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Prediction of mental states, such as stress and anxiety, can be important in situations
where reduced job performance due to increased mental strain can lead to critical
situations (e.g., front-line healthcare workers and first responders). While recent
advances in biomedical wearable sensor technologies have allowed for collection of
multiple physiological signals in everyday environments, numerous challenges emerge
from such uncontrolled settings, including increased noise levels and artifacts,
confounding effects from other psychological states (e.g., mental fatigue), as well as
physical variables (e.g., physical activity). These factors can be particularly detrimental for
heart rate variability (HRV) measures which, in controlled settings, have been shown to
accurately track stress and anxiety states. In this paper, we propose two new ways of
computing HRV proxies which we show aremore robust to such artifacts and confounding
factors. The proposed features measure spectral and complexity properties of different
aspects of the autonomic nervous system, as well as their interaction. Across two separate
“in-the-wild” datasets, the proposed features showed to not only outperform benchmark
HRV metrics, but to also provide complementary information, thus leading to significantly
greater accuracy levels when fused together. Feature ranking analysis further showed the
proposed features appearing in 45–64% of the top features, thus further emphasizing their
importance. In particular, features derived from the high frequency band showed to be
most important in the presence of fatigue and physical activity confounding factors, thus
corroborating their importance for mental state assessment in highly ecological settings.
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1 INTRODUCTION

The COVID-19 pandemic has put tremendous pressure on healthcare systems worldwide, leading to
increased cases of burnout (Kannampallil et al., 2020; Sultana et al., 2020) in frontline healthcare
workers. Moreover, record-high levels of stress and anxiety are being reported by the general
population; in the United States alone, a recent survey showed 80% of adults reported significant
increases in stress levels due to the pandemic (Dataset] American Psychol, 2020) along with
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increased instances of depression worldwide (Choi et al., 2020;
Dozois, 2020; Hyland et al., 2020). Adolescents have been equally
effected by mental health crises brought on by social isolation
during the pandemic (Chen et al., 2020). Similarly, seniors have
also reported declines in mental health due to lockdowns (Skoog,
2020) and increased stress with the higher death risk (Barcellos
et al., 2021). In fact, even before the COVID-19 pandemic, mental
health problems were already on the rise worldwide. For example,
studies showed that 50% of employees reported suffering from
“work stress” (Chandola et al., 2010). Prior to the pandemic, it
was already projected that the economic burden due to poor
mental health worldwide would grow six-fold in the next 30 years
(Doran and Kinchin, 2019). These trends clearly highlight the
need for automated mental state monitoring systems (Zhou et al.,
2020) that can be used in everyday environments.

Commonly, such interventions rely on user feedback through
apps or online interaction with smart devices (Torous et al.,
2020). This subjective feedback, however, has some key
limitations. First, it does not allow for continuous assessment,
thus has poor temporal resolution, which may cause delays in
beginning interventions. While increasing the sampling rate for
user feedback could lead to improved temporal resolution, this
may have a negative impact on compliance, as well as increase
user frustration with constant interruptions for feedback. Second,
the ratings collected can be biased, particularly if responses can
have a direct impact on the user (e.g., unpaid time off from work).
Moreover, if user feedback is requested too often, careless
responding could lead to additional biases (Eisele et al., 2020).
Finally, asking users to report their perception of negative mental
states can often increase such negative emotions, as focused is
then placed on states of depression and anxiety (Mor and
Winquist, 2002).

Alternatively, one may attempt to measure user mental states
using automated systems that search for distinct patterns in
unobtrusively-collected physiological signals. Given the
increasing number and availability of consumer wearable
devices (Peake et al., 2018), this has become a topic of
increasing interest within the research community [e.g., (Wen
et al., 2018; Pluntke et al., 2019; Tiwari et al., 2020)].
Commercially-available devices allow for unobtrusive
measurement of multiple physiological signals, not only in
controlled environments, but also across various ambulatory
and ecological settings. Methods require no user intervention
and can provide real-time mental state assessment and feedback.
The majority of commercial devices provide the user with heart
rate and activity information, whereas more advanced systems
(e.g., Apple Watch and Empatica’s E4) can provide additional
measures, such as galvanic skin response, skin temperature,
oximetry, and electrocardiogram (ECG).

The ECG measures the electrical activity of the heart and has
become a popular modality for mental state monitoring
applications. Heart rate variability (HRV) is defined as the
variability between inter-beat (RR) intervals of the ECG signal
and reflects the changes in the autonomic nervous system (ANS).
The ANS consists of two branches, namely the sympathetic (SNS)
and parasympathetic (PNS) nervous systems. The PNS is
responsible for slowing the heart rate and usually dominates at

rest, while the SNS is responsible for the “flight-or-fight” response
of the human body. The resulting HRV series is a reflection of the
interaction between the two systems (Shaffer and Ginsberg,
2017). Within the HRV literature, the low frequency (LF,
0.04–0.15 Hz) and high frequency (HF, 0.15–0.40 Hz) band
powers of the so-called HRV tachogram (i.e., interpolated and
uniformly sampled RR series) are commonly computed and have
been shown to reflect the SNS and PNS systems, respectively.

Traditionally, HRV has been studied using time- and
frequency-domain features (Camm, 1996) with applications
across numerous domains, including congestive heart failure
(İşler and Kuntalp, 2007), chronic obstructive pulmonary
disease (Camillo et al., 2008), stress (Castaldo et al., 2015),
mental workload (Charles and Nixon, 2019), and anxiety
(Wen et al., 2018). Several variations of the above mentioned
frequency band power features have also been derived. For
example, the ratio of LF-to-HF power has been shown to
reflect the balance between the SNS and PNS system activity
(Camm, 1996; Shaffer and Ginsberg, 2017) and to correlate with
different mental states (Francis et al., 2002; Castaldo et al., 2015;
Charles and Nixon, 2019). However, most of these studies have
been conducted in controlled laboratory conditions to minimize
the impact of confounding factors and to maximize the signal-to-
noise ratio of the collected signals. Unfortunately, these
conditions are not consistent with what is observed in realistic
settings, where factors such as physical activity, fatigue, mental
workload, and social interactions are present. Moreover, as the
users are mobile, signals recorded in these “in-the-wild”
conditions are very noisy and movement artifacts are known
to be highly detrimental to the computation of traditional HRV
features (Peltola, 2012). As a result, new features are needed that
take these artifacts and confounding factors into account.

The RR series exhibits complex non-linear behavior
(Goldberger et al., 2002). This behavior has been observed to
change based on different physical and psychological conditions
and features quantifying this behavior have been recommended
in the literature (Sassi et al., 2015). Over the last few years, a
handful of new artifact-robust features have been proposed [e.g.,
(Wen et al., 2018; Delliaux et al., 2019; Tiwari et al., 2019)]. These
features often rely on the use of non-linear metrics to provide
some robustness (Sassi et al., 2015). Work from (Delliaux et al.,
2019), for example, explored various linear and non-linear
metrics for mental workload assessment in long duration
tasks. Non-linear measures were shown to better distinguish
low and high mental workload consistently across the whole
duration of the task. Similarly, (Wen et al., 2018) used the Hurst
exponent for prediction of social anxiety in real-world conditions
and showed improved accuracy over conventional time-domain
HRV metrics. Furthermore (Tiwari et al., 2019b; Tiwari et al.,
2019) made use of multi-scale entropy features for prediction of
mental workload under different ambulatory conditions;
improved results were shown over conventional time- and
frequency-domain benchmark measures.

