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Regardless of many years of research work and conducting numerous clinical
studies, breast cancer (BC) continues to grow among women, threatening their
lives and future. Currently, it affects more than 10% of women globally. Therefore,
researchers have recently redirected their endeavors toward detecting BC at an
early stage, recognizing its substantial impact on survival rates, and
acknowledging its immense potential for providing effective cancer
treatments at this early diagnosed disease stage. The utilization of biomarker-
based diagnostic techniques significantly contributes to the advancement of early
detection and precision. A wide range of biomarkers is linked to every newly
diagnosed BC case. Traditionally, breast cancer was diagnosed using a variety of
techniques such as mammography, molecular imaging, and ultrasonography.
These techniques had several drawbacks, drawing the attention of many
scientists to developing new methods and strategies. Among these strategies,
electrochemical biosensors have proven to be excellent alternatives to more
complex and traditional detection strategies in terms of performance, accuracy,
robustness, and a tremendous range of applications. In this review, the use of
conventional methods for detecting BC as well as their challenges and
shortcomings have been stated. Moreover, a deep discussion was given to the
newly developed nanocomposite-based electrochemical bio-sensing
approaches that have been exploited for the effective detection and
quantification of breast cancer biomarkers.
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Introduction

Anciently, cancer has been known for millennia, dating back to the Ancient Egyptians.
They mentioned several types of tumors on papyrus, including breast, uterine, and skin
tumors. Cancer ranks among the leading causes of mortality worldwide (Barzaman et al.,
2020). The rate of occurrence and death because of cancer are expected to increase as
compared to the past due to many factors and it is predicted that cases of cancer will double
globally in the next 50 years (Nicolini et al., 2018). In 2020, 19.3 million new cancer cases
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were positively diagnosed, and 9.9 million died, according to the
International Agency for Research on Cancer (IARC) (Kashyap
et al., 2022).

Among the different types of cancer, breast cancer (BC) has the
highest mortality rate, hence, it hinders the lives of many people
globally (Zhang et al., 2021). Specifically, women are more likely to
have BC, and according to the recently updated global cancer
statistics published by the IARC, the incidence of BC exceeded
that of lung cancer in 2020. Therefore, it has become the most
common type of cancer worldwide. It is not only in females, but also
some incidences are reported on male breast cancer (MBC), which is
not common and it just accounts for about 1% of all positively
diagnosed breast cancer worldwide cases (Fox et al., 2022).

Since the early diagnosis supports the increase in the survival
rates for many cancer types, targeting and identifying BC
biomarkers will improve the speed and precision of detection
(Najjar and Allison, 2022). There are several biomarkers
associated with the presence of BC, such as human epidermal
growth factor receptor 2, transmembrane glycoprotein Mucin 1,
BC gene 1, TP53, estrogen (ER), BC gene 2, progesterone receptor
(PR) and many other biomarkers. Several and various
improvements in diagnostic techniques have occurred in the last
few decades, leading to the present conventional diagnostic
techniques.

Breast biopsy, molecular imaging, and ultrasonography are
commonly part of the conventional techniques (Woolpert et al.,
2024). These techniques, however, often require complex
procedures, sophisticated equipment, and/or long and tedious
analysis. Thus, it is essential to prioritize the development of
efficient, straightforward, and widely accessible techniques for BC
analysis, as they are considered as a critical factor in shaping the
future of BC treatment (Seale and Tkaczuk, 2022; Tarighati
et al., 2023).

To overcome the previous obstacles, numerous bio-sensing
platforms have been designed and exploited for the detection of
the designated biomarkers, such as physical, optical, and
electrochemical biosensors (Magar and Hassan, 2021). Among
these types, electrochemical biosensors have shown great efficacy
in dealing with BC biomarkers as well as overcoming many other
challenges. Biosensors are not only non-invasive techniques, but
they also manage to overcome the issues regarding price, portability,
and sensitivity. To better enhance the properties of electrochemical
biosensors, different classes of nanomaterials were involved to
improve the signal transduction and amplification. Moreover,
they enhance the conductivity, the active electrochemical surface
area, and the electrochemical bio-reactivity, leading to a great
increase in the sensitivity and specificity of the sensor.
Nanocomposites, over the other nanomaterial-based sensors,
exhibited superior functions as electrode (sensor’s surface)
modifiers used for cancer diagnosis. Since the conventional
diagnostic techniques were subjected to considerable criticisms
(e.g., their large, complicated, and expensive devices that require
well-trained operators, specialized laboratories, and the long time
required to perform the analysis), creating novel methods to
overcome these obstacles is crucial for the future of bio-analytics
and disease diagnosis. Accordingly, this review article is designed
and devoted to discuss the principles, challenges, and limitations of
most common types of conventional techniques employed in the

process of BC diagnosis. Moreover, it sheds the light on the
advanced diagnosis techniques, focusing on the electrochemical
biosensor-based nanocomposites employed in the early detection
of BC biomarkers.

Conventional techniques for the
cancer diagnosis

Adequate and early screening of cancer is essential to control
its prevalence and alleviate its resulting health complications. It
also provides access to effective treatments in a short time and
allows monitoring of the implemented therapies; thus, this will
increase the survival rate. The most currently used conventional
technique is mammography, as the gold standard for cancer
detection (Nounou et al., 2015). It is conducted using low doses
of x-rays to examine the whole cancer tissue horizontally and
vertically in order to detect any changes, lesions, or lumps. It
generates 2D mammograms because of superimposing multiple
images, and it can identify any distortions or abnormal masses (Di
Maria et al., 2022).

Physicians interpret the resulting mammograms according to
Breast Imaging Reporting and Data System (BI-RADS) (Magny
et al., 2024). Nevertheless, it still needs another confirmation or
liquid biopsy to confirm the disease to avoid any misinterpretation
resulting from the tissue deformities (Freitas et al., 2022).
Furthermore, the use of mammography is limited, where young
patients and ones with dense breast tissue cannot be accurately
diagnosed. Accordingly, mammography sensitivity and specificity
are deeply influenced by age, breast implants and dense tissues,
where they can mask any cancerous tissue.

