 � 1 − c0μFκ

c20
‖x1 − x*‖2 + c20η‖u1 − u0‖2 − c20‖K*(u1 − u0)‖2()

+ η‖u1 − u*‖2.

The last statement in Theorem 4 is obtained as follows. First,
for every k ≥ 1, xk

R � xk+1 − ckK
*(uk − uk+1), so that

‖xk
R − x*‖2 ≤ 2‖xk+1 − x*‖2 + 2‖K‖2‖ck(uk − uk+1)‖2. Second,

from (Eq. 17), ‖xk+1 − x*‖2 � O(1/k2) and (η − ‖K‖2)‖ck(uk −
uk+1)‖2 ≤ c2k〈(η I −KK*)(uk − uk+1), uk − uk+1〉 � O(1/k2). So,
assuming that η > ‖K‖2, ‖ck(uk − uk+1)‖2 � O(1/k2). Hence, ‖xk

R −
x*‖2 � O(1/k2).

If K � I and η � 1, the PDDY algorithm reverts to the
Davis–Yin algorithm, as given in (Eq. 4), but with R and H
exchanged. In the conditions of Theorem 4, let u* be any solution
of (Eq. 3); that is, u* ∈ zH(x*) and 0 ∈ zR(x*) + ∇F(x*) + u*. Then
the constant c0 is

c0 � 1 − c0μFκ

c20
‖x1 − x*‖2 + ‖ 1

c0
(s0 − x1) − u*‖2.

This is the same value as in (Eq. 15), corresponding to the
Davis–Yin algorithm, viewed as the PD3O algorithm, with R and
H exchanged. Indeed, u* is defined differently in both cases; that
is, with the exchange, u* ∈ zR(x*) in (Eq. 15).

5.4 R = 0: The Loris–Verhoeven Algorithm
If R � 0, the PD3O algorithm becomes: Let q0 ∈ X and u0 ∈ U .
For k � 0, 1, . . . iterate:⎢⎢⎢⎣

xk+1 � ck(qk −K*uk)
qk+1 � 1

ck+1
xk+1 − ∇F(xk+1)

uk+1 � proxH*/(ck+1η) uk + 1
η
K

1
ck
xk+1 + qk+1 − qk()(),

(18)

whereas the PDDY algorithm becomes: Let x0
R ∈ X , u0 ∈ U . Set p0

� K*u0. For k � 0, 1, . . . iterate:

⎢⎢⎣

uk+1 � proxH*/(ckη) uk + 1
ckη

Kxk
R()

pk+1 � K*uk+1

xk+1 � xk
R − ck(pk+1 − pk)

xk+1
R � xk+1 − ck+1∇F(xk+1) − ck+1p

k+1.

Equivalently,

Frontiers in Signal Processing | www.frontiersin.org January 2022 | Volume 1 | Article 77682512

Condat et al. Distributed Proximal Splitting Algorithms

https://www.frontiersin.org/journals/signal-processing
www.frontiersin.org
https://www.frontiersin.org/journals/signal-processing#articles

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣ u
k+1 � proxH*/(ckη) uk + 1

ckη
K(xk − ck∇F(xk) − ckK*u

k)()
xk+1 � xk − ck∇F(xk) − ckK*u

k+1,

or: ⎢⎢⎢⎣

qk+1 � 1
ck
xk − ∇F(xk)

uk+1 � proxH*/(ckη) uk + 1
ckη

K(ckqk+1 − ckK
*uk)()

xk+1 � ckq
k+1 − ckK

*uk+1,

which is equivalent to (18). So, when R � 0, both the PD3O and
PPDY revert to an algorithm which, for ck ≡ c, is the
Loris–Verhoeven algorithm (Loris and Verhoeven, 2011;
Combettes et al., 2014; Condat et al., 2019a).

Let u* be any solution of (Eq. 3); that is, u* ∈ zH(Kx*) and 0 ∈
∇F(x*) + K*u*. In the conditions of Theorem 3, c0 is:

c0 � 1 − c0μFκ

c20
‖x1 − x*‖2 + ‖q0 − 1

c0
x1 − K*(u0 − u*)

+ ∇F(x*)‖2 + η‖u0 − u*‖2 − ‖K*(u0 − u*)‖2.
On the other hand, in Theorem 4,

c0 � 1 − c0μFκ

c20
‖x1 − x*‖2 + c20η‖u1 − u0‖2 − c20‖K*(u1 − u0)‖2()

+ η‖u1 − u*‖2.

It is not clear how these two values compare to each other.
They are both valid, in any case.

5.5 F = 0: The Chambolle–Pock and
Douglas–Rachford Algorithms
If F � 0, the PD3O algorithms reverts to: Let x0 ∈ X and u0 ∈ U .
For k � 0, 1, . . . iterate:⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

xk+1 � proxckR xk − ckK*u
k()

uk+1 � proxH*/(ck+1η) uk + 1
η
K

1
ck+1

+ 1
ck

()xk+1 − 1
ck
xk()().