While the exact mechanisms behind the changes seen in the
complexity of the RR series are still unknown, recent findings
(Porta et al., 2007; Porta et al., 2012; Weippert et al., 2014) have
suggested an influence of the SNS and PNS systems under various
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different clinical conditions. For example, the chaotic behavior in
the HF component was linked to circadian (sleep/wake cycle)
variability that is independent of age related changes to HF band
power (Wu et al., 2009). Moreover, the synchronization of the HF
band characteristics with respiration and blood pressure was
observed when performing tasks related to higher mental
workload (Lackner et al., 2011). In fact, the interaction
between the SNS and PNS (i.e., LF and HF bands) have been
shown to follow a non-linear coupling behavior, where an
increase in SNS activity may not necessarily lead to PNS
withdraw, or vice versa; in fact, it can often increase or cause
no change in the PNS activity (Shaffer and Ginsberg, 2017).
Metrics quantifying this non-linear interaction have been
proposed to discriminate individuals with congestive heart
failure (Luo et al., 2018) and obstructive sleep apnea (Zheng
et al., 2017) from healthy controls.

Most of these complexity based features have been calculated
over the entire spectrum of the RR series. It is expected that
subband based complexity measures may provide some
additional insights (Humeau-Heurtier, 2015). For example,
changes in HF band peak frequency have been linked to
physical activity (Pichon et al., 2004) and entropy of LF and
HF bands individually have been shown useful for obstructive
sleep apnea detection (Shao et al., 2019). In fact, characterizing
the properties of different subbands has shown useful in other
biosignals. These signals consist of both periodic and aperiodic
components, which can directly impact the signal spectrum
(Donoghue et al., 2020). For electroencephalograms, for
example, these aperiodic aspects of the spectrum have been
related to cognitive states and task demands (Immink et al.,
2021). Here, we propose subband complexity measures and new
spectral descriptor features in order to better characterize stress
and anxiety under ambulatory and “in-the-wild” conditions.
Experiments with two public datasets show that the proposed
features not only perform as well as or better than benchmark
HRV features, but that they exhibit complementary insights that
further improve accuracy when fused together.

The remainder of this paper is organized as follows: Section 2
presents the materials and methods where the databases, pre-
processing, feature extraction, classification pipelines, and
figures-of-merit used are described. Section 3 presents the
obtained results and Section 4 discusses the top features and
compares the results with previous work. Finally, Section 5
presents the Conclusions.

2 MATERIALS AND METHODS

2.1 Databases Used
Here, two datasets collected in ambulant and “in-the-wild”
settings were used to assess the effectiveness of the proposed
features. They are described in further detail in the subsections to
follow.

2.1.1 Physical Activity and StresS Database
The Physical Activity and StresS (PASS) database (Parent et al.,
2020) includes multimodal physiological signals from 48

participants while they performed stress inducing tasks in
ambulatory conditions. Participants consented to participate in
the study, which received ethical board approval from the
affiliated institutions. The physical activity was modulated at
three different levels using a stationary bike. More specifically,
in the “no physical activity” state, participants sat on the bike
without pedaling, whereas in the “medium” and “high physical
activity” states they were told to maintain speeds of 50 and
70 rpm, respectively. Stress levels, in turn, were modulated by
two different videogames.

For low stress condition, the subjects played the game
Timeframe, a first-person game centred on exploration and
collection of artifacts in an abandoned city. It is designed to
be a peaceful, relaxing experience with a bright environment and
calming music. The players cannot die in the game. Additionally,
participants were told that the number of artifacts collected would
not matter, further reducing any stress-inducing factors. Play
sessions were divided in three segments. There were no
differences in these segments, except that participants were
instructed to not seek the same artifacts as before to avoid
repeating the same gameplay.

For the high stress condition, on the other hand, subjects
played the game Outlast, a first-person horror game where
players have to survive while navigating an eerie asylum and
evade being attacked by its scary inmates. Players in this game can
have the options of avoiding, escaping and hiding from the
attackers with no option for fighting back. This made
individuals’ skills less relevant for the experiment. It is also
deterministic and features a linear story, increasing the
similitude of experience between participants. To further
increase the stressful state, the game was played with dimmed
lights. Similar to Timeframe, the play sessions were divided into
three predetermined segments selected from the game. Both
games were played with a Xbox One controller.

All participants completed six conditions (2 × 3) including the
combination of two stress levels (low/high) and three physical
activity levels (no, medium, and high) in 10-min counterbalanced
sessions with 5 min breaks. All conditions for same game were
performed in sequence. This was done to avoid constant swing
between calm and stressful psychological states. At the end of
each session, subjects rated their stress level [on a 21-point Likert
scale (Joshi et al., 2015)].

ECG (250 Hz) was collected using an off-the-shelf Bioharness
3 (BH3, Zephyr, United States) chest strap. Other physiological
signals were also collected. These include breathing, EEG, and
PPG, to name a few. Signal acquisition was done using the open-
source MuSAE Lab EEG Server (MuLES) (Cassani et al., 2015),
which was also used to send triggers marking the beginning and
end of trials. For this paper, the raw ECG data collected using
BH3 was used for our analysis. For more information about the
database, the interested reader can refer to (Parent et al., 2020).

2.1.2 Tracking IndividuaL performancE with Sensors
Database
The TILES (Tracking IndividuaL performancE with Sensors)
dataset was collected from 212 participants (66 male, 146
female; age 38.6 ± 9.8 years) from a pool of employees of the
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University of Southern California Keck Hospital. Two-thirds of
the participants were nurses while one-third were hospital staff.
Data was collected for a continuous duration of 10 weeks.
Participants consented to participate in the study, which
received ethical board approval from the affiliated institutions.
Complete details about this publicly available dataset can be
found in (Mundnich et al., 2020).

Participants carried out their work day as usual but were asked
to fill a brief phone-based daily survey that included information
on levels of anxiety and stress on a 5-point scale [visual analog
scale (Williams et al., 2010)]. Participants were outfitted with
multiple wearable sensors to collect a variety of biometric data,
including audio features, heart rate, respiratory rate, and sleep
quality. More specifically, a custom audiometric badge, a Fitbit
Charge 2, and an OMsignal smartshirt were used. In this paper,
only the cardiac information and signal quality (called
RRPeakCoverage) measured by the OMsignal smartshirt are
used. Since not all participants wore the smartshirt, the
analysis herein relies on data from a subset of 199
participants. The OMsignal shirt stores the RR interval
information measured by QRS-peak detection of the ECG
signal. A total of four RR intervals can be recorded within
each second. The RRPeakCoverage provides an estimate of the
percentage of correct (as detected by the shirt’s internal
algorithm) RR values recorded for each 5 minute interval.
According to the manufacturer, RRPeakCoverage values >0.8
represent high quality recordings. The distribution of the
quality metric is shown in Figure 1. As can be seen, roughly
75% of the segments were of acceptable quality.