To overcome such drawbacks, scientists developed new
modalities such as digital (full-field) mammography (DM). This
modality exploits computer-aided diagnosis and algorithm-based
software to construct 2D X-ray views of the tissue and interpret it by
specialists (Medical Advisory Secretariat, 2010; Song et al., 2019). It
is privileged in the lower radiation exposure and enhanced
sensitivity and specificity of 70% and 92% respectively despite the
young age and dense breast tissue.

Another advanced modality is digital breast tomosynthesis
(DBT), where it is FDA-approved partial tomographic technique
used to develop high-resolution 3D images of the tissue (Geras et al.,
2019; Choudhery et al., 2021). It uses a rotating x-ray beam to
generate multiple views; thus, it reduces the masking of diseased
areas leading to higher detection rates and lower recall rates.
However, this technique takes a longer time for data to be
interpreted due to the large number of images taken and
analyzed. In addition, it is expensive and still requires radiation
and uncomfortable operation. Thus, computer-aided detection
(CAD) was developed to surpass such pitfalls and reduce the
interpretation duration (Magnuska et al., 2022; Kim et al., 2023).
In CAD, the algorithms are tailored to identify any suspicious
distortions in the tissue.

Further, machine learning (ML), and artificial intelligence (AI)
are involved to create effective solutions and sophisticated programs
to be used for high interpretation efficiency and low false negatives.
However, ML, and AI applications are still under investigation
(Pacilè et al., 2020; Sechopoulos et al., 2021).
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Breast biopsy technique

Breast biopsy is a definitive invasive technique used for the
cancer diagnosis when there are suspicious lumps in the breast
tissues or abnormal breast shape and discharges (Kalinyak et al.,
2011; Arshad et al., 2022; Lowry et al., 2022). It is performed mainly
through needle biopsy; this method involves two ways to draw the
sample from breast cells. The first one is fine needle aspiration
cytology (FNAC); it is the least invasive and done by inserting
hollow needles in the suspicious area to get the sample for further
pathological analysis (Kazi et al., 2017). The second one is core
needle biopsy (CNB), which uses a larger needle to draw cylinder-
like samples from the breast tissue, and it is considered more
invasive (Lewitowicz et al., 2015). Such types of needle biopsy
can be assisted with either magnetic resonance imaging or
ultrasonography to confirm the sampling area to avoid any
errors. Another type of biopsy is the liquid biopsy; it is a
promising complementary way for BC diagnosis (Freitas et al.,
2022). It involves drawing a sample from the blood vessels near
the cancerous tissue or other biological fluids that contain
extracellular vesicles like exosomes, circulating tumor DNA, and
cells (Lianidou and Markou, 2011; Azevedo et al., 2018). These
molecules are low in concentration in normal subjects and high in
concentration in case of autoimmune disorders and cancers.
Therefore, they can be collected and analyzed in the process of
cancer detection allowing early diagnosis. However, breast biopsies
can be subjected to human error of sampling, and it is an invasive
method; so, it limits the early monitoring and surveillance of cancer
stages and continuous analysis of patients.

Molecular imaging technique

Magnetic resonance imaging (MRI), unlike mammography, is a
highly sensitive technique that uses magnetic fields to analyze the
lesions and lumps in the tissues (Wekking et al., 2023). It is not
considered as the main imaging technique for breast cancer;
nevertheless, it is used as a confirmation step especially in the
early diagnosis. MRI depends on intravenous injection of
contrast agents such as gadolinium and iron oxides
nanostructures to generate high-resolution images (Di Corato
et al., 2013). Owing to the fact that the vascularization of
cancerous tissues has high permeability, the contrast agents can
easily enter the target tissue and reside. Scientists used different
contrasting agents to improve the efficiency and the resolution of the
imaging process; however, these agents resulted in off-targeting
effects in many cases. Moreover, some metal complexes can
undergo trans-metallation causing toxicities reducing their
efficiency. Therefore, researchers developed novel functionalized
nanocarriers loaded with contrasting agents to enhance the
targeting effects and reduce the toxicities. One of such
nanosystems are superparamagnetic iron oxide nanoparticles
(SPIONs); which were used as a carrier and can be manipulated
easily with external magnetic fields (Vangijzegem et al., 2023). They
were utilized as MRI contrast agents to aid in the detection of many
cancer types with high targeting efficiency (Zheng et al., 2018;
Talluri and Malla, 2019). Other modalities of MRI were
developed such as chemical exchange saturation transfer MRI

and dynamic contrast-enhanced MRI to enhance the imaging
accuracy (Zhang et al., 2019; Onishi et al., 2020). Along with
using conventional contrast agents, researchers examined
radioactive chemicals to monitor the BC progression as a
molecular breast imaging technique (Schillaci et al., 2013).
However, MRI still requires complex equipment, invasive
intervention, and exposure to radioactive tracers. This refrains it
from spanning all healthcare systems and limits the follow-up of the
patients. Moreover, there were several false positive results generated
from MRI scans. Accordingly, this technique lacks high specificity
and accuracy.

Ultrasonography technique

Ultrasonography (US) is an alternative imaging technique
applied to confirm the diagnosis of BC using high-frequency
sound waves. It is a powerful tool used to differentiate between
the fluid cysts and solid lumps, and it does not require any ionizing
radiation (Guo et al., 2018; Obeagu and Obeagu, 2024). In addition,
ultrasounds can assess various distortions, lesions, and
morphologies.

Previous studies showed that the ultrasonography could be used
as a follow-up to mammography, where it has higher rates of
detection especially in women with dense breasts. Three-
dimensional US is a common technique, applied to generate 3D
images either by reconstructing 2D views, or by using matrix array
transducers to form 3D scans. Another type is elasto-sonography,
where by applying slight non-invasive tissue deformations and using
echo data. Hence, the instrument operator can receive data
regarding the tissue stiffness using a hand-held probe (Tan et al.,
2023). However, it cannot discriminate between the normal and
cancerous tissues if they have the same elasticity. Advancements
were further implemented on such techniques to overcome the fact
that it is operator-dependent and consequently non-reproducible.
Automated breast sonography is an advanced US technique used to
surpass such drawbacks, where it employs a transducer paddle
adjusted over the breast tissue to slightly compress it and start to
scan. Furthermore, by using certain computer algorithms, 3D views
could be generated without intervention of any specialist
(Vourtsis, 2019).