For ck ≡ c, this is the form I (Condat et al., 2019a) of the
Chambolle–Pock algorithm (Chambolle and Pock, 2011).

In the conditions of Theorem 3, let u* be any solution of
(Eq. 3); that is, u* ∈ zH(Kx*) and 0 ∈ zR(x*) + K*u*. Then the
constant c0 is

c0 � 1
c20
‖x1 − x*‖2 + ‖ 1

c0
(x0 − x1) −K*(u0 − u*)‖2 + η‖u0 − u*‖2

− ‖K*(u0 − u*)‖2.

On the other hand, if F � 0, the PDDY algorithm reverts to: Let
x0
R ∈ X , u0 ∈ U . Set p0 � K*u0. For k � 0, 1, . . . iterate:

⎢⎢⎢⎣

uk+1 � proxH*/(ckη)(uk + 1
ckη

Kxk
R)

pk+1 � K*uk+1

xk+1 � xk
R − ck(pk+1 − pk)

xk+1
R � proxck+1R xk+1 − ck+1p

k+1(),
which can be simplified as: Let x0R ∈ X , u0 ∈ U . For k � 0, 1, . . .
iterate:

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣ u
k+1 � proxH*/(ckη) uk + 1

ckη
Kxk

R()
xk+1
R � proxck+1R xk

R − K* (ck + ck+1)uk+1 − cku
k()(),

knowing that we can retrieve the variable xk as xk+1 � xk
R −

ckK
*(uk+1 − uk).
For ck ≡ c, this is the form II (Condat et al., 2019a)

of the Chambolle–Pock algorithm (Chambolle and Pock,
2011).

Note that with constant stepsizes, the Chambolle–Pock form
II can be viewed as the form I applied to the dual problem. This
interpretation does not hold with varying stepsizes as in
Theorem 3: the stepsize playing the role of ck would be 1/
(ckη), which tends to +∞ instead of 0, so that the theorem does
not apply.

Note, also, that Theorem 4 does not apply, since F � 0 is not
strongly convex. Finally, if the accelerated Chambolle–Pock
algorithm form I is applied to the dual problem, our results
do not guarantee convergence of the primal variable xk to a
solution. So, we cannot derive an accelerated Chambolle–Pock
algorithm form II.

If K � I, U � X and η � 1, the Chambolle-Pock algorithm form
I becomes the Douglas–Rachford algorithm: Let x0 ∈ X and
u0 ∈ X . For k � 0, 1, . . . iterate:⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

xk+1 � proxckR xk − cku
k()

uk+1 � proxH*/ck+1 uk + 1
ck+1

+ 1
ck

()xk+1 − 1
ck
xk().

We can rewrite the algorithm using only the meta-variable sk �
xk − cku

k: Let s0 ∈ X . For k � 0, 1, . . . iterate:⎢⎢⎣
xk+1 � proxckR(sk)

uk+1 � proxH*/ck+1
1

ck+1
+ 1
ck

()xk+1 − 1
ck
sk()

sk+1 � xk+1 − ck+1u
k+1.

Using the Moreau identity, we obtain: Let s0 ∈ X . For k � 0, 1,
. . . iterate:⎢⎢⎣

xk+1 � proxckR(sk)

xk+1
H � proxck+1H 1 + ck+1

ck
()xk+1 − ck+1

ck
sk()

sk+1 � xk+1
H + ck+1

ck
(sk − xk+1),

(19)

Frontiers in Signal Processing | www.frontiersin.org January 2022 | Volume 1 | Article 77682513

Condat et al. Distributed Proximal Splitting Algorithms

https://www.frontiersin.org/journals/signal-processing
www.frontiersin.org
https://www.frontiersin.org/journals/signal-processing#articles

and for ck ≡ c, we recognize the classical form of
the Douglas–Rachford algorithm (Combettes and Pesquet, 2010).

In the conditions of Theorem 3, let u* be any solution of (Eq.
3); that is, u* ∈ zH(x*) and 0 ∈ zR(x*) + u*. Then the constant
c0 is

c0 � 1
c20
‖x1 − x*‖2 + ‖ 1

c0
(s0 − x1) + u*‖2.

On the other hand, if K � I, U � X and η � 1, the Chambolle-
Pock algorithm form II becomes: Let x0

R ∈ X , u0 ∈ U . For k � 0, 1,
. . . iterate: ⎢⎢⎣

uk+1 � proxH*/ck uk + 1
ck
xk
R()

xk+1 � xk
R − ck(uk+1 − uk)

xk+1
R � proxck+1R xk+1 − ck+1u

k+1().
Using the Moreau identity, we obtain: Let x0

R ∈ X , u0 ∈ U . For
k � 0, 1, . . . iterate:⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣x

k+1 � proxckH(xk
R + cku

k)
uk+1 � uk + (xk

R − xk+1)/ck
xk+1
R � proxck+1R xk+1 − ck+1u

k+1().
Introducing the meta-variable sk � xk

R + cku
k, we obtain: Let

s0 ∈ X . For k � 0, 1, . . . iterate:⎢⎢⎣

xk+1 � proxckH(sk)

xk+1
R � proxck+1R 1 + ck+1

ck
()xk+1 − ck+1

ck
sk()

sk+1 � xk+1
R + ck+1

ck
(sk − xk+1).