2.2 Pre-processing
For the PASS dataset, the raw ECG signal collected from the BH3
and sampled at 250 Hz was used to assess the HRV. The signal
was first cleaned using the 5–25 Hz bandpass filter. This was
followed by QRS-complex detection which was done using an
energy based QRS detector (Behar et al., 2018) to create the RR

time series. The method first differentiates the signal followed by
squaring to amplify the QRS peak. Then, it applies adaptive
thresholds to detect the peaks of the filtered signal. Once the QRS
peaks are detected, the RR series is created from the time
difference between consecutive peaks. As artifacts (e.g., muscle
artifacts, electrode movement, ectopic beats) can cause errors in
the RR series, an additional filter to remove RR outliers was used.
This filter was based on the following criteria: i) psychological
range based removal of RR segments with only RR values in the
range of (<400ms and <1200ms) are kept, ii) moving average
based filtering, and iii) quotient based filtering, based on relative
change in RR value from the next. In turn, for the TILES dataset,
the smart-shirt directly provides RR values. A maximum of four
RR intervals are detected by the smart-shirt per second. The RR
series is reconstructed from the provided RR values and passed
through the RR outlier filter described above.

2.3 Feature Extraction
After pre-processing, the following features are extracted:

2.3.1 Benchmark Heart Rate Variability Features
Here, commonly used time- and frequency-domain features are
used as benchmark (Camm, 1996) and are listed in Table 1. These
features describe the SNS and PNS system response and have
been widely used for stress and anxiety prediction in the past
(Castaldo et al., 2015; Wen et al., 2018). More details about these
features can be found in (Camm, 1996; Shaffer and Ginsberg,
2017).

2.3.2 Non-linear (RR Complexity) Features
The RR series exhibits complex non-linear behavior. This
behavior has been observed to change based on different
physical and psychological conditions (Sassi et al., 2015). Non-
linearity in the RR time series has been quantified using different
measures, including entropy, fractal, and chaotic/dynamical
system measures. The ANS adapts the heart rate based on the
current demands of the body and this adaptation process occurs
continuously, thus leading to irregularity in the RR series.

This irregularity can be quantified using sample and
permutation entropy measures:

i) Sample Entropy (SE) is the negative natural logarithm of an
estimate of the conditional probability that if two sets of
vectors (Xm(i) and Xm(j)) of lengthm have a distance < r, then
two sets of vectors (Xm+1(i) and Xm+1( j)) of length m + 1 also
have a distance < r, based on some distance metric dm(X, Y).
The value ofm � 2 and r � 0.2 p std, where, std is the standard
deviation of the time series, were used for SE calculation. SE
has shown to be an important predictor of various mental
states such as stress (Castaldo et al., 2015) and anxiety
(Dimitriev et al., 2016), as well as mental fatigue (Wang
et al., 2018).

ii) Permutation Entropy (PE) quantifies the occurrence of motifs
in the series. Motifs are defined as recurring patterns in the
time series with a degree η and lag λ. Based on the rank
ordering of the motif pattern we assign it a specific symbol j.
PE is more robust to outliers in the time series, as it removes

FIGURE 1 | Distribution of RRPeakCoverage.
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the amplitude information from the signal (Zanin et al., 2012).
Additionally, PE also holds advantage over the traditionally
used Shannon entropy measure (computed over distribution
of data) as it takes into account the time ordering of the series
(Zanin et al., 2012). PE of RR series has been previously used
for prediction of different emotional states (Xia et al., 2018).

Moreover, the RR series complexity can be quantified using
fractal measures. The concept of fractals comes from geometry
and is used to quantify objects which are too irregular for
traditional geometrical descriptions and also exhibit some self-
similar behavior i.e., they look similar at different scales.
Temporal processes are said to exhibit fractal behavior when
the fluctuations in time series at smaller and larger scales are
statistically equivalent. Such signals are characterised by various
properties, including power law spectral density with the slope (α)
for the 1/f behavior representing the scaling factor. These fractal
properties can also be studied with phase space reconstruction
and quantifying the phase trajectory of the non-linear systems
(Nayak et al., 2018).

The following measures have been widely used to quantify
fractal behaviors in time series:

i) Detrend fluctuation analysis (DFA) quantifies fractal-like
correlation properties of the time series data. The root
mean square fluctuations of the integrated and detrended
data are measured within the observation windows of various
sizes and then plotted against the size of the window on a
log—log scale. The scaling exponent represents the slope of
this line. It has been used for stress prediction (Castaldo et al.,
2015).

ii) Lyapunov exponent (LE): The behavior of dynamical systems
can be studied as an evolution of phase space trajectory. The
trajectories can either diverge or converge from the initial
state of the system representing increasing chaotic behavior
or predictability. The Lyapunov exponent is an estimate of
the duration for which the dynamical system behaves
predictably before it becomes chaotic. The largest
Lyapunov exponents usually govern the overall behavior of
the system and can be predicted using phase space
reconstruction for time series (Rosenstein et al., 1993). It
has previously been used to predict anxiety (Dimitriev et al.,
2016).

iii) Correlation dimension: An attractor is defined as a region of
the phase space describing the steady state of the system
where various initial states of the system converge to. A
chaotic (also called strange) attractor is fractal in nature and
its fractal dimension is an estimate of the complexity of the

system. The correlation dimension (CorrDim) (Grassberger
and Procaccia, 1983) is used a describe the fractal geometry of
a chaotic attractor and signifies the number of independent
variables required to describe a dynamical system. It has been
used previously for mental workload prediction (Delliaux
et al., 2019).

These non-linear approaches have been used in the literature
to estimate stress (Castaldo et al., 2015), mental workload
(Delliaux et al., 2019) and anxiety (Dimitriev et al., 2016).
Here, these non-linear features have been extracted using the
NOnLinear measures for Dynamical Systems (NOLDS) toolbox
(Schölzel, 2019).

2.3.3 Proposed Features
The proposed feature set can be divided into two sets: subband-
complexity based and subband spectral descriptors based. The
subband-complexity features require a separation of the LF and
HF time series. This was done by creating the tachogram series
(sampled at 4 Hz) from the non-uniformly sampled RR series.
Next, two band-pass filters in the range 0.04–0.15 and
0.15–0.4 Hz were used to separate the LF and HF components
of the tachogram, hence generating two new time series, namely
rrlf and the rrhf, respectively. A representative tachogram series
(top) along with rrlf (middle) and the rrhf (bottom) series are
shown in Figure 2. Finally, non-linear features described in
Section 2.3.2 are extracted from both rrlf and rrhf.
Additionally, the non-linear interaction between the two series
has been quantified using the transfer entropy metric (Ikegwu
et al., 2020). Transfer entropy (TE) is a time-asymmetric measure
of amount of directed transfer of information between two time
series X and Y. TE quantifies the reduction in uncertainty about
Xt from knowing Yt−k after considering the reduction in
uncertainty about Xt from knowing Xt−k. Where, k is a lag
period and t is the current time period. Therefore, it can be
expressed as the difference between two conditional mutual
information computations:

TY→X � I(Xt|Xt−k, Yt−k) − I(Xt|Xt−k). (1)

Here, I(.|.) represents the lagged mutual information between
probability distributions. We used the kraskov (Kraskov et al.,
2004) estimator which makes use of k-nearest neighbors for TE
estimation. This metric has been previously shown to be useful in
the prediction of congestive heart failure (Luo et al., 2018) and
obstructive sleep apnea (Zheng et al., 2017). As it is an
asymmetric measure, information transfer for both LF to HF
(TE-LF-HF) and HF to LF (TE-HF-LF) were calculated using the
PyIF toolbox (Ikegwu et al., 2020).

