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INTRODUCTION

The field of image processing has been the subject of intensive research and development activities for
several decades. This broad area encompasses topics such as image/video processing, image/video
analysis, image/video communications, image/video sensing, modeling and representation,
computational imaging, electronic imaging, information forensics and security, 3D imaging, medical
imaging, andmachine learning applied to these respective topics. Hereafter, we will consider both image
and video content (i.e. sequence of images), and more generally all forms of visual information.

Rapid technological advances, especially in terms of computing power and network transmission
bandwidth, have resulted in many remarkable and successful applications. Nowadays, images are
ubiquitous in our daily life. Entertainment is one class of applications that has greatly benefited,
including digital TV (e.g., broadcast, cable, and satellite TV), Internet video streaming, digital
cinema, and video games. Beyond entertainment, imaging technologies are central in many other
applications, including digital photography, video conferencing, video monitoring and surveillance,
satellite imaging, but also in more distant domains such as healthcare and medicine, distance
learning, digital archiving, cultural heritage or the automotive industry.

In this paper, we highlight a few research grand challenges for future imaging and video systems,
in order to achieve breakthroughs to meet the growing expectations of end users. Given the vastness
of the field, this list is by no means exhaustive.

A BRIEF HISTORICAL PERSPECTIVE

We first briefly discuss a few key milestones in the field of image processing. Key inventions in the
development of photography and motion pictures can be traced to the 19th century. The earliest
surviving photograph of a real-world scene was made by Nicéphore Niépce in 1827 (Hirsch, 1999).
The Lumière brothers made the first cinematographic film in 1895, with a public screening the same
year (Lumiere, 1996). After decades of remarkable developments, the second half of the 20th century
saw the emergence of new technologies launching the digital revolution. While the first prototype
digital camera using a Charge-Coupled Device (CCD) was demonstrated in 1975, the first
commercial consumer digital cameras started appearing in the early 1990s. These digital
cameras quickly surpassed cameras using films and the digital revolution in the field of
imaging was underway. As a key consequence, the digital process enabled computational
imaging, in other words the use of sophisticated processing algorithms in order to produce
high quality images.

In 1992, the Joint Photographic Experts Group (JPEG) released the JPEG standard for still image
coding (Wallace, 1992). In parallel, in 1993, theMoving Picture Experts Group (MPEG) published its
first standard for coding of moving pictures and associated audio, MPEG-1 (Le Gall, 1991), and a few
years later MPEG-2 (Haskell et al., 1996). By guaranteeing interoperability, these standards have
been essential in many successful applications and services, for both the consumer and business
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markets. In particular, it is remarkable that, almost 30 years later,
JPEG remains the dominant format for still images and
photographs.

In the late 2000s and early 2010s, we could observe a paradigm
shift with the appearance of smartphones integrating a camera.
Thanks to advances in computational photography, these new
smartphones soon became capable of rivaling the quality of
consumer digital cameras at the time. Moreover, these
smartphones were also capable of acquiring video sequences.
Almost concurrently, another key evolution was the development
of high bandwidth networks. In particular, the launch of 4G wireless
services circa 2010 enabled users to quickly and efficiently exchange
multimedia content. From this point, most of us are carrying a
camera, anywhere and anytime, allowing to capture images and
videos at will and to seamlessly exchange them with our contacts.

As a direct consequence of the above developments, we are
currently observing a boom in the usage of multimedia
content. It is estimated that today 3.2 billion images are
shared each day on social media platforms, and 300 h of
video are uploaded every minute on YouTube1. In a 2019
report, Cisco estimated that video content represented 75% of
all Internet traffic in 2017, and this share is forecasted to grow
to 82% in 2022 (Cisco, 2019). While Internet video streaming
and Over-The-Top (OTT) media services account for a
significant bulk of this traffic, other applications are also
expected to see significant increases, including video
surveillance and Virtual Reality (VR)/Augmented
Reality (AR).

HYPER-REALISTIC AND IMMERSIVE
IMAGING

A major direction and key driver to research and development
activities over the years has been the objective to deliver an ever-
improving image quality and user experience.