Thus, we recover exactly the Douglas–Rachford algorithm
(Eq. 19), with R and H exchanged.

6 DERIVATION OF THE DISTRIBUTED
ALGORITHMS
6.1 The Distributed PD3O Algorithm and its
Particular Cases
Let us adopt the notations of Section 3 and precise the different
operators. The gradient of F̂ in X̂ is

∇F̂(x̂) � 1
Mω1

∇F1(x1), . . . , 1
MωM

∇FM(xM)(), ∀x̂ ∈ X̂ .

We define the linear subspace S � {x̂ ∈ X̂ : x1 � / � xM}. F̂
is LF̂-smooth, with LF̂ � maxm

LFm
Mωm

. But since ∇F̂ is applied to an
element of S in the algorithms, we can weaken the condition on
LF̂ > 0 to be: for every x̂ � (x)Mm�1 ∈ S and x̂′ � (x′)Mm�1 ∈ S,

‖∇F̂(x̂) − ∇F̂(x̂′)‖2X̂ � ∑M
m�1

ωm‖ 1
Mωm

∇Fm(x) − 1
Mωm

∇Fm(x′)‖2

≤ L2
F̂‖x̂ − x̂′‖2X̂ � L2

F̂‖x − x′‖2.

That is, LF̂ is such that, for every (x, x′) ∈ X2,

1
M2

∑M
m�1

1
ωm

‖∇Fm(x) − ∇Fm(x′)‖2 ≤ L2
F̂‖x − x′‖2. (20)

Notably,

L2
F̂ � 1

M2
∑M
m�1

L2
Fm

ωm

satisfies the condition.
The adjoint operator of K̂ is

K̂*: û ∈ Û1 K*
1u1, . . . , K*

MuM() ∈ X̂ .

Thus,

‖K̂‖2 � ‖K̂*
K̂‖ � maxm‖Km‖2. (21)

But if F1 � / � FM, we can restrict the norm to S and

‖K̂‖2 � supx̂∈S 〈x̂, K̂*K̂x̂〉X̂ /‖x̂‖2X̂
� supx∈X 〈x, ∑M

m�1
ωmK*

mKmx〉/‖x‖2

� ‖ ∑M
m�1

ωmK*
mKm‖,

(22)

which is ≤∑M
m�1ωm‖Km‖2.

For any ζ > 0, we have proxζR̂: x̂1(x′, . . . , x′), where x′ �
proxζR(∑M

m�1ωmxm) and proxζĤ: û1(proxζH1/(Mω1)
(u1), . . . , proxζHM/(MωM)(uM)). We also have
zĤ: û1 1

Mω1
zH1(u1) ×/ × 1

MωM
zHM(uM), Ĥ

*
: û1

1
M∑M

m�1H
*
m(Mωmum), and prox

ζĤ
* : û1(1

Mω1
proxζMω1H*

1(Mω1u1), . . . , 1
MωM

proxζMωMH*
M
(MωMuM)).

By doing all these substitutions in the PD3O algorithm, we
obtain the distributed PD3O algorithm, and all its particular
cases, shown above. Theorem 1 becomes Theorem 6 as follows.
The objective function is Ψ: x ∈ X1R(x) + 1

M∑M
m�1(Fm(x) +

Hm(Kmx)).

Theorem 6. (convergence rate of the Distributed PD3O
Algorithm). In the Distributed PD3O Algorithm, suppose that
ck ≡ c ∈ (0, 2/LF̂), where F̂ satisfies (20); if Fm ≡ 0, we can choose
any c > 0. Also, suppose that η≥ ‖K̂‖2, where ‖K̂‖2 is defined in
(21) or (22). Then xk converges to some solution x* of (1). Also, ukm
converges to some element u*m ∈ Um, for every m � 1, . . . , M. In
addition, suppose that every Hm is continuous on an open ball
centered at Kmx*. Then the following hold:

(i) Ψ(xk) − Ψ(x*) � o(1/ �
k

√).
Define the weighted ergodic iterate �xk � 2

k(k+1)∑k
i�1ixi, for every

k ≥ 1. Then

(ii) Ψ(�xk) − Ψ(x*) � O(1/k).
Furthermore, if every Hm is Lm-smooth for some Lm > 0, we

have a faster decay for the best iterate so far:

(iii) mini�1,...,kΨ(xi) − Ψ(x*) � o(1/k).

Frontiers in Signal Processing | www.frontiersin.org January 2022 | Volume 1 | Article 77682514

Condat et al. Distributed Proximal Splitting Algorithms

https://www.frontiersin.org/journals/signal-processing
www.frontiersin.org
https://www.frontiersin.org/journals/signal-processing#articles

The theorem applies to the particular cases of the Distributed
PD3O Algorithm, like the distributed Loris–Verhoeven,
Chambolle–Pock, Douglas–Rachford algorithms. We can note
that the distributed forward–backward algorithm is monotonic,
so Theorem 6 (iii) (withHm ≡ 0) yieldsΨ(xk) −Ψ(x*) � o(1/k) for
this algorithm.