Next, to calculate the subband-spectral descriptor features, the
FFT of the tachogram is first calculated and the power spectral
density of the LF and HF frequency components were extracted.
Several spectral descriptors were then calculated for each region.
The spectral descriptors include:

i) Centroid—calculated as the frequency-weighted sum of power
normalized by the unweighted sum of power, i.e.:

TABLE 1 | Benchmark HRV features extracted.

Type Features

Time meanRR, standard deviation (sdRR), coefficient of variation, rmsdd,
pNN50, pNN20

Frequency High frequency power (HF), normalized HF, Low frequency power (LF),
normalized LF, very low frequency power, total power, LF/HF

Frontiers in Signal Processing | www.frontiersin.org September 2021 | Volume 1 | Article 7378815

Tiwari and Falk HRV Features for Mental State Monitoring

https://www.frontiersin.org/journals/signal-processing
www.frontiersin.org
https://www.frontiersin.org/journals/signal-processing#articles


cent � ∑b2
k�b1fk.pk∑b2
k�b1pk

. (2)

The centroid represents the “center of gravity” of the spectrum
and might be different from the maximum spectral peak.

ii) Spread—the standard deviation around the spectral centroid,
given by:

spread �

����������������∑b2
k�b1(fk − cent)2pk∑b2

k�b1pk

√√
. (3)

The spread represents the instantaneous bandwidth of the
spectrum.

iii) Skewness—calculated from the third order moment by:

skew � ∑b2
k�b1(fk − cent)3pk

(spread)3∑b2
k�b1pk

. (4)

The skewness is a measure of the symmetry around the centroid
of the spectral band.

iv) Kurtosis—computed from the fourth order movement by:

kurt � ∑b2
k�b1(fk − cent)4pk

(spread)4∑b2
k�b1pk

. (5)

The kurtosis measures the flatness, or non-Gaussianity, of the
spectrum around its centroid.

v) Crest—measures the ratio of the maximum of the spectrum to
the mean of the spectrum, i.e.:

crest � max(pkϵ(b1 : b2))
1

b2−b1∑b2
k�b1pk

. (6)

Crest is a measure of the peakedness of the spectrum.

vi) Spectral entropy—calculated as:

ent � −∑b2
k�b1pk log(pk)
log(b2 − b1) , (7)

where b1 and b2 represent the range of the relevant frequency
bands. fk represents the frequency in Hz for bin k and pk
represents the spectral power for that bin. Spectral entropy is
the measure of uniformity of the spectrum.

For the PASS database, all features are computed using 240-s
windows with a 120 s overlap for each session. Overall, 42 HRV
features [13 benchmark, 5 non-linear, 24 proposed (12 band
spectral and 12 band complexity)] are available for analysis. In
turn, for the TILES database, due to the presence of long duration
physiological time series, the features were first extracted over
non-overlapping 5-min windows for each day to account for
short-term HRV variability, as done in (Tiwari et al., 2019a;
Tiwari et al., 2019b). As the data may be noisy in certain windows,
features were only extracted for windows where the
RRPeakCoverage quality metric is >0.3. The value was chosen
empirically to ensure at least 1.5 min (0.3 × 5 min) of RR
information is available to allow for ultra-short-term HRV
measures to be extracted. Such measures have been shown to
be reliable surrogates for short-term HRV measures for stress
prediction (Pecchia et al., 2018).

Following this, features were aggregated over an entire day
using the following 11 statistics: mean, standard deviation,
coefficient of variation, median, min, max, range, 1st and 3rd
quartile, skewness and kurtosis. Additionally, the
RRPeakCoverage was used to create three new quality-aware
statistics, including quality weighted mean, standard deviation,
and coefficient of variation. Overall, because 14 statistics were
calculated over each feature, we have a total of 588 [182
benchmark, 70 non-linear, 336 proposed (168 band spectral
and 168 band complexity)] features available for analysis.

FIGURE 2 | RR tachogram series (A) and the band-filtered LF (B) and HF (C) series.

Frontiers in Signal Processing | www.frontiersin.org September 2021 | Volume 1 | Article 7378816

Tiwari and Falk HRV Features for Mental State Monitoring

https://www.frontiersin.org/journals/signal-processing
www.frontiersin.org
https://www.frontiersin.org/journals/signal-processing#articles


2.4 Classification and Figures-Of-Merit
Binary classification was performed for both stress and anxiety
assessment. For the PASS database, the ground truth of the games
was used as the stress label. As such, the experimental sessions
with the Timeframe game have been labelled as low stress, while
sessions with the Outlast game have been labelled as high stress.
For the TILES database, in turn, a global threshold was used to
binarize the stress and anxiety ratings. As a result, a threshold of
1.8 and 1.5 were used for stress and anxiety ratings, respectively.
More specifically, a rating lower than the threshold value is
labelled as low stress/anxiety while a value greater than the
threshold is labelled as high stress/anxiety. For evaluation, a
five-fold cross validation setup was used. To explore the
generalization performance, the above mentioned procedure is
repeated 10 times with different random seeds. This leads to 50
(5-folds times 10 repetitions with different random seeds)
training/test sets; classification results reported are the average
and standard deviation over the 50 runs. To assess feature
importance, we use feature selection and look at the features
which rank in the top set more than 70% of the 50 trial runs.

As both dataset labels are imbalanced (54% high stress labels
in the PASS dataset; 58% high stress labels and 43% high stress
labels for anxiety in the TILES dataset), a support vector machine
(SVM) classifier with a radial basis function (RBF) kernel and a
“balanced” class weight was used. SVM is a maximum margin
classifier that uses training samples to maximise the width of the
gap between the two categories. The “balanced” mode uses the
values of the labels to automatically adjust weights inversely
proportional to class frequencies in the input training data;
such procedure is generally recommended for imbalanced
datasets (Pedregosa et al., 2011). As we are only interested in
assessing the improvements in performance due to proposed
features, no hyper-parameter tuning was performed on the
classifier and the default values, as provided by the sci-kit
learn toolbox (Pedregosa et al., 2011), were used for the
classifier. These lead to a C value of 1 and a c value of 1/(nf ×
variance of training dataset), where nf is the number of features.

Additionally, balanced accuracy (BACC), F1-score (F1), and
Matthews correlation coefficient (MCC) were used as figures-of-
merit. These are metrics known to be robust to class imbalances.
More specifically, BACC is defined as the average of class-wise
accuracy (recall) of both positive and negative classes and is less
sensitive to data imbalance (García et al., 2009). Additionally,
MCC takes into account all four values in the confusion matrix
and has shown to be more robust to data imbalances when
compared to F1 and accuracy (Chicco and Jurman, 2020). The
MCC value ranges between −1 and 1, with 1 representing perfect
prediction, 0 representing random prediction, and −1 indicating
inverse prediction.