For instance, in the realm of video, we have observed
constantly increasing spatial and temporal resolutions, with
the emergence nowadays of Ultra High Definition (UHD).
Another aim has been to provide a sense of the depth in the
scene. For this purpose, various 3D video representations have
been explored, including stereoscopic 3D and multi-view
(Dufaux et al., 2013).

In this context, the ultimate goal is to be able to faithfully
represent the physical world and to deliver an immersive and
perceptually hyperrealist experience. For this purpose, we discuss
hereafter some emerging innovations. These developments are
also very relevant in VR and AR applications (Slater, 2014).
Finally, while this paper is only focusing on the visual information
processing aspects, it is obvious that emerging display
technologies (Masia et al., 2013) and audio also plays key roles
in many application scenarios.

Light Fields, Point Clouds, Volumetric
Imaging
In order to wholly represent a scene, the light information coming
from all the directions has to be represented. For this purpose, the
7D plenoptic function is a key concept (Adelson and Bergen,
1991), although it is unmanageable in practice.

By introducing additional constraints, the light field
representation collects radiance from rays in all directions.
Therefore, it contains a much richer information, when
compared to traditional 2D imaging that captures a 2D
projection of the light in the scene integrating the angular
domain. For instance, this allows post-capture processing such
as refocusing and changing the viewpoint. However, it also entails
several technical challenges, in terms of acquisition and
calibration, as well as computational image processing steps
including depth estimation, super-resolution, compression and
image synthesis (Ihrke et al., 2016; Wu et al., 2017). The
resolution trade-off between spatial and angular resolutions is
a fundamental issue. With a significant fraction of the earlier
work focusing on static light fields, it is also expected that
dynamic light field videos will stimulate more interest in the
future. In particular, dense multi-camera arrays are becoming
more tractable. Finally, the development of efficient light field
compression and streaming techniques is a key enabler in many
applications (Conti et al., 2020).

Another promising direction is to consider a point cloud
representation. A point cloud is a set of points in the 3D
space represented by their spatial coordinates and additional
attributes, including color pixel values, normals, or reflectance.
They are often very large, easily ranging in the millions of points,
and are typically sparse. One major distinguishing feature of
point clouds is that, unlike images, they do not have a regular
structure, calling for new algorithms. To remove the noise often
present in acquired data, while preserving the intrinsic
characteristics, effective 3D point cloud filtering approaches
are needed (Han et al., 2017). It is also important to develop
efficient techniques for Point Cloud Compression (PCC). For this
purpose, MPEG is developing two standards: Geometry-based
PCC (G-PCC) and Video-based PCC (V-PCC) (Graziosi et al.,
2020). G-PCC considers the point cloud in its native form and
compress it using 3D data structures such as octrees. Conversely,
V-PCC projects the point cloud onto 2D planes and then applies
existing video coding schemes. More recently, deep learning-
based approaches for PCC have been shown to be effective
(Guarda et al., 2020). Another challenge is to develop generic
and robust solutions able to handle potentially widely varying
characteristics of point clouds, e.g. in terms of size and non-
uniform density. Efficient solutions for dynamic point clouds are
also needed. Finally, while many techniques focus on the
geometric information or the attributes independently, it is
paramount to process them jointly.

High Dynamic Range andWide Color Gamut
The human visual system is able to perceive, using various
adaptation mechanisms, a broad range of luminous
intensities, from very bright to very dark, as experienced

1https://www.brandwatch.com/blog/amazing-social-media-statistics-and-facts/
(accessed on Feb. 23, 2021).
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every day in the real world. Nonetheless, current imaging
technologies are still limited in terms of capturing or
rendering such a wide range of conditions. High Dynamic
Range (HDR) imaging aims at addressing this issue. Wide
Color Gamut (WCG) is also often associated with HDR in
order to provide a wider colorimetry.

HDR has reached some levels of maturity in the context of
photography. However, extending HDR to video sequences raises
scientific challenges in order to provide high quality and cost-
effective solutions, impacting the whole imaging processing
pipeline, including content acquisition, tone reproduction,
color management, coding, and display (Dufaux et al., 2016;
Chalmers and Debattista, 2017). Backward compatibility with
legacy content and traditional systems is another issue. Despite
recent progress, the potential of HDR has not been fully
exploited yet.