We now give accelerated convergence results using
varying stepsizes, in presence of strong convexity. For this,
we have to define the strong convexity constants μF̂ and μR̂.
Like for the smoothness constant, we can restrict their
definition to S. So, μF̂ becomes the strong convexity
constant of the average function 1

M∑M
m�1Fm. That is, μF̂ ≥ 0

is such that the function

x ∈ X1
1
M

∑M
m�1

Fm(x) − μF̂
2
‖x‖2

is convex. It is much weaker to require μF̂ > 0 than to ask all Fm to
be strongly convex. Similarly, we have μR̂ � μR, the strong
convexity constant of R. Thus, since the Accelerated
Distributed PD3O Algorithm can be viewed as the accelerated
PD3O algorithm applied to the minimization of
F̂(x̂) + R̂(x̂) + Ĥ(K̂x̂), we have all the ingredients to invoke
Theorem 3, which is transposed as:

Theorem 7. (Accelerated Distributed PD3O Algorithm). Suppose
that μF̂ + μR > 0. Let x* be the unique solution to (1). Let κ ∈ (0, 1)
and c0 ∈ (0, 2(1 − κ)/LF̂). Set c1 � c0 and

ck+1 �
−c2kμF̂κ + ck

�����������������
(ckμF̂κ)2 + 1 + 2ckμR

√
1 + 2ckμR

, for every k≥ 1.

Suppose that η≥ ‖K̂‖2, where ‖K̂‖2 is defined in (21) or (22).
Then in the Distributed PD3O Algorithm, there exists ĉ0 > 0 such
that, for every k ≥ 1,

‖xk+1 − x*‖2 ≤ c2k+1
1 − ck+1μF̂κ

ĉ0 � O 1/k2().
As for Theorem 5, its counterpart in the distributed setting is:

Theorem 8. (linear convergence of the Distributed PD3O
Algorithm). Suppose that μF̂ + μR > 0 and that every Hm is Lm-
smooth, for some Lm > 0. Let x* be the unique solution to (1). We
suppose that ck ≡ c ∈ (0, 2/LF̂) and η≥ ‖K̂‖2, where ‖K̂‖2 is
defined in (21) or (22). Then the Distributed PD3O Algorithm
converges linearly: there exists ρ ∈ (0, 1] and ĉ0 > 0 such that, for
every k ∈ N,

‖xk+1 − x*‖2 ≤ (1 − ρ)kĉ0.
We can remark that the Distributed Davis–Yin algorithm

(with ωm � 1/M and ck ≡ c) has been proposed in an

unpublished paper by Ryu and Yin (Ryu and Yin, 2017),
where it is named Proximal-Proximal-Gradient Method. Their
results are similar to ours in Theorem 6 and Theorem 8 for this
algorithm, but their condition c < 3/(2L), with L � maxmLFm, is
worse than ours. Also, our accelerated version with varying
stepsizes in Theorem 7 is new.

6.2 The Distributed PDDY Algorithm
The Distributed PDDY Algorithm, shown above, is derived the
same way as the Distributed PD3O Algorithm. However, the
smoothness constant cannot be defined only on S, so that we have

LF̂ � max
m�1,...,M

LFm

Mωm

and

μF̂ � min
m�1,...,M

μFm
Mωm

.

Moreover,

‖K̂‖2 � max
m�1,...,M

‖Km‖2, (23)

except if Fm ≡ 0, in which case the Distributed PDDY Algorithm
becomes the Distributed Chambolle–Pock Algorithm Form II, for
which we can set

‖K̂‖2 � ‖ ∑M
m�1

ωmKm*Km‖. (24)

We can note that when Km ≡ I, the Distributed PDDY
Algorithm reverts to a form of distributed Davis–Yin
algorithm, which is different from the Distributed Davis–Yin
Algorithm obtained from the PD3O algorithm, shown above.
Similarly, when R � 0, we obtain a different algorithm than the
Distributed Loris–Verhoeven Algorithm shown above. When Fm
≡ 0, the Distributed PDDY Algorithm reverts to the Distributed
Chambolle–Pock Algorithm Form II, which is still different from
the Distributed Douglas–Rachford Algorithm when Km ≡ I.

The counterpart of Theorem 2 is:

Theorem 9. (convergence of the Distributed PDDY Algorithm).
In the Distributed PDDYAlgorithm, suppose that ck ≡ c ∈ (0, 2/LF)
and η≥ ‖K̂‖2, where ‖K̂‖2 is defined in (23) or (24). Then all xk

m as
well as xk

R converge to the same solution x* of (1), and every ukm
converges to some element u*m.

The counterpart of Theorem 4 is:

Theorem 10. (Accelerated Distributed PDDY Algorithm).
Suppose that μF̂ > 0. Let x* be the unique solution to (1). Let κ
∈ (0, 1) and c0 ∈ (0, 2(1 − κ)/LF̂). Set c1 � c0 and

ck+1 � −c2kμF̂κ + ck

�����������
(ckμF̂κ)2 + 1

√
, for every k≥ 1.