To assess feature importance, recursive feature elimination
was performed using the Extra Trees Classifier (Geurts et al.,
2006). Given an external estimator that assigns weights to features
(an Extra Trees Classifier in this case), the least important features
are pruned from the current set of features. The procedure is
recursively repeated on the pruned set until the desired number of
features to be selected is reached. This technique considers the
interaction of features with the learning algorithm to give the

optimal subset of features. The feature selection is used to select
the top 13 features (equal to the number of benchmark HRV
features) for the PASS database and the top 100 features for the
TILES database for each fold of the cross-validation set. Due to
aggregation, the number of features increases by a factor of 14
(number of statistics). In the past, the top 100 features have been
used for this dataset, thus the same value is used here to guard
against over-fitting (Tiwari et al., 2019b). The implementation of
the classifier and feature selection algorithms was done using the
sci-kit learn toolbox (Pedregosa et al., 2011).

3 RESULTS

In this section, we describe the results obtained with the benchmark,
proposed, and combined features sets for both datasets. For the PASS
database, stress was evaluated across all physical activity conditions.
Stress classification performance for the PASS and TILES datasets
are shown in the top parts of Table 2 and Table 3, respectively.
Anxiety classification performance for the TILES dataset, in turn, is
available in the top part of Table 4. The first two rows present the
results for the benchmark features, whereas the proposed features are
given in rows 3 and 4. The next six rows represent the fusion of
different features sets. In particular, “Band-All” corresponds to the
fusion of band -spectral and complexity features, “Fuse-Complexity”
to fusion of benchmark set with band-complexity features, “Fuse
spectral” to fusion of benchmark set with band-spectral features,
“Fuse RR-Complexity” to fusion of benchmark set with RR
complexity features, “Fuse-Band-All” to fusion of benchmark set
with “Band-All” features, and “Fuse-All” to the fusion of all extracted
features sets. Features highlighted in bold in each Table show the best
performing feature set (based on MCC value). Significance testing
between all new feature sets were performed against the benchmark
set (p < 0.05/9), as well as the RR complexity (p < 0.05/8) test, using a
t-test with bonferroni correction. The features that showed
significant improvement are highlighted by an “p” and a “†” in
the table, respectively. All of the performances, including the
benchmarks, were also compared against a random voting
classifier by calculating the significance (p < 0.01) using the t-test.
All feature sets across various databases and constructs performed
significantly better than the random voting classifier.

As can be seen, for the stress prediction on the PASS dataset,
the best performance is achieved by the fusion of the benchmark
features with the proposed band-complexity and spectral
descriptor features (Fuse-Band-All) with significant
improvements (p < 0.05/9) of 4.64% in BACC, 14.7% in F1,
and 24.2% in MCC over the benchmark feature set alone. This
feature set combination also shows a significant improvement
(p < 0.05) of 3.27% in BACC, 7.66% in F1, and 14.88% in MCC
over the fusion of benchmark set with commonly used RR
complexity features (Fuse-RR-Complexity) when compared
using a t-test. Without feature fusion with the benchmark set,
the combination of band-complexity and band descriptor
features performs similarly to the benchmark set in terms of
BACC and MCC with a significant improvement (p < 0.05/9) of
13.5% in F1. We also observe that while these features do not
perform as well as the benchmark individually, however fusion of
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TABLE 2 | Top: Performance comparison for stress (PASS) (p � significantly better (p < 0.05/9) than Benchmark, † � significantly better (p < 0.05/8) than RRComplexity, with
bonferroni corrections), Bottom: Comparison with previously proposed multi-scale features (see Section 4.2) (pp � significantly better (p < 0.05/3) than Benchmark, ††
� significantly better (p < 0.05/3) than RR Complexity, with bonferroni corrections). The bold values represent the best performing feature set (according to MCC).

Features BACC F1 MCC

Benchmark 0.603 ± 0.029 0.563 ± 0.047 0.211 ± 0.058
RR Complexity 0.542 ± 0.033 0.579 ± 0.040 0.085 ± 0.067
Band-Complexity 0.545 ± 0.036 0.577 ± 0.043 0.090 ± 0.073
Band-Spectral 0.580 ± 0.034† 0.625 ± 0.040p† 0.161 ± 0.069†

Band-All 0.610 ± 0.033† 0.639 ± 0.045p† 0.220 ± 0.067†

Fuse-Complexity 0.617 ± 0.036† 0.624 ± 0.042p† 0.234 ± 0.073†

Fuse-Spectral 0.618 ± 0.035† 0.634 ± 0.039p† 0.237 ± 0.070†

Fuse-RR-Complexity 0.611 ± 0.035† 0.600 ± 0.042p 0.223 ± 0.070†

Fuse-Band-All 0.631 ± 0.030p† 0.646 ± 0.039p† 0.262 ± 0.060p†

Fuse-All 0.629 ± 0.033p† 0.648 ± 0.036p† 0.258 ± 0.066p†

Multi-All 0.596 ± 0.032†† 0.597 ± 0.035pp 0.191 ± 0.064††

Fuse-Multi-All 0.614 ± 0.030†† 0.619 ± 0.037pp†† 0.228 ± 0.061††

Fuse-Prev-All 0.632 ± 0.032pp†† 0.648 ± 0.039pp†† 0.263 ± 0.063pp††

TABLE 3 | Top: Performance comparison for stress (TILES) (p � significantly better (p < 0.05/9) than Benchmark, † � significantly better (p < 0.05/8) than RRComplexity, with
bonferroni corrections), Bottom: Comparison with previously proposed multi-scale features (see Section 4.2) (pp � significantly better (p < 0.05/3) than Benchmark, ††
� significantly better (p < 0.05/3) than RR Complexity, with bonferroni corrections). The bold values represent the best performing feature set (according to MCC).

Features BACC F1 MCC

Benchmark 0.620 ± 0.015 0.655 ± 0.013 0.237 ± 0.029
RR Complexity 0.621 ± 0.017 0.664 ± 0.019 0.239 ± 0.032
Band-Complexity 0.612 ± 0.017 0.660 ± 0.020 0.221 ± 0.033
Band-Spectral 0.617 ± 0.014 0.665 ± 0.017p 0.232 ± 0.028
Band-All 0.626 ± 0.017 0.670 ± 0.020p 0.250 ± 0.033
Fuse-Complexity 0.647 ± 0.014p† 0.681 ± 0.015p† 0.291 ± 0.028p†

Fuse-Spectral 0.655 ± 0.015p† 0.685 ± 0.016p† 0.305 ± 0.029p†

Fuse-RR-Complexity 0.644 ± 0.012p† 0.681 ± 0.014p† 0.285 ± 0.024p†

Fuse-Band-All 0.654 ± 0.014p† 0.690 ± 0.015p† 0.305 ± 0.028p†

Fuse-All 0.658 ± 0.015p† 0.691 ± 0.015p† 0.312 ± 0.031p†

Multi-All 0.632 ± 0.016pp†† 0.661 ± 0.018 0.261 ± 0.031pp††

Fuse-Multi-All 0.639 ± 0.015pp†† 0.666 ± 0.018pp 0.275 ± 0.030pp††

Fuse-Prev-All 0.639 ± 0.015pp†† 0.674 ± 0.019pp†† 0.275 ± 0.031pp††

TABLE 4 | Top: Performance comparison for anxiety (TILES) (p � significantly better (p < 0.05/9) than Benchmark, † � significantly better (p < 0.05/8) than RR Complexity,
with bonferroni corrections), Bottom: Comparison with previously proposedmulti-scale features (see Section 4.2) (pp � significantly better (p < 0.05/3) than Benchmark,
†† � significantly better (p < 0.05/3) than RR Complexity, with bonferroni corrections). The bold values represent the best performing feature set (according to MCC).

