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Introduction:Continuous glucosemonitoring is essential for themanagement of
patients with metabolic syndromes in their daily lives. However, how metabolic
risks are accessed using time-series glucose excursion data for healthy individuals
remains unclear.

Methods: Thus, this study aimed to present a method for evaluating the risks of
glucose dysregulation by analyzing glucose responses under reduced glycemic load
using a phytochemical alpha-glucosidase inhibitor. A 14-day pilot trial with healthy
adult participants was conducted to demonstrate the validity of the method.

Results and Discussion: The results showed that ultradian glucose spike packets
with lower heights dominantly appeared under reduced glycemic load, replacing
postprandial single-lobe glucose spikes with higher heights. Furthermore, the
frequency dominance of ultradian spike packets contributed to the reduction of
overall mean glucose excursions during the test period under reduced glycemic
load. Based on the time-delay model, it was indicated that glycemic load
reduction recovers regular glucose–insulin coupling accompanying ultradian
oscillations, thereby contributing to the maintenance of glucose homeostasis.
The findings of this study indicate that the frequency ratio between pulsatile spike
packets and single-lobe spikes could be a marker for evaluating glucose
regulation/dysregulation in healthy adults.
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1 Introduction

Recently, wearable continuous glucose monitoring (CGM) systems have become
widespread (Villena Gonzales et al., 2019; Zafar et al., 2022). Their validity has been
demonstrated in individuals with diabetes mellitus who need optimal glycemic control
(Langendam et al., 2012; Chan, 2017; Lawton et al., 2018; Cappon et al., 2019). The benefits
of using CGM systems are not limited to the clinical field. Recently, great interest has been
focused on the daily use of CGM systems by healthy individuals. This is due to their
potential benefits in maintaining their physiological states via optimal control of diets and
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sleep, not only for the management of personalized health but also
for achieving the best performance in sports (Jospe et al., 2020;
Holzer et al., 2022; Keshet et al., 2023; Klupa et al., 2023; Wang et al.,
2023; Freckmann et al., 2024).

CGM systems can provide consecutive time-series data on
glucose excursions during daily life. Such data, even acquired in a
limited short term, involve beneficial information such as
postprandial hyperglycemia and subsequent reactive
hypoglycemia (Zecchin et al., 2016; Freckmann et al., 2018; Yu
et al., 2019). This advantage compensates for traditional pinpoint
glycemic tests, including the oral glucose tolerance test (OGTT).
CGM systems can provide versatile information involving
neurophysiological activities that are not limited to
conventional dietary glucose responses. A key to using the
original features of CGM systems is to assess the time-series
data. Notably, the criteria for evaluating the extent of
dysregulation of glucose metabolism in individuals without
diabetes mellitus remain unclear due to insufficient data for
such healthy individuals with potential metabolic risks. Some
attempts have been made referring to the diagnostic criteria for
diabetes mellitus, which potentially leads CGM users to
suboptimal behaviors, including unnecessary dietary restriction
with a risk of undernutrition (Guess, 2023).

Therefore, a machine learning (ML)-based approach has been
developed to extract abnormal patterns of glucose responses during
daily life (Seo et al., 2019;Woldaregay et al., 2019; Mujahid et al., 2021;
Alhaddad et al., 2022). This approach is advantageous for extracting
useful information from large-scale data, although the underlying
physiological mechanisms remain unclear. However, the ML-based
approach has a limitation in that the machines cannot explain causal
associations in their answers. This may become problematic if the
answers are ineffective. Thus, explainable artificial intelligence has
attracted much attention to overcome this problem (Nor et al., 2021;
Chaddad et al., 2023; Duckworth et al., 2024).

Another approach has been developed by postulating a simple
hypothesis. A previous study proposed and demonstrated a
method for detecting glucose dysfunction in healthy

individuals by classifying three glucotypes (high, medium, and
severe glucose-variability phenotypes). These types were
successfully classified by analyzing consecutive glucose
excursion data acquired in daily life using ML techniques, and
the assessments were consistent with conventional glycemic tests
such as OGTT (Hall et al., 2018). The validity of this method has
been independently demonstrated in another previous study
(Breschi et al., 2021).

In this study, we propose a more explainable method for
evaluating the risk of individualized glycemic dysregulation in
daily life via CGM measurements under reduced glycemic load
conditions. We hypothesized that, with a reduction in glycemic load,
glycemic dysfunction would be readily recovered for lower-risk
individuals, whereas dysregulation would remain for higher-risk
individuals. This method evaluates the characteristic glucose
dynamics associated with glycemic regulation/dysregulation to
identify higher-risk individuals. Figure 1 shows the concept of
the proposed method.

This study aimed to demonstrate the validity of the proposed
method by conducting a 14-day pilot trial with healthy young and
middle-aged healthy adult participants. For this purpose, we
prepared small supplemental foods containing an alpha-
glucosidase inhibitor (AGI) to generate low-glycemic load
conditions. AGI has been reported to moderate glucose
absorption in the small intestine by inhibiting alpha-glucosidase,
which is involved in the breakdown of polysaccharides (like maltose)
into glucose (Fang et al., 2017; Dong et al., 2021; Liu et al., 2021).
Using such small supplemental foods is expected to help examine
how dynamics are affected by glycemic load reduction from usual
levels while maintaining usual diets and eating habits.