Frontiers in Signal Processing | www.frontiersin.org January 2022 | Volume 1 | Article 77682515

Condat et al. Distributed Proximal Splitting Algorithms

https://www.frontiersin.org/journals/signal-processing
www.frontiersin.org
https://www.frontiersin.org/journals/signal-processing#articles

Suppose that η≥ ‖K̂‖2, where ‖K̂‖2 is defined in (23) or (24).
Then in the Distributed PDDY Algorithm, there exists ĉ0 > 0 such
that, for every k ≥ 1,

∑M
m�1

ωm‖xk+1
m − x*‖2 ≤ c2k+1

1 − ck+1μFκ
c0 � O 1/k2().

Consequently, for every m � 1, . . . , M,

‖xk
m − x*‖2 � O 1/k2().

Moreover, if η> ‖K̂‖2, ‖xk
R − x*‖2 � O(1/k2) as well.

The counterpart of Theorem 5 is:

Theorem 11. (linear convergence of the Distributed PDDY
Algorithm). Suppose that μF̂ + μR > 0 and that every Hm is Lm-
smooth, for some Lm > 0. Let x* be the unique solution to (1). Suppose
that ck ≡ c ∈ (0, 2/LF̂) and η≥ ‖K̂‖2, where ‖K̂‖2 is defined in (23)
or (24). Then the Distributed PDDY Algorithm converges linearly:
there exists ρ ∈ (0, 1] and ĉ0 > 0 such that, for every k ∈ N,

‖xk+1
R − x*‖2 ≤ (1 − ρ)kĉ0.

6.3 The Distributed Condat–Vũ Algorithm
We can apply our product-space technique to other algorithms;
in particular, we can derive distributed versions, shown below, of
the Condat–Vũ algorithm (Condat, 2013; Vũ, 2013; Condat et al.,
2019a), which is a well known algorithm for the problem (Eq. 2).

The smoothness constant L2
F̂
is the same as for the Distributed

PD3O Algorithm; we can set L2
F̂
� 1

M2∑M
m�1L

2
Fm
/ωm.

Moreover, the norm of K̂ is smaller for the Condat–Vũ
algorithm: we have ‖K̂‖2 � ‖∑M

m�1ωmK*
mKm‖, whatever the

functions Fm. This is because the gradient descent step is
completely decoupled from the dual variables in the
Condat–Vũ algorithm.

The price to pay is a stronger condition on the parameters for
convergence:

Theorem 12. (convergence of the Distributed Condat–Vũ
Algorithm). Suppose that the parameters c > 0 and σ > 0 are
such that

c σ‖ ∑M
m�1

ωmK
*
mKm‖ + LF̂

2
⎛⎝ ⎞⎠< 1.

Then xk converges to a solution x* of (1). Also, ukm converges to
some element u*m ∈ Um, for every m � 1, . . . , M.

When Fm ≡ 0, the two forms of the Distributed Condat–Vũ
Algorithm revert to the two forms of the Distributed
Chambolle–Pock Algorithm, respectively. In that case, with
constant stepsizes ck ≡ c, the convergence condition is
cσ‖∑M

m�1ωmK*
mKm‖≤ 1, which is the same as above with σ �

1/(ηc).

Frontiers in Signal Processing | www.frontiersin.org January 2022 | Volume 1 | Article 77682516

Condat et al. Distributed Proximal Splitting Algorithms

https://www.frontiersin.org/journals/signal-processing
www.frontiersin.org
https://www.frontiersin.org/journals/signal-processing#articles

DATA AVAILABILITY STATEMENT

Publicly available datasets were analyzed in this study. This data
can be found here: LibSVM, https://www.csie.ntu.edu.tw/∼cjlin/
libsvm/.

AUTHOR CONTRIBUTIONS

GM wrote the code and generated the results for the SVM
experiment in Section 4.3. PR contributed to the
paper writing and to the project management. LC did all the rest.

REFERENCES

Alghunaim, S. A., Ryu, E. K., Yuan, K., and Sayed, A. H. (2021). Decentralized
Proximal Gradient Algorithms with Linear Convergence Rates. IEEE Trans.
Automat. Contr. 66, 2787–2794. doi:10.1109/tac.2020.3009363

Bach, F., Jenatton, R., Mairal, J., and Obozinski, G. (2012). Optimization with
Sparsity-Inducing Penalties. Found. Trends Mach. Learn. 4, 1–106. doi:10.1561/
2200000015

Bauschke, H. H., and Combettes, P. L. (2017). Convex Analysis and Monotone
Operator Theory in Hilbert Spaces. 2nd edn. New York: Springer.

Beck, A. (2017). “First-Order Methods in Optimization,” in MOS-SIAM Series on
Optimization (SIAM).