Coding and Transmission
Three decades of standardization activities have continuously
improved the hybrid video coding scheme based on the
principles of transform coding and predictive coding. The
Versatile Video Coding (VVC) standard has been finalized in
2020 (Bross et al., 2021), achieving approximately 50% bit rate
reduction for the same subjective quality when compared to
its predecessor, High Efficiency Video Coding (HEVC). While
substantially outperforming VVC in the short term may be
difficult, one encouraging direction is to rely on improved
perceptual models to further optimize compression in terms
of visual quality. Another direction, which has already shown
promising results, is to apply deep learning-based approaches
(Ding et al., 2021). Here, one key issue is the ability to
generalize these deep models to a wide diversity of video
content. The second key issue is the implementation
complexity, both in terms of computation and memory
requirements, which is a significant obstacle to a
widespread deployment. Besides, the emergence of new
video formats targeting immersive communications is also
calling for new coding schemes (Wien et al., 2019).

Considering that in many application scenarios, videos are
processed by intelligent analytic algorithms rather than viewed by
users, another interesting track is the development of video
coding for machines (Duan et al., 2020). In this context, the
compression is optimized taking into account the performance of
video analysis tasks.

The push toward hyper-realistic and immersive visual
communications entails most often an increasing raw data
rate. Despite improved compression schemes, more
transmission bandwidth is needed. Moreover, some emerging
applications, such as VR/AR, autonomous driving, and Industry
4.0, bring a strong requirement for low latency transmission, with
implications on both the imaging processing pipeline and the
transmission channel. In this context, the emergence of 5G
wireless networks will positively contribute to the deployment
of new multimedia applications, and the development of future
wireless communication technologies points toward promising
advances (Da Costa and Yang, 2020).

Human Perception and Visual Quality
Assessment
It is important to develop effective models of human perception.
On the one hand, it can contribute to the development of
perceptually inspired algorithms. On the other hand,
perceptual quality assessment methods are needed in order to
optimize and validate new imaging solutions.

The notion of Quality of Experience (QoE) relates to the
degree of delight or annoyance of the user of an application or
service (Le Callet et al., 2012). QoE is strongly linked to
subjective and objective quality assessment methods. Many
years of research have resulted in the successful development
of perceptual visual quality metrics based on models of human
perception (Lin and Kuo, 2011; Bovik, 2013). More recently,
deep learning-based approaches have also been successfully
applied to this problem (Bosse et al., 2017). While these
perceptual quality metrics have achieved good
performances, several significant challenges remain. First,
when applied to video sequences, most current perceptual
metrics are applied on individual images, neglecting
temporal modeling. Second, whereas color is a key attribute,
there are currently no widely accepted perceptual quality
metrics explicitly considering color. Finally, new modalities,
such as 360° videos, light fields, point clouds, and HDR, require
new approaches.

Another closely related topic is image esthetic assessment
(Deng et al., 2017). The esthetic quality of an image is affected
by numerous factors, such as lighting, color, contrast, and
composition. It is useful in different application scenarios such
as image retrieval and ranking, recommendation, and photos
enhancement. While earlier attempts have used handcrafted
features, most recent techniques to predict esthetic quality are
data driven and based on deep learning approaches, leveraging
the availability of large annotated datasets for training (Murray
et al., 2012). One key challenge is the inherently subjective nature
of esthetics assessment, resulting in ambiguity in the ground-
truth labels. Another important issue is to explain the behavior of
deep esthetic prediction models.

ANALYSIS, INTERPRETATION AND
UNDERSTANDING

Another major research direction has been the objective to
efficiently analyze, interpret and understand visual data. This
goal is challenging, due to the high diversity and complexity of
visual data. This has led to many research activities, involving
both low-level and high-level analysis, addressing topics such as
image classification and segmentation, optical flow, image
indexing and retrieval, object detection and tracking, and
scene interpretation and understanding. Hereafter, we discuss
some trends and challenges.