Features BACC F1 MCC

Benchmark 0.604 ± 0.016 0.546 ± 0.020 0.209 ± 0.031
RR Complexity 0.599 ± 0.014 0.543 ± 0.019 0.197 ± 0.028
Band-Complexity 0.605 ± 0.014 0.564 ± 0.019p† 0.208 ± 0.029
Band-Spectral 0.593 ± 0.014 0.549 ± 0.018 0.185 ± 0.028
Band-All 0.612 ± 0.014† 0.572 ± 0.017p† 0.223 ± 0.028†

Fuse-Complexity 0.630 ± 0.012p† 0.589 ± 0.016p† 0.258 ± 0.023p†

Fuse-Spectral 0.639 ± 0.013p† 0.592 ± 0.016p† 0.277 ± 0.026p†

Fuse-RR-Complexity 0.617 ± 0.015p† 0.565 ± 0.021p† 0.234 ± 0.030p†

Fuse-Band-All 0.639 ± 0.014p† 0.599 ± 0.017p† 0.277 ± 0.027p†

Fuse-All 0.643 ± 0.014p† 0.600 ± 0.018p† 0.285 ± 0.027p†

Multi-All 0.619 ± 0.014pp†† 0.568 ± 0.020pp†† 0.238 ± 0.029pp††

Fuse-Multi-All 0.623 ± 0.014pp†† 0.572 ± 0.018pp†† 0.245 ± 0.029pp††

Fuse-Prev-All 0.624 ± 0.015pp†† 0.575 ± 0.019pp†† 0.247 ± 0.031pp††
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the two (Band-All) feature sets leads to comparable performance
with the benchmark feature set, thus showing complementarity
between the two proposed feature sets. Finally, compared to the
RR complexity features, the combination of the proposed features
showed a significant improvement (p < 0.05/8) of 12.5% in
BACC, 10.3% in F1 and 158% in MCC.

In turn, for the TILES dataset, for stress prediction, the best
performance is achieved with the fusion of all the feature sets (Fuse-
All) with a significant improvement (p < 0.05/9) of 6.13% in BACC,
5.5% in F1 and 31.6% in MCC over the benchmark feature set alone.
This performance is comparable to the performance of fusion of
benchmark with the proposed features, as well as fusion of the
benchmark with only band spectral features. Individually, the
benchmark, RR complexity, and proposed features perform
comparable to one another, thus further suggesting the
complementarity between them.

Lastly, for anxiety prediction, the best performance is
again achieved by the combination of all feature sets with
significant improvements (p < 0.05/9) of 6.45% in BACC,
9.89% in F1, and 36.4% in MCC over the benchmark feature
set alone. Additionally, the fusion of benchmark with the
proposed features shows a significant improvement (p < 0.05)
of 3.56% in BACC, 6.02% in F1 and 17.9% in MCC compared
to the combination of benchmark with RR complexity
features using a t-test. Individually, the proposed features
perform comparably to the benchmark and RR complexity
feature sets in terms of BACC and MCC with significant
improvements (p < 0.05/9 and p < 0.05/8) of 4.76% and 5.34%
in F1 over benchmark and RR complexity features,
respectively.

Overall, across both the datasets and mental states, both band-
complexity and spectral descriptor features show complementary
behaviour not only with each other, but also with existing
benchmark features. These findings suggest that future studies
could rely on these feature set combinations for improved
accuracy and robustness.

4 DISCUSSION

In this section we discuss the top-features found and their
physiological correlates. Additionally, we compare the results
with previous work.

4.1 Feature Ranking
Feature importance was computed based on the outcomes of
feature selection across the five cross validation steps, repeated 10
times. The top-13 and top-100 features were selected for every
fold for the PASS and TILES databases, respectively. As such, the
frequency of occurrence of a given feature in the top feature set
was calculated over the 50 iterations. Features appearing more
than 70% were further ranked according to their frequency of
occurrence (freq) for the best performing feature set for the PASS
datasets. For the TILES dataset, due to the added statistics
calculated on top of the daily feature series, the top 70%
features were first separated from their corresponding statistics
and feature frequencies for same features with different statistics
were aggregated and renormalized. Additionally, the frequency of
statistics across the top features were also noted. For stress
classification on the PASS dataset, an additional post-hoc
significance testing was performed on the top feature sets.
First, the Shapiro-Wilk test of normality (p < 0.05) was
performed on the distribution of the features. For normally
distributed data, ANOVA test was used to test significance,
while for a non-normal distributions, the Kruskal-Wallis (KW)
test was used. The top features for stress, their frequency of
occurrence, the type of significance test used as well as the
significance level for the PASS dataset are shown in Table 5.
Such an analysis cannot be performed for the top features from
the TILES dataset, as multiple statistics from the top feature set
are in the top selected features, thus greatly increasing the number
of possible combinations to be tested. Table 6 shows the top
features for stress and anxiety for the TILES dataset along with the
most commonly used functional.

For the PASS database, overall, 4 of the 11 features are from
the proposed feature set with three features from the HF band (2
spectral and 1 complexity) while one from the LF band (spectral).
From the commonly used complexity features, we observe DFA,
PE and CorrDim in the top features. Of the top 5 features, 3 are
from the proposed feature set. The HF spectral entropy (HF-ent)
appears as a top ranked feature along with meanRR and
coefficient of variation.

TABLE 5 | Top features for stress (PASS) (- represents no significance).

Feature name Freq (%) Test Significance level

meanRR 100 KW p < 0.01
Coef-Var 100 KW p < 0.001
HF-ent 100 KW p < 0.05
LF-ent 94 ANOVA p < 0.005
HF-PE 94 KW p < 0.001
RR-CorrDim 90 KW p < 0.05
HF-skew 86 KW p < 0.05
sdRR 82 KW p < 0.01
RR-DFA 78 KW —

pNN50 39 KW —

RR-PE 38 KW —

TABLE 6 | Top features for stress and anxiety (TILES).

Stress Anxiety

Feature Name freq (%) Feature Name freq (%)

meanRR 100 meanRR 100
RR-PE 69 RR-PE 76
Coef-Var 53 pNN20 59
LF-HF-TE 39 HF-PE 45
pNN20 37 Coef-Var 45
HF-CorrDim 27 HF-skew 37
HF-skew 24 RR-SE 34
Rmsdd 24 HF-kurt 25
HF-crest 23 HF-LF-TE 24
HF-PE 14 LF-HF-TE 23
HF-kurt 14 HF-crest 11
HF-LF-TE 13 RR-lyap 11
LF-spread 13 HF-spread 10
RR-DFA 11 HF-CorrDim 10
HF-cent 10 LF-skew 10
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An in-depth analysis on the effects of physical activity on HF-
ent showed an increase with increasing physical activity level.
This can be explained by the effects of respiration on the HF band,
termed respiratory sinus arrhythmia (RSA) (Shaffer and
Ginsberg, 2017). Typically, RSA is one of the major factors
influencing HF power, hence an increased respiration rate due
to physical activity can move the RSA component to a higher
frequency range even outside the HF band range for very high
respiration rates (Schipke et al., 1999). This shift in RSA is
reflected in the increased spectral entropy value with
increasing physical activity levels. Similarly, mental stress can
also increase respiration rate (Masaoka and Homma, 1997), thus
leading to increase in spectral entropy of the HF band. Indeed,
further investigation showed an increase in the spectral entropy
of the HF band with increased mental stress.