Ultimately, the US technique is more sensitive than
mammography in screening dense breast tissues as well as
contrast-enhanced US, as it could distinguish between benign
and malignant tumors. Some reports showed that combining US
and MRI or US and mammography techniques could reduce time
and cost and increase the efficiency of imaging. These fusions are
more sensitive than MRI- and US-guided biopsies; so, they
compensate for the pitfalls of each imaging technique alone
(Smetherman, 2013; Fiorica, 2016).

Immunohistochemistry

Immunohistochemistry is a general bio-analytical technique, in
which one ore multiple selected antibodies are used to identify the
expression levels of specific antigens. Since there are several specific
breast cancer biomarkers, targeting those biomarkers is considered
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as the most powerful tool for breast cancer detection. Human
epidermal growth factor receptor 2 (HER2) is an essential
protein involved in the progression of BC (Krishnamurti and
Silverman, 2014; Marchiò et al., 2021). Along with HER2, there
are protein-based biochemical markers in serum such as tetraspanin
CD9 and CD82, Annexin-1, heat shock protein 70, and
metalloprotease ADAM1 (Brzozowski et al., 2018). Also, there
are nucleic acid-based BC biomarkers like microRNAs (miR),
P53 gene mutations, and BRCA1 gene (Bonacho et al., 2020).
The most common breast cancer biomarkers that have been
intensively reported in the literature are collected and tabulated
in Table 1.

Hannafon et al reported that concentration of miR-1246 and
miR-21 in plasma were significantly increased in BC patients than
healthy subjects (Hannafon et al., 2016). Such types of biomarkers
were exploited to detect this disease with high sensitivity and
specificity using the conventional immunoassays. Accordingly,
enzyme-linked immunosorbent assay (ELISA) is used for the
qualitative and quantitative diagnosis. ELISA uses antibodies
specific to desired biomolecules or antigens. S. Mohan et al
investigated N-hydroxy L-Arginine (NOHA) as a new biomarker
in plasma to discriminate between patients with estrogen-negative
and positive BC using ELISA technique (Mohan et al., 2018). They
evaluated its sensitivity, specificity and precision using NOHA
antibodies; where the assay reached ultra-high sensitivity with the
limit of detection of 60 pg/mL. Therefore, this technique is widely
exploited for biomarkers detection and selective diagnosis.

Advanced techniques for
cancer diagnosis

Fast and accurate detection of various biomarkers at several
molecular levels is a desired target for improving the breast cancer
prognosis and patients’ health status. Conventional techniques for
detecting cancer biomarkers are subjected to considerable criticisms

due to their large samples, complicated, and expensive devices that
require well-trained operators, specialized laboratories, and the long
time required to perform the analysis. Consequently, developing
alternative methods to overcome these obstacles is crucial for
shaping the future of bio-analytics and disease diagnosis.

Biosensors represent a promising solution to the previously
mentioned problems of conventional methods. Biosensors are
non-invasive devices exhibiting extreme sensitivity and selectivity
for specific biomarkers. They are characterized by having reasonable
prices, fast assessment, and accurate measurement. Moreover,
qualitative and quantitative measurements could be carried out
using bio-sensing systems facilitating studying and explaining
various cellular phenomena (Hassan, 2022). Biosensors are
tailored-based platforms, in which specific approaches could be
tailored and designed, for the direct tracking of the levels and
concentrations of certain types of analytes in different biological
or environmental matrices without any sample pre-treatments. As
shown in Figure 1A, common bio-sensing approaches (techniques)
comprise three main components: (1)-Bio-recognition element(s)
(the essential element for identification, recognition, and
determination of targeting analyte(s)). (2)-transducers (that
generates measurable signals). (3)-Signal processing unit(s)
(Magar and Hassan, 2021; Arafa et al., 2022). Biosensors are
generally categorized, according to the transducer type, as an
optical biosensor, electrochemical biosensor, field effect transistor
(FET), optical, gravimetric and colorimetric sensing or mass-based
biosensors (Hussein et al., 2020).

Electrochemical biosensors

Electrochemical biosensors engage the advantages of selective
recognition of targeting analyte(s) and their electrochemical
responses (e.g., voltammetric, amperometric, potentiometric or
impedimetric signals) to be perfectly used for the rapid, and
quantitative analysis in complex matrices. Electrochemical

TABLE 1 Selected potential biomarkers for breast cancer (OPN, PDGF, CIFRA-21-1, tPA, VEGF, HER-2, CEA, CA 15-3, CA27.29, BRCA2, and BRCA1). Among
the listed biomarkers (CA15-3 and CA27.29) are remarkable selective biomarkers for the BC diagnosis (Gajdosova et al., 2020).

Targeting biomarker Size/kDa Incidence in cancer Level in serum

OPN 41–75 Prostate, ovarian, lung, liver, colon, and breast 16 ng/mL

PDGF 35 Ovarian, liver, glioblastoma, lung, colorectal and breast, (7.5 ± 3.1) ng/mL

CIFRA-21-1 40 Pancreatic, lung and breast, 50 ng/mL

TPA 20–45 Pancreatic, lung and breast 109 U/L

VEGF 18–27 Ovarian, brain, renal, hepatobiliary, gastrointestinal, lung, and breast ~220 pg/mL

HER-2 185 Prostate, gastric, ovarian, and breast 15 ng/mL

CEA 180–200 Medullary thyroid, lung, pancreatic, gastric, and breast 2–4 ng/mL

CA15-3 290–400 *Breast 3–30 U/mL

CA27.29 250–1,000 *Breast ≤37 U/mL

BRCA2 384 Pancreatic, prostate, lung, ovarian, fanconi anemia, and breast, ND

BRCA1 207–220 Pancreatic, prostate, ovarian, and breast ND

Abbreviations: Breast Cancer Type 1 gene (BRCA1), cancer antigen 15-3 (CA15-3), cancer antigen 27-29 (CA, 27-29), carcinoembryonic antigen (CEA), human epidermal growth factor

receptor 2 (HERT2).
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biosensing platforms comprise two or three-electrode setup
including working, reference, and auxiliary (counter) electrodes.
However, all electrochemical reactions (i.e., bio-catalysis enzymatic
reactions, physical attachments and binding affinities, or redox
reactions) are carried out on the working electrode surface
(Hussein et al., 2020). Accordingly, chemical and physical
immobilization of bio-receptors (e.g., proteins, antibodies,
aptamers, or enzymes) are strongly influenced by the working
electrode materials and their electro-active architecture (Anusha
et al., 2023).