Keypoints Detection and Local Descriptors
Local imaging matching has been the cornerstone of many
analysis tasks. It involves the detection of keypoints, i.e. salient

Frontiers in Signal Processing | www.frontiersin.org April 2021 | Volume 1 | Article 6755473

Dufaux Grand Challenges in Image Processing

https://www.frontiersin.org/journals/signal-processing
www.frontiersin.org
https://www.frontiersin.org/journals/signal-processing#articles


visual points that can be robustly and repeatedly detected, and
descriptors, i.e. a compact signature locally describing the visual
features at each keypoint. It allows to subsequently compute
pairwise matching between the features to reveal local
correspondences. In this context, several frameworks have
been proposed, including Scale Invariant Feature Transform
(SIFT) (Lowe, 2004) and Speeded Up Robust Features (SURF)
(Bay et al., 2008), and later binary variants including Binary
Robust Independent Elementary Feature (BRIEF) (Calonder
et al., 2010), Oriented FAST and Rotated BRIEF (ORB)
(Rublee et al., 2011) and Binary Robust Invariant Scalable
Keypoints (BRISK) (Leutenegger et al., 2011). Although these
approaches exhibit scale and rotation invariance, they are less
suited to deal with large 3D distortions such as perspective
deformations, out-of-plane rotations, and significant viewpoint
changes. Besides, they tend to fail under significantly varying and
challenging illumination conditions.

These traditional approaches based on handcrafted features
have been successfully applied to problems such as image and
video retrieval, object detection, visual Simultaneous Localization
And Mapping (SLAM), and visual odometry. Besides, the
emergence of new imaging modalities as introduced above can
also be beneficial for image analysis tasks, including light fields
(Galdi et al., 2019), point clouds (Guo et al., 2020), and HDR
(Rana et al., 2018). However, when applied to high-dimensional
visual data for semantic analysis and understanding, these
approaches based on handcrafted features have been
supplanted in recent years by approaches based on deep learning.

Deep Learning-Based Methods
Data-driven deep learning-based approaches (LeCun et al., 2015),
and in particular the Convolutional Neural Network (CNN)
architecture, represent nowadays the state-of-the-art in terms
of performances for complex pattern recognition tasks in scene
analysis and understanding. By combining multiple processing
layers, deep models are able to learn data representations with
different levels of abstraction.

Supervised learning is the most common form of deep
learning. It requires a large and fully labeled training dataset, a
typically time-consuming and expensive process needed
whenever tackling a new application scenario. Moreover, in
some specialized domains, e.g. medical data, it can be very
difficult to obtain annotations. To alleviate this major burden,
methods such as transfer learning and weakly supervised learning
have been proposed.

In another direction, deep models have been shown to be
vulnerable to adversarial attacks (Akhtar and Mian, 2018). Those
attacks consist in introducing subtle perturbations to the input, such
that the model predicts an incorrect output. For instance, in the case
of images, imperceptible pixel differences are able to fool deep
learning models. Such adversarial attacks are definitively an
important obstacle to the successful deployment of deep learning,
especially in applications where safety and security are critical. While
some early solutions have been proposed, a significant challenge is to
develop effective defense mechanisms against those attacks.

Finally, another challenge is to enable low complexity and
efficient implementations. This is especially important for mobile

or embedded applications. For this purpose, further interactions
between signal processing and machine learning can potentially
bring additional benefits. For instance, one direction is to
compress deep neural networks in order to enable their more
efficient handling. Moreover, by combining traditional
processing techniques with deep learning models, it is possible
to develop low complexity solutions while preserving high
performance.

Explainability in Deep Learning
While data-driven deep learning models often achieve impressive
performances on many visual analysis tasks, their black-box
nature often makes it inherently very difficult to understand
how they reach a predicted output and how it relates to particular
characteristics of the input data. However, this is a major
impediment in many decision-critical application scenarios.
Moreover, it is important not only to have confidence in the
proposed solution, but also to gain further insights from it. Based
on these considerations, some deep learning systems aim at
promoting explainability (Adadi and Berrada, 2018; Xie et al.,
2020). This can be achieved by exhibiting traits related to
confidence, trust, safety, and ethics.