Boţ, R. I., Csetnek, E. R., and Hendrich, C. (2014). “Recent Developments on
Primal–Dual Splitting Methods with Applications to Convex
Minimization,” in Mathematics without Boundaries: Surveys in
Interdisciplinary Research. Editors P. M. Pardalos and T. M. Rassias
(New York: Springer), 57–99.

Bredies, K., Kunisch, K., and Pock, T. (2010). Total Generalized Variation. SIAM
J. Imaging Sci. 3, 492–526. doi:10.1137/090769521

Bubeck, S. (2015). Convex Optimization: Algorithms and Complexity. FNT
Machine Learn. 8, 231–357. doi:10.1561/2200000050

Cevher, V., Becker, S., and Schmidt, M. (2014). Convex Optimization for Big Data:
Scalable, Randomized, and Parallel Algorithms for Big Data Analytics. IEEE
Signal. Process. Mag. 31, 32–43. doi:10.1109/msp.2014.2329397

Chambolle, A., and Pock, T. (2011). A First-Order Primal-Dual Algorithm for
Convex Problems with Applications to Imaging. J. Math. Imaging Vis. 40,
120–145. doi:10.1007/s10851-010-0251-1

Chambolle, A., and Pock, T. (2016a). An Introduction to Continuous
Optimization for Imaging. Acta Numerica 25, 161–319. doi:10.1017/
s096249291600009x

Chambolle, A., and Pock, T. (2016b). On the Ergodic Convergence Rates of a First-
Order Primal-Dual Algorithm. Math. Program 159, 253–287. doi:10.1007/
s10107-015-0957-3

Chang, C.-C., and Lin, C.-J. (2011). LibSVM: A Library for Support Vector Machines.
ACM Trans. Intell. Syst. Technol. 2, 27. doi:10.1145/1961189.1961199

Chen, P., Huang, J., and Zhang, X. (2013). A Primal–Dual Fixed point Algorithm
for Convex Separable Minimization with Applications to Image Restoration.
Inverse Probl. 29, 025011. doi:10.1088/0266-5611/29/2/025011

Combettes, P. L., Condat, L., Pesquet, J.-C., and Vũ, B. C. (2014). “A
Forward–Backward View of Some Primal–Dual Optimization Methods
in Image Recovery,” in Proc. Of IEEE ICIP (Paris, France: IEEE),
4141–4145.

Combettes, P. L., and Pesquet, J.-C. (2012). Primal-Dual Splitting Algorithm for
Solving Inclusions with Mixtures of Composite, Lipschitzian, and Parallel-Sum
Type Monotone Operators. Set-valued Anal. 20, 307–330. doi:10.1007/s11228-
011-0191-y

Combettes, P. L., and Pesquet, J.-C. (2010). “Proximal Splitting Methods in
Signal Processing,” in Fixed-Point Algorithms for Inverse Problems in Science
and Engineering. Editors H. H. Bauschke, R. Burachik, P. L. Combettes,
V. Elser, D. R. Luke, and H. Wolkowicz (New York: Springer-Verlag),
185–212.

Condat, L. (2017a). “A Convex Approach to K-Means Clustering and Image
Segmentation,” in Proc. Of EMMCVPR. Lecture Notes in Computer Science.
Editors M. Pelillo and E. Hancock (Venice, Italy: Springer, 2018), Vol. 10746,
220–234.

Condat, L. (2014). A Generic Proximal Algorithm for Convex
Optimization—Application to Total Variation Minimization. IEEE Signal.
Process. Lett. 21(8), 985–989. doi:10.1109/LSP.2014.2322123

Condat, L. (2013). A Primal-Dual Splitting Method for Convex Optimization
Involving Lipschitzian, Proximable and Linear Composite Terms. J. Optim.
Theor. Appl. 158, 460–479. doi:10.1007/s10957-012-0245-9

Condat, L. (2017b). Discrete Total Variation: New Definition and Minimization.
SIAM J. Imaging Sci. 10, 1258–1290. doi:10.1137/16m1075247

Condat, L., Kitahara, D., Contreras, A., and Hirabayashi, A. (2019a). Proximal
Splitting Algorithms: A Tour of Recent Advances, with New Twists. Preprint
arXiv:1912.00137.

Condat, L., Kitahara, D., and Hirabayashi, A. (2019b). “AConvex Lifting Approach
to Image Phase Unwrapping,” in Proc. Of IEEE ICASSP (Brighton, UK: IEEE),
1852–1856. doi:10.1109/icassp.2019.8682258

Cremers, D., Pock, T., Kolev, K., and Chambolle, A. (2011). “Convex Relaxation
Techniques for Segmentation, Stereo and Multiview Reconstruction,” in
Markov Random Fields for Vision and Image Processing (Cambridge: MIT
Press).