Several electrochemical assays, including the electrochemical
impedance spectroscopy (EIS), differential pulse voltammetry (DPV),
cyclic voltammetry (CV), and square wave voltammetry (SWV) have

been developed and intensively used for disease diagnosis and
biomarker determination (Rostamabadi and Heydari-Bafrooei, 2019;
Freitas et al., 2020; Gajdosova et al., 2020). As shown in Figure 1B, three
main individual compartments (sensing elements, transducer, and
signal processing unit) are involved in the biosensor setup. Thus, to
construct an effective electrochemical approach, certain considerations
must be taken into account. First, a designed bio-receptor(s) or bio-
sensing element(s) must be identified and selected to be immobilized
onto the sensor surface for the selective detection of the analyte(s) (e.g.,
cells, biological molecules, protein biomarkers, etc.,. . .).

Second, physical entrapping and attachments of the bio-sensing
elements could be simply applied onto the transducer surface,
however chemical immobilization is strongly recommended for

FIGURE 1
(A) General assembly of biosensors techniques (Electrochemical gravimetric and colorimetric) showing the most common types of biorecognition
elements (nucleic acids, antibodies, protein, aptamers, cells, and bacteriophages) that could be immobilized on different transducers to generate
readable and amplified signals through signal processing units. QCM, FET, and SPR stand for quartz crystal microbalance, field effect transistor (FET), and
surface plasmon resonance, respectively. (B) Three main components of the electrochemical biosensor’s setup: On the active surface area of the
transducer (working electrode), a selective sensing element (bio-receptor(s)) could be physically or chemically immobilized. The outcome of the
selective interaction is processed and amplified through the third component (signal processing unit).
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securing the orientation and vertical alignments of the selected bio-
sensing elements. Indeed, this chemical immobilization will ensure
the correct direction of bio-sensing active sites, increase the binding
affinity and enable the high and fast recognition. Subsequently, this
will decrease the possible non-specific (interferences), and increase
the overall bio-sensing performance.

Third concern to be considered, controlling the charge (signal)
transfer from the active bio-recognition/binding site(s) to the
transducer surface is necessary to enable a robust and reliable
electrochemical signal. Add to these considerations, blocking
non-specific binding sites is necessary to minimize the false-
positive feedback of the constructed biosensors. Figure 2 is drawn
to summarize the main biosensor considerations that are highly
needed for establishing high performance biosensing systems.

First is the selection and correct immobilization of bio-recognition
element(s). Second is the understanding and optimizing of the signal
transfer mechanism(s) including the direct and mediated electron

transfer. In the mediated electron transfer, redox reaction(s) are
taking place through the use of artificial electron shuttles. Third
stage is the blocking of non-specific binding sites through the use of
certain blockers (e.g., bovine serum albumin (BSA)).

Impact of nanomaterials on the
biosensor performance

The overall performance of electrochemical biosensors is
regulated by the materials used for the fabrication,
functionalization, and/or modification of working electrodes and
their electro-active architecture (Anusha et al., 2023).

Due to their great improvements in detection sensitivity and
ability to conduct accurate analysis, a vast range of nanomaterials are
used as reporting molecules, capture probes, nano-carriers, catalysts,
and electrode modification materials in the electrochemical

FIGURE 2
Three main stages for constructing effective electrochemical biosensors.
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biosensors. Moreover, research on various types of electrochemical
biosensors utilizing nanocomposites for the detection of
transcriptomic, proteomic, and genomic breast cancer biomarkers
has grown rapidly in recent years. Nanomaterials are used for sensor
surface functionalization, and modification to add certain important
electrochemical features including the increase in the electric
conductivity, electro-catalytic activity, and support the direct fast
electron transfer (Hussein et al., 2023; Duraia et al., 2024). In
addition to those electrochemical features, nanomaterials are also
used to expand the active surface area of the sensor surface allowing
effective loading of bio-recognition elements, supporting the
chemical and physical immobilization of the sensing materials,
and increasing the sensor life time and signal stability (Ahirwar,
2021; Barhoum et al., 2023; Song et al., 2023). Therefore, in the next
subsections, the important roles of nanomaterials and
nanocomposites on the performance of different bio-sensing
approaches will be intensively discussed.

Immunosensors: antibody-based
electrochemical biosensors

Antibodies are the most commonly used bio-receptors in the
biosensing process. Combining the properties of antibodies with the
biosensors creates a special type called immune-sensors, using a
certain antibody (Ab) as a recognition element. Based on the
selective binding affinity between the antibody and its targeting
antigen on the transducer surface (i.e., the immune-binding
affinity resulted from antibody-antigen interactions),
immunosensors exhibit superior specificity and sensitivity (Hussein
et al., 2023). Sensor transducer transforms this immune-binding
affinity into a reasonable electrochemical response which is
dependent on the available concentration of free targeting antigen
in the introduced samples (Hussein et al., 2023). Several studies have
been applied successfully to the detection of breast cancer biomarkers
and achieved promising results. In this regard, R. Sakthivel et al
designed a superior sandwich-type electrochemical immunosensor by
modifying a disposable gold working electrode with gold
nanoparticles attached to a transition metal carbide MXene
(Ti3C2TX) to support the chemical immobilization of HER2-ECD
antibody and to decrease the charge transfer resistances through
enhancing the electron transport (Sakthivel et al., 2024). Moreover,
they synthesized a nanocomposite made of nitrogen-doped graphene/
metal-organic framework together with HER2-ECD antibody to
amplify the signal for effective determination of HER2 in patient
serum samples. This immunoassay exhibited a linear range of
0.0001–50.0 ng/mL, good stability, and reproducibility;
furthermore, it achieved great specificity with a low detection limit
of 0.757 pg/mL.