This shift in RSA to a higher frequency range can further
explain the observed increase in the skewness of the HF spectrum
(HF-skew), which also appeared as a top feature. In turn, the
spectral entropy of the LF band (LF-ent) also showed a similar
increase with mental stress, likely due to sympathetic activation
caused by stress leading to more overall spectral activity in this
region (Castaldo et al., 2015). We also observe a decrease in PE of
the rrhf (HF-PE) time series with increased mental stress. This
might be caused by the combined effects of the RSA component
shifting towards higher frequencies due to physical activity, as
well as parasympathetic withdrawal caused by both physical
activity and stress reducing complexity series. (Tulppo et al.,
2001; Castaldo et al., 2015; Dimitriev et al., 2016).

A decrease in meanRR and pNN50 have been shown to be
indicators of increased SNSmodulation (Camm, 1996), reduction
of PNS activity (Shaffer and Ginsberg, 2017), and have been
reported with increased stress levels (Castaldo et al., 2015).
Additionally, changes in both DFA and CorrDim have been
linked to stress (Castaldo et al., 2015; Brugnera et al., 2018).
Moreover, a decline in HF power has generally been linked to
negative emotions (Shaffer and Ginsberg, 2017), which explains
the occurrence of HF band-complexity and spectral descriptor
features in the top feature set.

Compared to the PASS dataset, which looks at stress in the
presence of physical activity for a short duration, the TILES
dataset measured stress with long duration stimulus confounded
by physical activity and social interaction. While physical activity
shifts the RSA towards higher frequencies (Tulppo et al., 2001),
speaking has been shown to shift it towards lower frequencies by
lowering respiration rates (Brugnera et al., 2018). Additionally,
onset of long-termmental stress (1 h) causes an initial fluctuation
for the HRV parameters followed by gradual return to baseline
levels for most metrics (Delliaux et al., 2019). Such fluctuations
are captured by the various statistics used to aggregate the feature
series over a given day.

For the TILES dataset, for stress, nine of the top 15 features are
from the proposed feature set. Of the top proposed features, six of
the nine features are from the HF band (2 complexity, 4 spectral),
with one from the LF band (spectral) along with both the LF-to-
HF the HF-to-LF transfer entropy features. Similar to the PASS
dataset, the HF band features are ranked higher than the LF band
features. The non-linear interaction of the LF and HF series also

appears as a top features. This quantifies the complex non-linear
interaction between the SNS and PNS, which are not captured by
LF/HF ratio (Zheng et al., 2017; Luo et al., 2018).

Among the benchmark feature set, meanRR, pNN20 and
coefficient of variation are among the top features, similar to
the top PASS dataset features. Additionally, pNN50 and rmssd
features, which are highly correlated to each other (Camm, 1996),
appear in PASS and TILES stress features, respectively. The PE of
the RR series is also among the top features and has been
previously shown to distinguish emotions (Xia et al., 2018).
HF-PE and HF-skew appear as a top proposed features for the
stress prediction for both the PASS and TILES datasets showing
robustness of these features over different datasets and
experimental conditions.

The skewness of HF-PE series appears as a top feature. The
distribution skews towards the right with increased stress. A
higher value of skewness indicates a greater positive fluctuation of
the HF-PE daily series. This type of fluctuation has been observed
for long-term mental stress (Delliaux et al., 2019) measures using
HRV. The minimum value of HF-skew series decreases with
increased stress and is among the top features. Further, the HF-
skew series distribution skews towards the left. Stressful days for
nurses could be characterized by a large amount of talking and
team coordination, thus moving the RSA component towards
lower frequencies and skewing the spectral power distribution
towards this region. Overall, median of HF-PE still shows a
decrease with increasing stress consistent with the findings
from the PASS dataset. However, the median was not among
the top feature set showing higher importance of fluctuations in
long term physiological series.

Moreover, statistics representing fluctuation (i.e., standard
deviation, weighted standard deviation, and range) appear as
top features for the LF-HF-TE and show an increase with stress.
This could mean changing levels of LF to HF information transfer
occurring on more stressful days, while the transfer of
information is constant for low stress days. Stress events cause
a parasympathetic withdrawal and such withdrawal could cause a
change in information transfer between LF to HF region
increasing the variability of the transfer entropy. The range
and minimum value of the HF-CorrDim series also show up
as top features. While the range of the HF-CorrDim series
increases with stress, there is a decrease in the minimum value
with stress. Together, these statistics indicate a lowered HF-
CorrDim due to stress. A decreased CorrDim for RR series
indicates lower complexity and has been observed with an
increase in stress (Castaldo et al., 2015; Delliaux et al., 2019).
This is in line with the finding of lowered HF-PE values for both
the TILES and PASS datasets with increasing stress.

Analyzing the top anxiety features, it can be seen that four
features appear uniquely among the top features for stress. These
are: rmssd, DFA of the RR series, LF-spread and HF-cent. The
skewness of the HF-cent appears as a top feature and shows a shift
towards the higher values with stress. The HF centroid value may
shift towards higher values due to influence of physical activity on
the RSA component. A stressful day could lead to higher levels of
physical activity for hospital workers, thus increasing the HF
centroid value. The maximum value of LF spread was a top
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feature and increased with the increase in spread. Sympathetic
activation caused due to stress could increase the activity in the LF
band leading to a higher spread value.

For anxiety prediction, the top features show a large overlap
with the top stress features with 10 of the top 15 features
appearing in both feature sets. This could be due to the two
mental states being highly correlated, as continuously-high stress
can lead to anxiety (Grillon et al., 2007). This fact is further
validated by the high correlation (0.69) between stress and
anxiety ratings reported by the participants. While top features
for anxiety may overlap with the top stress features, different
statistics may be relevant.

We observe various statistics indicating fluctuation
(i.e., range, standard deviation, and weighted standard
deviation) for HF-PE in the top feature set. These statistics
show an increase during anxiety conditions indicating greater
fluctuation of the HF-PE feature on higher anxiety days.
Notably, for anxiety, the mean of the HF-PE series shows an
increase in value but is not in the top feature set. Such a change is
indicative of increased complexity of the rrhf and is
contradictory to decrease in HF-PE with stress as observed
previously. In contrast to the PASS dataset, daily mean of HF-
skew series shows an overall decrease with anxiety; this could be
due to the more dominant effect of speaking compared to
physical activity on the RSA for higher anxiety levels.

Similar to HF-PE, standard deviation and weighted standard
deviation of HF-skew appear as top features increased with
increased anxiety. The minimum value of HF-skew series
decreases with increased anxiety showing a greater shift of the
distribution towards the left; this behavior was captured by the
HF-skew top feature, thus further confirming the dominating
effect of speaking on RSA with higher anxiety. The median of HF-
kurt is also among the top features and shows a decrease with
increased anxiety. A decrease in its value with a corresponding
increase in HF-skew could indicate the predominant effect of
speaking on the RSA along with a parasympathetic withdrawal
caused by anxiety.