Davis, D., and Yin, W. (2017). A Three-Operator Splitting Scheme and its
Optimization Applications. Set-valued Anal. 25, 829–858. doi:10.1007/
s11228-017-0421-z

Drori, Y., Sabach, S., and Teboulle, M. (2015). A Simple Algorithm for a Class of
Nonsmooth Convex-Concave Saddle-point Problems. Operations Res. Lett. 43,
209–214. doi:10.1016/j.orl.2015.02.001

Duran, J., Moeller, M., Sbert, C., and Cremers, D. (2016). Collaborative Total
Variation: A General Framework for Vectorial TVModels. SIAM J. Imaging Sci.
9, 116–151. doi:10.1137/15m102873x

Gorbunov, E., Hanzely, F., and Richtárik, P. (2020). A Unified Theory of SGD:
Variance Reduction, Sampling, Quantization and Coordinate Descent. Proc.
Int. Conf. Artif. Intell. Stat. (Aistats), PMLR 108, 680–690.

Komodakis, N., and Pesquet, J.-C. (2015). Playing with Duality: An Overview of
Recent Primal?dual Approaches for Solving Large-Scale Optimization
Problems. IEEE Signal. Process. Mag. 32, 31–54. doi:10.1109/msp.2014.2377273

Konečný, J., McMahan, H. B., Yu, F. X., Richtárik, P., Suresh, A. T., and Bacon, D.
(2016). “Federated Learning: Strategies for Improving Communication
Efficiency,” NIPS Private Multi-Party Machine Learn. Workshop. Paper
arXiv:1610.05492.

Latafat, P., Freris, N. M., and Patrinos, P. (2019). A New Randomized Block-
Coordinate Primal-Dual Proximal Algorithm for Distributed Optimization.
IEEE Trans. Automat. Contr. 64, 4050–4065. doi:10.1109/tac.2019.2906924

Loris, I., and Verhoeven, C. (2011). On a Generalization of the Iterative Soft-
Thresholding Algorithm for the Case of Non-separable Penalty. Inverse Probl.
27, 125007. doi:10.1088/0266-5611/27/12/125007

Malinovsky, G., Kovalev, D., Gasanov, E., Condat, L., and Richtárik, P. (2020).
“From Local SGD to Local Fixed point Methods for Federated Learning,” in
Proceedings of the 37th International Conference onMachine Learning, PMLR,
119, 6692–6701.

O’Connor, D., and Vandenberghe, L. (2020). On the Equivalence of the Primal-
Dual Hybrid Gradient Method and Douglas–Rachford Splitting. Math.
Program 179, 85–108. doi:10.1007/s10107-018-1321-1

Palomar D. P. and Eldar Y. C. (Editors) (2009). Convex Optimization in Signal
Processing and Communications (Cambridge: Cambridge University Press).

Parikh, N., and Boyd, S. (2014). Proximal Algorithms. FNT in Optimization 1,
127–239. doi:10.1561/2400000003

Polson, N. G., Scott, J. G., and Willard, B. T. (2015). Proximal Algorithms in
Statistics andMachine Learning. Statist. Sci. 30, 559–581. doi:10.1214/15-sts530

Glowinski R., Osher S. J., and Yin W. (Editors) (2016). Splitting Methods in
Communication, Imaging, Science, and Engineering (New York: Springer
International Publishing).

Richtárik, P., and Takáč, M. (2014). Iteration Complexity of Randomized Block-
Coordinate Descent Methods for Minimizing a Composite Function. Math.
Program 144, 1–38. doi:10.1007/s10107-012-0614-z

Frontiers in Signal Processing | www.frontiersin.org January 2022 | Volume 1 | Article 77682517

Condat et al. Distributed Proximal Splitting Algorithms

https://www.csie.ntu.edu.tw/%7Ecjlin/libsvm/
https://www.csie.ntu.edu.tw/%7Ecjlin/libsvm/
https://www.csie.ntu.edu.tw/%7Ecjlin/libsvm/
https://doi.org/10.1109/tac.2020.3009363
https://doi.org/10.1561/2200000015
https://doi.org/10.1561/2200000015
https://doi.org/10.1137/090769521
https://doi.org/10.1561/2200000050
https://doi.org/10.1109/msp.2014.2329397
https://doi.org/10.1007/s10851-010-0251-1
https://doi.org/10.1017/s096249291600009x
https://doi.org/10.1017/s096249291600009x
https://doi.org/10.1007/s10107-015-0957-3
https://doi.org/10.1007/s10107-015-0957-3
https://doi.org/10.1145/1961189.1961199
https://doi.org/10.1088/0266-5611/29/2/025011
https://doi.org/10.1007/s11228-011-0191-y
https://doi.org/10.1007/s11228-011-0191-y
https://doi.org/10.1109/LSP.2014.2322123
https://doi.org/10.1007/s10957-012-0245-9
https://doi.org/10.1137/16m1075247
https://doi.org/10.1109/icassp.2019.8682258
https://doi.org/10.1007/s11228-017-0421-z
https://doi.org/10.1007/s11228-017-0421-z
https://doi.org/10.1016/j.orl.2015.02.001
https://doi.org/10.1137/15m102873x
https://doi.org/10.1109/msp.2014.2377273
https://doi.org/10.1109/tac.2019.2906924
https://doi.org/10.1088/0266-5611/27/12/125007
https://doi.org/10.1007/s10107-018-1321-1
https://doi.org/10.1561/2400000003
https://doi.org/10.1214/15-sts530
https://doi.org/10.1007/s10107-012-0614-z
https://www.frontiersin.org/journals/signal-processing
www.frontiersin.org
https://www.frontiersin.org/journals/signal-processing#articles

Ryu, E. K., and Yin, W. (2017). Proximal-proximal-gradient Method. Preprint
arXiv:1708.06908.