Other examples of the electrochemical immunosensors were
developed for the detection of the breast cancer biomarkers. For
example, Kazerouni et al presented an innovative method for the
electrochemiluminescence (ECL) identification of HER2 antigen.
Interestingly, the sensor consists of 18 electrochemical cells,
enabling it to simultaneously measure 18 different samples. They
depend on the sandwich immunoassay by immobilizing
HER2 antibody on the screen-printed carbon electrode modified
with Ti3C2 MXenes to facilitate the electron transfer and the

attachment of the antibodies. Moreover, they introduced an
impressive nanocomposite containing gold nanoprisms for the
ECL signal amplification, leading to better analyte detection and
an anti-CD63 antibody for making the sandwich structure. The
system achieved an excellent LOD of 5.0 pg/mL and showed
superior adaptability in measuring other different analytes by
utilizing different antibodies, giving room for the detection of
several analytes by using the same design with different
antibodies (Fathi Kazerouni et al., 2024).

Worth mentioning here that the ECL working principles relied
on the electrogenerated chemiluminescence signal produced from
bi-products (excited intermediates) generated at the surface of
sensor transducers. As a result, a dose of light (luminescence) is
emitted due to the relaxation of the excited molecules. Thus, the
labeled ECL-based sensors are representing a combination of visual
luminescence detection caused from electrochemical reactions. This
kind of hybrid optical-electrochemical system can afford high
sensitivity in many clinical applications (Cao et al., 2022; Cao
et al., 2023; Yuan et al., 2023).

Additionally, N. Kumar et al introduced a platform to detect BC
antigen Cluster of Differentiation-44 (CD44) by modifying the
glassy carbon electrode with nanocomposites made of graphene
quantum dots and gold nanoparticles (GQDs-GNPs). The
nanocomposite was made through a simple and eco-friendly
electrochemical exfoliation technique. Moreover, the
nanocomposite provided excellent electrochemical stability, a
large surface area, and several carboxylic functionalities,
enhancing the immobilization of anti-CD44 antibodies. The
sensor showed high specificity and selectivity for the
CD44 biomarker and achieved an excellent LOD of 1.17 fg/mL in
phosphate buffer saline (PBS). However, the serum sample showed a
LOD of 3.17 fg/mL (Kumar et al., 2023).

Nucleic acid-based electrochemical
biosensors (NBEB)

The presence of breast is accompanied by the existence of
various nucleic acid-based biomarkers, allowing for its detection
and monitoring through various techniques. Fortunately, nucleic
acid-based materials are extensively utilized in various fields due to
their diversity and their various benefits. Several types of nucleic
acid-based substances are extensively used in biosensing because
nucleic acids are superior bio-receptors proficient in the detection
and recognition of various analytes. Subsequently, incorporating
nucleic acid-based materials in biosensors, especially the
electrochemical type, represents a promising solution for the
process of diagnosis for breast cancer and other types of cancers.
Specifically, the resultant NBEB comprises a probe DNA capable of
binding to its complementary DNA upon the self-hybridization
onto the sensor surface, resulting in an electrochemical signal that
varies with the concentration of the target biomarker (Jing
et al., 2022).

Various nucleic acid-based materials can be used as sensing
probes in electrochemical biosensors. For instance, aptamers are
oligonucleotide synthetic short single-stranded DNA or RNA
ligands. They showed exceptional binding abilities (via
intermolecular forces), outstanding selectivity, and extraordinary
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sensitivity towards a wide and diverse range of targets such as
metabolites, proteins, and whole cells. Numerous aptamer-based
electrochemical biosensors have been introduced in recent years
(Senel et al., 2019; Zhang et al., 2023a). In this regard, Liangliang Bi
et al has detected HER2 in the serum of a BC patient via
electrochemical impedance spectroscopy (EIS) by modifying the
GCE of an aptasensor with a nanocomposite made of carbon
nanotubes decorated with palladium nanoparticles to enhance the
conductivity and the attachment of the aptamer (Bi et al., 2023). The
sensor showed simplicity, admissible specificity, good stability, and
an acceptable LOD of 8.0 pg/mL. Moreover, it exhibited a linearity
range of 0.03 ng/mL to 9.0 ng/mL. Moreover, Ya-Zhang et al
fabricated an outstanding aptasensor by incorporating a
nanocomposite into a screen-printed carbon electrode (Zhang
et al., 2023b). The nanocomposite consisted of a metal organic
framework, zeolitic imidazolate framework-67 (ZIF-67), and
antimonene (AMNF). The presence of antimonene not only
provides a large surface area, increases stability, and enhances
biocompatibility, but also helps to strongly attach the single-
stranded aptamer embedding Cd+2 as signal labels to the working
electrode. The aptasensor demonstrates a good LOD of about 5.0 fg/
mL and a detection range of 0–1,000 pg/mL. Furthermore, Ya-
Zhang et al presented another electrochemical aptasensor for the
detection of HER2 (Zhang et al., 2023c). They incorporated ZIF-67,
polydopamine (PDA), and HER2 aptamer (ZIF-67-PDA + Apt) to
provide high electrochemical redox activity and a large surface area.
In addition, another nanocomposite used as signal labeling was
made of Cu/UiO-66 metal organic framework, HER2 aptamer, and
3, 3′, 5, 5′-tetramethylbenzidine (TMB). Once the ZIF-67-PDA +
Apt probe captured HER2, the conductivity of the electrode was
weakened, followed by the addition of Cu/UiO-66+Apt, resulting in
an enhancement of the electrochemical signal. The sensor showed a
LOD of 45 fg/mL and a detection range of 0.75–40 pg/mL.