Moreover, the maximum value of the HF-CorrDim appears as
a top feature showing an increase with anxiety. An increase in
CorrDim value is indicative of increasing complexity of the rrhf
time series. This increase is also observed as an increase in HF-PE
value. Therefore, the overall indicators of increased complexity
with anxiety are in contrast to decreasing complexity for stress, as
suggested by the features. Similar to stress, both transfer entropy
metrics appear in the top feature set for anxiety prediction.
Additionally, both weighted and standard deviation show a
similar increase in LF-HF-TE metric with anxiety, as observed
with stress indication higher variability in transfer entropy on
high anxiety days.

SE and LE of the RR series along with HF-spread and LF-
skewness uniquely appear as top features in the anxiety
prediction. Previously, both SE and LE have been linked to
state anxiety during an academic examination setting
(Dimitriev et al., 2016). LE has also been linked to high
arousal states elicited using images (Valenza et al., 2012). The
weighted mean of LF-skewness shows a decrease with increased
anxiety indicating a shift towards the center of the distribution.

This could be indicative of more slower LF components (around
0.015 Hz) becoming relevant with sympathetic activation caused
by anxiety.

No frequency domain features appear in the top feature set for
either the PASS or TILES datasets for stress and anxiety. This
could be due to the power spectral features being less robust to
missing RR intervals (Kim et al., 2009). On the other hand, the
proposed features derived from spectral descriptors and
complexity were among the top features, showing both the
usefulness and robustness of these features to noise and
confounding factors. These findings further point to the
importance of subband HRV information for stress and
anxiety monitoring.

Lastly, among the statistics used for aggregation, quality-
weighted mean and standard deviation were among the most
commonly used statistics for both stress and anxiety in the top
feature set. This shows the importance of signal quality in mental
state prediction, thus corroborating the findings of (Tiwari et al.,
2019b). We also observe the max and min values among the top
statistics. This indicates the highest values of certain HRVmetrics
for a given shift is a good indicator of perceived stress for the
entire shift.

4.2 Comparison With Previous Work
Previously, multi-scale permutation entropy (MPSE) and Inter-
scale ordinal distance (Isod) features have been proposed for
mental workload on an ambulatory dataset (Tiwari et al., 2019).
The results indicated that quantifying complexity at different
scales can help improve performance over benchmark features.
As a result, we compared the combination of MSPE (48) as well
as the Inter-scale ordinal distance (Isod) (66) features (referred
to as “Multi-All”) with the proposed features for PASS and
TILES dataset. Stress classification performance for the PASS
and TILES datasets are shown in bottom parts of Table 2 and
Table 3, respectively. Anxiety classification performance for the
TILES dataset, in turn, is available in the bottom part of Table 4.
Here, “Fuse-Multi-All” refers to the combination of the
benchmark features with the “Multi-All” feature set, while
“Fuse-Prev-All” refers to the combination of the “Fuse-All”
set with the “Multi-All” set leading to the combination of all
features with the previously multi-scale proposed features.
Significance testing between these feature sets were
performed against the benchmark set (p < 0.05/3), as well as
the RR complexity (p < 0.05/3) test, using a t-test with
bonferroni correction. The features that showed significant
improvement are highlighted by an “pp” and a “(††)” in the
table, respectively.

For the PASS dataset stress classification, we observe the
Fuse-Prev-All gives the best performance which is comparable
to the performance achieved by the Fuse-Band-All and Fuse-All
feature set. The Fuse-Band-All setting significantly (p < 0.05)
outperforms the fusion of multi-scale features with benchmark
(Fuse-Multi-All) by 2.77% in BACC, 4.36% in F1, and 14.91%
in MCC using a t-test. Individually, the Band-All feature
set also significantly (p < 0.05) outperforms the Multi-All
feature set by 2.34% in BACC, 7.03% in F1, and 15.2% in
MCC using a t-test.
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For TILES stress classification, in turn, we observe the best
performance is still achieved with the fusion of benchmark and
proposed feature sets (Fuse-All) with significant (p < 0.05)
improvements of 2.34% in BACC, 3.6% in F1, and 10.9% in
MCC over the fusion of multi-scale features with the benchmark
set (Fuse-Multi-All) as observed by performing a t-test. However,
individually the Multi-All feature set shows comparable
performance to the Band-All features. This suggests that the
proposed features have more complementarity with the
benchmark set compared to the multi-scale features.

Finally, for anxiety classification performance on the TILES
dataset, the best performance is still with the Fuse-All feature set
with significant (p < 0.05) improvements of 2.57% in BACC,
4.72% in F1, and 13.1% in MCC over the Fuse-Multi-All feature
set using a t-test. Again, as observed for stress prediction, the
Band-All and Multi-All feature sets have comparable
performance.

Overall, our proposed features outperform the multi-scale
features individually (for the PASS dataset stress classification)
and when fused with the benchmark features giving the highest
overall performance. While the multi-scale features still
outperform the benchmark feature set, they have several
hyper-parameters namely, the scaling method, the entropy
calculation method, as well as the number of scales explored.
These hyper-parameters can not only impact the overall
performance but also add to the number of features extracted.
In contrast, the number of hyper-parameters for the proposed
features are limited and lead to a smaller overall feature set.

4.3 Study Limitations
In this study, focus was placed on only one type of classifier—an
SVM, as it has been widely used in emotion recognition studies
(Alarcao and Fonseca, 2017) and shown to provide a good trade-
off between model complexity while handling non-linear data for
small datasets (Bishop, 2006). Larger datasets, however, could
enable the use of more complex models, such as burgeoning deep
neural networks, to improve performance. Additionally, no
optimization of the hyper-parameters was performed here, as
the main goal of the study was to assess the importance of the
proposed features for the task at hand. Therefore, the results
obtained herein represent a lower bound on what could be
achieved. Future analyses should focus on hyper-parameter
tuning to further improve performance. Moreover, in the
analyses performed herein, 5-min windows were used. Such
window durations do not account for long-term variability in
the RR series caused by circadian rhythm, hormonal change, or
overall health (Shaffer and Ginsberg, 2017). Therefore, longer
windows could be explored to quantify such factors with the
proposed features. Finally, only commonly-used complexity
features have been explored in this work. Recently, newer
methods have emerged, such as bubble entropy (Manis et al.,
2017) and multi-fractal measures (Kokosińska et al., 2021); these
could lead to additional insights and should be explored in the
future.

5 CONCLUSION

In this paper, we propose novel HRV features for in-the-wild
mental state monitoring applications. The features are based on
separately analyzing the complexity and spectral characteristics of
the HF and LF bands of the HRV tachogram. We show that these
features significantly outperform benchmark HRV and
commonly used non-linear inter-beat-interval complexity
features for stress and anxiety monitoring. Experiments are
performed on two separate datasets collected in ambulatory
and in-the-wild conditions. Results show not only the
proposed features outperforming conventional ones, but also
exhibiting complementary behavior when fused together.
Overall, between 45–64% of the top features used by the
trained classifiers relied on the proposed features, thus
showing their importance for mental state assessment in
highly ecological settings.
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