However, explainable deep learning is still in its early phase.
More developments are needed, in particular to develop a
systematic theory of model explanation. Important aspects
include the need to understand and quantify risk, to
comprehend how the model makes predictions for
transparency and trustworthiness, and to quantify the
uncertainty in the model prediction. This challenge is key in
order to deploy and use deep learning-based solutions in an
accountable way, for instance in application domains such as
healthcare or autonomous driving.

Self-Supervised Learning
Self-supervised learning refers to methods that learn general
visual features from large-scale unlabeled data, without the
need for manual annotations. Self-supervised learning is
therefore very appealing, as it allows exploiting the vast
amount of unlabeled images and videos available. Moreover, it
is widely believed that it is closer to how humans actually learn.
One common approach is to use the data to provide the
supervision, leveraging its structure. More generally, a pretext
task can be defined, e.g. image inpainting, colorizing grayscale
images, predicting future frames in videos, by withholding some
parts of the data and by training the neural network to predict it
(Jing and Tian, 2020). By learning an objective function
corresponding to the pretext task, the network is forced to
learn relevant visual features in order to solve the problem.
Self-supervised learning has also been successfully applied to
autonomous vehicles perception. More specifically, the
complementarity between analytical and learning methods can
be exploited to address various autonomous driving perception
tasks, without the prerequisite of an annotated data set (Chiaroni
et al., 2021).

While good performances have already been obtained using
self-supervised learning, further work is still needed. A few promising
directions are outlined hereafter. Combining self-supervised
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learning with other learning methods is a first interesting path.
For instance, semi-supervised learning (Van Engelen and Hoos,
2020) and few-short learning (Fei-Fei et al., 2006) methods have
been proposed for scenarios where limited labeled data is
available. The performance of these methods can potentially
be boosted by incorporating a self-supervised pre-training. The
pretext task can also serve to add regularization. Another
interesting trend in self-supervised learning is to train neural
networks with synthetic data. The challenge here is to bridge the
domain gap between the synthetic and real data. Finally, another
compelling direction is to exploit data from different modalities.
A simple example is to consider both the video and audio signals
in a video sequence. In another example in the context of
autonomous driving, vehicles are typically equipped with
multiple sensors, including cameras, LIght Detection And
Ranging (LIDAR), Global Positioning System (GPS), and
Inertial Measurement Units (IMU). In such cases, it is easy to
acquire large unlabeled multimodal datasets, where the different
modalities can be effectively exploited in self-supervised learning
methods.

REPRODUCIBLE RESEARCH AND LARGE
PUBLIC DATASETS

The reproducible research initiative is another way to further ensure
high-quality research for the benefit of our community (Vandewalle
et al., 2009). Reproducibility, referring to the ability by someone else
working independently to accurately reproduce the results of an
experiment, is a key principle of the scientific method. In the context
of image and video processing, it is usually not sufficient to provide a
detailed description of the proposed algorithm. Most often, it is
essential to also provide access to the code and data. This is evenmore
imperative in the case of deep learning-based models.

In parallel, the availability of large public datasets is also highly
desirable in order to support research activities. This is especially
critical for new emerging modalities or specific application

scenarios, where it is difficult to get access to relevant data.
Moreover, with the emergence of deep learning, large datasets,
along with labels, are often needed for training, which can be
another burden.

CONCLUSION AND PERSPECTIVES

The field of image processing is very broad and rich, with many
successful applications in both the consumer and business
markets. However, many technical challenges remain in order
to further push the limits in imaging technologies. Two main
trends are on the one hand to always improve the quality and
realism of image and video content, and on the other hand to be
able to effectively interpret and understand this vast and complex
amount of visual data. However, the list is certainly not
exhaustive and there are many other interesting problems, e.g.
related to computational imaging, information security and
forensics, or medical imaging. Key innovations will be found
at the crossroad of image processing, optics, psychophysics,
communication, computer vision, artificial intelligence, and
computer graphics. Multi-disciplinary collaborations are
therefore critical moving forward, involving actors from both
academia and the industry, in order to drive these
breakthroughs.

The “Image Processing” section of Frontier in Signal
Processing aims at giving to the research community a forum
to exchange, discuss and improve new ideas, with the goal to
contribute to the further advancement of the field of image
processing and to bring exciting innovations in the foreseeable
future.
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