Another example of nucleic acid-based nanomaterials used as the
sensitive probe of the working electrode is single-stranded DNA
(ssDNA). Sara Ranjbari et al has conducted a good modification to
the glassy carbon electrode with a nanocomposite consisting of
hierarchical flower-like gold and MXene nanoparticles to elevate the
conductivity of the sensor to detect miRNA-122 in serum samples of
20 BC patients (Ranjbari et al., 2023). Moreover, the nanocomposite
aided in the attachment of the antisense ssDNA. The resultant
electrochemical biosensor achieved a limit of detection of 11.4 fg/
mL, exceeding the LOD of the traditional methods of detection, and
a linear range of 32.6 fzg/mL to 32.6 ng/mL. Furthermore, it showed
superior selectivity, sensitivity, and reproducibility and maintained
excellent stability for 32 days. Another form of ssDNA used as a
probe on the working electrode surface is complementary DNA. Sinan
Fu et al hasmodified aGCEnanocomposite of a creative composition to
enhance the electrode properties to detect miRNA-21 in the serum of
BC patients (Fu et al., 2023). The nanocomposite consisted of tungsten
disulfide, Co9S8, double-walled carbon nanotubes, and silver
nanoparticles, Co9S8@WS2/DWCNT-AgNPs. The use of this newly
developed nanocomposite led to a string enhancement in the
conductivity, intensified the electrochemical signal, and offered
expandable binding sites for larger attachment of the cDNA probe
through Ag-S bonding. The sensor achieved sensitivity, selectivity, and
reproducibility with a good LOD of 5.5 ag/mL and a concentration
range of 3.6 ag/mL to 36.07 pg/mL.

In the detection of BC biomarkers, miRNA is not only used as a
biomarker but also as a sensing probe on the working electrode of
the electrochemical biosensor. Sadrabadi et al enhanced the
properties of a bare carbon paste electrode by incorporating a
nanocomposite on its surface in the presence of an electro-active
label to detect microRNA-155 in the samples of BC patients
(Sadrabadi et al., 2024). The nanocomposite was carbon
nanofibers, a metal organic framework based on copper
(CuMOF), and iron-modified graphene oxide nano-sheets (Fe@
rGO). The use of this nanocomposite enhanced the electron
transfer, provided binding sites for the attachment of the probe
miRNA, and facilitated the fixation of the probe on the electrode
surface. The sensor offered good selectivity, sensitivity, and
reproducibility; moreover, it exhibited a low LOD of 31.6 fg/mL
and a wide range of 0.79 fg/mL-80 pg/mL.

Although the use of DNA probes in electrochemical biosensors is
impressively beneficial, they suffer from some drawbacks. They suffer
from surface perturbations, inhibiting the attachment of the target
molecules to the probe. In addition, non-specific interactions occur to
reduce detection sensitivity and produce several background signals.
Moreover, the complexity of the process of synthesizing these probes
hinders their use in clinical diagnosis. Therefore, numerous research
projects have been conducted using different alternatives to DNA
probes with similar properties (Yu et al., 2024).

Peptide-based nucleic acid (PNA) represents a promising
alternative to DNA probes, overcoming their obstacles and
enhancing the process of diagnosing breast cancer. PNAs are similar
to nucleotides in structure except for the presence of N-(2-aminoethyl)-
glycine joined via a peptide bond instead of the negatively charged
phosphate groups, leading to modifications in the interaction between
the PNA and the target nucleic acid. Moreover, PNAs can effectively
make duplexes at ionic strengths very close to physiological conditions
(Lavecchia di Tocco et al., 2024). Various articles using PNAs as probes
on the working electrodes of electrochemical biosensors for BC have
been released. R. Liu et al improved the efficiency of glassy carbon
electrode using a magnetic nanocomposite to detect the TP53 gene in
the samples of BC patients using PNA as a probe (Zhang et al., 2024).
The nanocomposite was made of Fe3O4/α-Fe2O3 and gold
nanoparticles to increase the sensitivity of the electrochemical
sensor, improve the conductivity, and to intensify the
electrochemical signals. Due to the high specificity of the PNA
probe and its high affinity towards the target DNA molecules, the
sensor managed to detect the single-base mismatched DNA without
any further DNA amplification steps. The electrochemical detection of
the target TP53 on the surface of MGCE was achieved by applying a
magnetic field after the self-hybridization between the PNA and the
target DNA, leading to different and several rates of electron transfer
resulting in current changes. Then, the previous process was followed by
the removal of that field, leading to rapid regeneration of the modified
electrode. The system achieved a remarkable LOD of 0.56 pg/mL and a
broad linear range from 2.2 pg/mL to 2.2 μg/mL.

Mixed method-based electrochemical
biosensors

Through the previous detection probes showed promising results
and the ability to replace conventional methods, several modifications
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TABLE 2 A short list of reported electrochemical bio-sensing approaches for the BC diagnosis using developed nanocomposites (Gajdosova et al., 2020).

Potential
analyte(s)

Working
electrode

Nanocomposite Measuring
technique

Linearity LOD Source

BRCA 1 MBCPE Fe3O4@Ag, DNA probe EIS 100 aM–10 nM 30 aM Benvidi and Jahanbani
(2016)

GCE RGO, MWCNTs, PANHS CV, EIS 100 aM–10 nM 37 aM Benvidi et al. (2016)

PIK3CA gene CPE ssDNA/PIn6COOH/MoS2 CV, EIS 100 aM–10 pM 15 aM Yang et al. (2019a)

GCE GO, GNR EIS 15 fM–148 pM 4.5 fM Ebrahimi et al. (2018)

GCE ZrO2-RGO EIS 10 fM–100 pM 4.3 fM Zhang et al. (2018)

MUC SPCE CNTs CV, EIS 0.1–2 U/mL 0.02 U/mL Nawaz et al. (2016)

GCE ferrocene-loaded polymeric
micelle

CV 1–1,000 cells/mL 10 cells/mL Mouffouk et al. (2017)

GCE cDNA-Fc/MXene/Apt/Au EIS, SWV 1.0 pM–10 mM 0.33 pM Wang et al. (2020)

CA15-3 GE streptavidin-coated magnetic
beads

CV, EIS ND 15 × 10−12 U/mL Akbari Nakhjavani
et al. (2018)

GE GO/Py-COOH, MWCNTs DPV 0.1–20 U/mL 0.01 U/mL Akter et al. (2016)

HER2 ITO APTES/MoO3@RGO CV, DPV, EIS 0.001–500 ng/mL 0.001 ng/mL Augustine et al. (2019)