Salim, A., Condat, L., Kovalev, D., and Richtárik, P. (2021). An Optimal Algorithm
for Strongly Convex Minimization under Affine Constraints. Preprint arXiv:
2102.11079.

Salim, A., Condat, L., Mishchenko, K., and Richtárik, P. (2020). Dualize, Split,
Randomize: Fast Nonsmooth Optimization Algorithms. Preprint arXiv:2004.02635.

Scaman, K., Bach, F., Bubeck, S., Lee, Y. T., and Massoulié, L. (2017). Optimal
Algorithms for Smooth and Strongly Convex Distributed Optimization in
Networks. Proc. 34th Int. Conf. Machine Learn. (Icml) 70, 3027–3036.

Shi, W., Ling, Q., Wu, G., and Yin, W. (2015). EXTRA: An Exact First-Order
Algorithm for Decentralized Consensus Optimization. SIAM J. Optim. 25,
944–966. doi:10.1137/14096668x

Sra, S., Nowozin, S., and Wright, S. J. (2011). Optimization for Machine Learning.
Cambridge: The MIT Press.

Stathopoulos, G., Shukla, H., Szucs, A., Pu, Y., and Jones, C. N. (2016).
Sensor Fault Diagnosis. FnT Syst. Control. 3, 249–362. doi:10.1561/
2600000008

Unknown author (1972). Every Convex Function Is Locally Lipschitz. The Am.
Math. Monthly 79, 1121–1124.

Vũ, B. C. (2013). A Splitting Algorithm for Dual Monotone Inclusions Involving
Cocoercive Operators. Adv. Comput. Math. 38, 667–681. doi:10.1007/s10444-
011-9254-8

Wang, Y.-X., Sharpnack, J., Smola, A., and Tibshirani, R. (2016). Trend Filtering on
Graphs. J. Machine Learn. Res. 17, 1–41.

Yan, M. (2018). A New Primal-Dual Algorithm for Minimizing the Sum of Three
Functions with a Linear Operator. J. Sci. Comput. 76, 1698–1717. doi:10.1007/
s10915-018-0680-3

Conflict of Interest: The authors declare that the research was conducted in the
absence of any commercial or financial relationships that could be construed as a
potential conflict of interest.

Publisher’s Note: All claims expressed in this article are solely those of the authors
and do not necessarily represent those of their affiliated organizations, or those of
the publisher, the editors and the reviewers. Any product that may be evaluated in
this article, or claim that may be made by its manufacturer, is not guaranteed or
endorsed by the publisher.

Copyright © 2022 Condat, Malinovsky and Richtárik. This is an open-access article
distributed under the terms of the Creative Commons Attribution License (CC BY).
The use, distribution or reproduction in other forums is permitted, provided the
original author(s) and the copyright owner(s) are credited and that the original
publication in this journal is cited, in accordance with accepted academic practice.
No use, distribution or reproduction is permitted which does not comply with
these terms.

Frontiers in Signal Processing | www.frontiersin.org January 2022 | Volume 1 | Article 77682518

Condat et al. Distributed Proximal Splitting Algorithms

https://doi.org/10.1137/14096668x
https://doi.org/10.1561/2600000008
https://doi.org/10.1561/2600000008
https://doi.org/10.1007/s10444-011-9254-8
https://doi.org/10.1007/s10444-011-9254-8
https://doi.org/10.1007/s10915-018-0680-3
https://doi.org/10.1007/s10915-018-0680-3
https://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/signal-processing
www.frontiersin.org
https://www.frontiersin.org/journals/signal-processing#articles

	Distributed Proximal Splitting Algorithms with Rates and Acceleration
	1 Introduction
	1.1 Contributions
	1.2 Related Work
	1.3 Organization of the paper

	2 Minimization of 3 Functions With a Linear Operator
	2.1 Deriving the Nonstationary PD3O and PDDY Algorithms
	2.2 Convergence Analysis

	3 Distributed Proximal Algorithms
	4 Experiments
	4.1 Image Deblurring Regularized With Total Variation
	4.2 Image Deblurring Regularized With Huber-TV
	4.3 SVM With Hinge Loss

	5 Derivation of the Algorithms
	5.1 The Davis–Yin Algorithm
	5.2 The PD3O Algorithm
	5.3 The PDDY Algorithm
	5.4 R = 0: The Loris–Verhoeven Algorithm
	5.5 F = 0: The Chambolle–Pock and Douglas–Rachford Algorithms

	6 Derivation of the Distributed Algorithms
	6.1 The Distributed PD3O Algorithm and its Particular Cases
	6.2 The Distributed PDDY Algorithm
	6.3 The Distributed Condat–Vũ Algorithm

	Data Availability Statement
	Author Contributions
	References