GCE AuNP-ERGO-SWCNTs EIS 0.1 pg/mL–1 ng/mL 50 fg/mL Rostamabadi and
Heydari-Bafrooei

(2019)

SPGE MIP CV 10–70 ng/mL 1.6 ng/L Pacheco et al. (2018)

GE GNR@Pd SSs—Apt—HRP EIS 10–200 ng/mL 0.15 ng/mL Chen et al. (2019)

SPCE MBs and CdSe@ZnS QDs DPASV 0.50–50 ng/mL 0.29 ng/mL Freitas et al. (2020)

CEA GCE aptamer/GLD/CS/ZnS-CdS/
MoS2

CV From 0.05 to 20 ng/mL 0.031 ng/mL (Wang et al., 2016;
Paimard et al., 2020)

CPE GNPs and MWCNTs CV, EIS From 0.4 to 125 ng/mL 0.09 ng/mL Paimard et al. (2020)

GCE Au-AgNPs/RGO CV From 0.001 to 80 ng/mL 0.29 pg/mL Yang et al. (2019b)

MUC1, and
miRNA-21

GCE Au nanoflowers ECL From 1 fg/mL to 10 ng/
mL (MUC1) From 20 aM
to 50 pM (miRNA-21)

0.4 fg/mL (MUC1)
11 fg/mL

(miRNA-21)

Li et al. (2020)

CA 27-29 GCE Au/MoS2/RGO CV From 0.1 to 100 U/mL 0.08 U/mL Alarfaj et al. (2018)

uPA FTO GNS DPV, CV From 33 fg/mL to
33 μg/mL

158.4 fg/mL Roberts et al. (2019)

tPA GCE SWCNTs CV, EIS From 0.1 to 1.0 ng/mL 0.026 ng/mL Saify Nabiabad et al.
(2018)

MCF-7/CTC RGO/AuNPs/CuO CV, CA From 50 to 7000 cells/mL 27 cells/mL Tian et al. (2018)

MCF-7 GCE Au NCs/amino-
functionalized
MWCNT-NH2

CV, EIS From 100 to 1.0 × 106

cells/mL
80 cells/mL Yang et al. (2018)

GE Bi2Se3@Au-mDNA CV, EIS From 3.4 ng/mL to
0.924 μg/mL

340.1 pg/mL Mohammadniaei et al.
(2018)

GCE Hexagonal carbon nitride
tubes

Photo-current From 100 to 1 ×105

cells/mL
17 cells/mL Luo et al. (2020a)

GCE TiO2 nanotubes with
graphene

EIS From 1,000 to 1 × 107

cells/mL
40 cells/mL Safavipour et al. (2020)

MDA-MB-231 GE Non-spherical AuNPs DPV From 10 to 1 × 106

cells/mL
2 cells/mL Akhtartavan et al.

(2020)

Cancer stem cells GE AgNPs DPV From 10 to 5 × 105

cells/mL
6 cells/mL Tang et al. (2019)

(Continued on following page)

Frontiers in Sensors frontiersin.org09

Gamal et al. 10.3389/fsens.2024.1399441

https://www.frontiersin.org/journals/sensors
https://www.frontiersin.org
https://doi.org/10.3389/fsens.2024.1399441


were conducted to achieve better results. For instance, adding catalytic
enzymes to the detection method as a common label attracts the
attention of many scientists. The enzymes convert definite substrates
into active redox signals under certain conditions to better enhance the
sensitivity and selectivity of the electrochemical biosensors. Therefore,
Y. Zhang et al used the previous approach to develop electrochemical
biosensor to detect the soluble programmed death ligand 1PD-L1 in
the samples of BC patients (Zhang et al., 2023d). A glassy carbon
electrode modified with polyethyleneimine (PEI), gold nanoparticles,
and multi-walled carbon nanotubes (MWCNTs) nanocomposites was
exploited to enhance the electrochemical signal, electrode surface
conductivity and improve the attachment of the programmed death
ligand 1PD-L1 aptamer as a sensing probe. Moreover, they added
covalent organic frameworks, gold nanoparticles, antibodies, and
horseradish peroxidase (COFs-AuNPs-Ab-HRP) to their
electrochemical sensors to enhance the sensing performance
through facilitating the catalytic oxidation in the presence of
hydroquinone (HQ) and H2O2. Once the sensor encounters sPD-
L1, hydrogen peroxide converts HRP to its oxidized form, leading to
the oxidation of HQ to benzoquinone (BQ), to amplify the
electrochemical readouts. The sensor achieved a remarkable LOD
of 0.143 pg/mL and was effectively implemented in clinical and cellular
samples, achieving great results in comparison with the ELISA kit.
Furthermore, the sensor showed high selectivity and sensitivity, giving
the chance for early detection of sPD-L1 in BC serum.

Employing aptamers with electrochemical immunosensors in
the presence of enzymes is also a promising approach to enhancing
the properties of the electrochemical sensor. Another research group
has modified the glassy carbon electrode with SWCNTs to enhance
the detection efficiency of the HER2 in the serum of BC patients.
They utilized the SWNTs to facilitate the attachment of the anti-
HER2 antibody, increase the binding sites of the antibodies, and
improve the conductivity and electrochemical signal. Once the anti-
HER2 antibody bound to the target HER2, biotin-labeled HER2-
specific aptamers were used to bind to the target HER2, followed by
the catalytic activity of the streptavidin-labeled alkaline phosphatase
(AP) via binding to biotin, generating the electrochemical signal.
Accordingly, a remarkable LOD of 0.23 pg/mL and a linear range

from 1.0 pg/mL to 100 ng/mL were obtained with an acceptable
recovery rate in the analysis of serum samples.

Additionally, Chihong Ma et al benefited from clustered
regularly interspaced short palindromic repeats (CRISPR) to
develop an outstanding electrochemical biosensor to detect miR-
21 in BC patients (Ma et al., 2024). They merged the advantages of
primer exchange reaction (PER) and CRISPR/Cas13a for the
detection of the target biomarker. The detection process was
conducted as follows: a sample containing the target biomarker
was mixed with Cas13a/crRNA, leading to the recognition of the
target miR-21. Consequently, it induces the trans-cleavage activity of
CRISPR/Cas13a and breaks the target ribonucleotide site in hairpin
1 (HP1), resulting in the unfolding of HP1. Hence, the previous
mixture is subjected to the surface of the gold electrode modified
with Hairpin 2 (HP2), resulting in hybridization between the
exposed segments of HP1 and HP2 and establishing binding sites
for PER concatemers. Therefore, PER concatemers bind to these
binding sites, followed by the attachment of multiple short single-
stranded DNAs labeled with methylene blue (ssDNA-MB), leading
to the electrochemically amplified signal. The sensors showed good
reproducibility, with a LOD of 0.11 pg/mL, a linear range from
0.36 pg/mL to 0.36 μg/mL, and a practical performance in plasma
samples. Table 2 is presented here to collect the most relative
nanocomposite that have been developed and applied for
electrochemical sensing of breast cancer biomarkers.

Conclusion

Ultimately, later diagnosis of breast cancer results in lower rates
of human survival than early diagnosis, which can be achieved by
detecting specific biomarkers associated with the breast cancer
disease. Detecting those targeting multiple biomarkers can be
done using several techniques such as PCR, ELISA, MRI,
mammography, and other techniques. Despite tendering
promising results, those diagnostic approaches are hindered by
several drawbacks including long time of analysis, expert data
acquisition, expensiveness, experienced supervision, and need of

TABLE 2 (Continued) A short list of reported electrochemical bio-sensing approaches for the BC diagnosis using developed nanocomposites (Gajdosova
et al., 2020).

Potential
analyte(s)

Working
electrode

Nanocomposite Measuring
technique

Linearity LOD Source

Exosomes
Exosomal
miRNA-21

Au SPE 11-MUA EIS, DPV From 102 to 109

particles/mL
77 particles/mL Kilic et al. (2018)

SPCE MB SiO2 NPs DPC, EIS From 1.2 × 103 to 1.2 ×
107 particles/μL

1.0 × 107

particles/μL
An et al. (2020)

m-GEC magnetic MPs Amperometry From 0 to 1 × 106

particles/μL
105 particles/μL Moura et al. (2020)

GCE Polylysine DPV From 10 to 70 fM 2.3 fM Luo et al. (2020b)

Abbreviations: Chronoamperometry (CA), cyclic voltammetry (CV), electrochemical impedance spectroscopy (EIS), differential pulse voltammetry (DPV), differential pulse anodic stripping

voltammetry (DPASV), square wave voltammetry (SWV), single-walled carbon nanotubes (SWCNTs), multi-walled carbon nanotubes (MWCNTs), carbon paste electrode (CPE), core/shell

quantum dots (CdSe@ZnS QDs), carbon nanotubes (CNTs), single-stranded deoxyribonucleic acid (ssDNA), tissue plasminogen activator (tPA), screen-printed gold electrode (SPGE), Screen-

printed carbon electrode (SPCE), electrochemically reduced graphene oxide (ERGO), glassy carbon electrode (GCE), gold electrode (GE), pencil graphite electrode (PGE), Graphite-based

screen-printed electrode (GSPE), graphene oxide (GO), graphene nanosheets (GNS), gold nanorods (GNRs), graphene quantum dots (GQDs), magnetic bar carbon paste electrode (MBCPE),

self-assembled monolayer (SAM), reduced graphene oxide (RGO), multi-walled carbon nanotubes 1-pyrenecarboxylic acid (Py-COOH), polypyrrole polymer (ppy), polyethylene glycol (PEG),

pd superstructures, molecularly imprinted polymer (MIP), 11-mercaptoundenoic acid (11-MUA), clay–protein based composite nanoparticles (Mt-HSA NCs), magnetic particles (MNPs),

magnetic beads (MNBs), gold nanocages (AuNCs), p-aminophenylacetic acid (Ar-CH2-COOH), 3-aminopropyltriethoxysilane (APTES), Aptamer (Apt), gold nanoparticles (AuNPs), gold

screen-printed electrode (Au-SPE), phosphatidylinositol-4, 5-bisphosphate 3-kinase catalytic subunit alpha gene (PIK3CA, gene), Cysteamine (CysA), carboxyethylsilanetriol (CTES).
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multiplexing capacity. Consequently, biosensor-based techniques
for cancer detection gained considerable attention due to their
portability, disposability and onsite analysis. In addition to other
advantageous aspects such as low cost, noninvasive nature, and their
multiplexing monitoring (i.e., the ability to determine the
concentration of several targets simultaneously in a single drop
of patient sample).

A new generation of electrochemical biosensors was released
due to the involvement of nanostructured materials in the
fabrication, functionalization, and modification of the sensor
surfaces. Nanomaterials were incorporated into these sensors to
achieve superior sensitivity and reliability. The use of
nanostructured materials is necessary to support the effective
immobilization of bio-receptors, to enhance the orientation and
direction of those immobilized molecules and to increase their
sensing lifetime. Another important feature, nanomaterials are
implemented in the bio-sensing system to accelerate the charge/
electron transfer due to their acquired electro-catalytic functions.
Eventually, the incorporation of nanocomposites will afford high
sensitivity, and high selectivity. Since there is always room for
innovation, and optimization, more research studies will be
sponsored to resolve some challenges regarding the stability and
cross-reactivity.

Finding new potential biomarkers with higher stability and
specificity is highly needed to resolve the technical limitations of
the described biomarkers. Additionally, due to the presence of more
than one type of biomarker in BC cancer, platforms capable of
detecting multiple biomarkers simultaneously in one clinical sample
are urgently needed in order to achieve high accuracy. Frequent
biosensing measurements and continuous monitoring will generate
vast amounts of results and confusing data. Analyzing this data
manually is time-consuming and prone to errors. Machine learning
(ML) and artificial intelligence (AI) algorithms can process large
datasets efficiently, identify patterns, and extract relevant
information. Hence, faster and more accurate data analysis will
be obtained, leading to timely interventions and improved cancer
diagnosis outcomes. Therefore, computational models, ML, and AI
should be involved to support the large-scale production,
commercialization and global marketing of biosensors in
biomedical diagnosis and achieve remarkable simplicity
and accuracy.
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