The characteristic glucose dynamics associated with glucose
homeostasis and its disruption were extracted from the
individualized time-series CGM data acquired over the three 14-
day test periods. Amodel for explaining how ourmethod can predict
the potential risk of glycemic dysfunctions from the dynamic
patterns of CGM traces in daily life was provided by correlating
the data with clinical parameters.

FIGURE 1
Concept of our proposal. How glycemic responses differ when the glycemic load is reduced was examined. AGI-containing supplemental foods
were used to reduce the glycemic load via the effect of AGI, which slows down the absorption rate of glucose in the small intestine.
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2 Materials and methods

2.1 Ethics

Written informed consent was obtained from all participants
before participation in this study. The study protocol was reviewed
and approved by the Research Ethics Committee of the School of
Engineering, The University of Tokyo (Approval No. KE22-34), and
the Ethics Committee of the Kobe University Graduate School of
Health Sciences (Approval No. 1124). Furthermore, the study
protocol was officially registered with the UMIN Clinical Trials
Registry (UMIN000051003) and is publicly accessible at https://
www.umin.ac.jp/ctr/index.htm. All experiments were performed in
accordance with the Declaration of Helsinki.

2.2 Participants

Healthy daytime workers aged 20–75 years with a high school
graduate level in manufacturing companies were recruited by
advertisement with a leaflet invitation to the study. The exclusion
criteria included individuals who tookmedications acting on glucose

metabolism, such as steroids, nonsteroidal antiinflammatory drugs,
and antidiabetic drugs, those with HbA1c > 6.1% and body mass
index >35 who needed treatment, and those who were at risk of
subcutaneous bleeding by inserting a CGM sensor. Consequently,
17 participants (age: 45.8 ± 12.3 years), including 7 females, were
included in this study.

2.3 Test-food preparation and overall
experimental design

Salacia reticulata was used to prepare test foods containing AGI.
Salacia reticulata involves salacinol as a phytochemical AGI, whose
effect on reducing blood sugar has been demonstrated by many
previous studies (Sim et al., 2010; Medagama, 2015; Morikawa et al.,
2015; Stohs and Ray, 2015), including clinical trials with healthy/
patient (mainly type 2 diabetes mellitus) participants (Collene et al.,
2005; Heacock et al., 2005; Williams et al., 2007; Radha and
Amrithaveni, 2009; Koteshwar et al., 2013; Kushwaha et al., 2016;
Vyas et al., 2016). Baked confectioneries containing S. reticulata
were provided as snack foods containing AGI (Test-food A).
Furthermore, baked confectioneries without S. reticulata were
provided as regular snack foods (Test-food B). Table 1 shows the
specifications of the experimental test samples.

A single-arm trial consisting of four study sessions was designed
to test our proposal (Figure 2A). The first session (Session 1) was a 3-
day nonintervention session, maintaining normal eating activities
with unchanged diet quality. The second session (Session 2) was a 4-
day regular snack session with Test-food B twice a day. The third
session (Session 3) was a 4-day snack session with Test-food A. The
fourth session (Session 4) was a 3-day session with Test-food A
ingested with three meals.

TABLE 1 Specifications of the foods used in the study represented by the
content per ingestion.

Description Test-food A (AGI-
contained food)

Test-food B
(nonAGI food)

Carbohydrate 16.8 g 25.8 g

Energy 67.2 kcal 103.2 kcal

Salacinol 0.089 mg 0 mg

FIGURE 2
Summary of the methods used in this study. (A) A single-arm trial consisting of four sessions was designed to demonstrate the validity of our
proposal. Glucose excursions were monitored using wearable CGM systems over the 14-day study period. (B) The dietary requirements imposed on
participants during the study sessions.
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The total test period was 14 days. The participants were asked to
complete these sessions in accordance with the study instructions
(Figure 2B). In Session 1, all participants were asked to eat their main
meals three times a day while avoiding irregular snacking. In Session
2, participants were asked to consume interprandial Test-food B
twice a day as a regular snack between breakfast and lunch and
between lunch and dinner. In Session 3, participants were similarly
asked to consume interprandial Test-food A as an AGI-containing
snack food. Finally, in Session 4, participants were asked to take
Test-food A with the three meals. Ingestion of any other snack food
was strictly prohibited throughout the four sessions. Furthermore,
the ingestion of any food containing corn syrup was strictly
prohibited during the study period because syrup nullifies the
effect of AGI.

Participants wore CGM sensors during the test period. The
CGM data were analyzed afterward. The individual baseline was
evaluated from the CGM data acquired in Sessions 1 and 2 with no
foods containing AGI, considering the two possible eating habits
with and without snacking in the usual life. In Session 3, Test-food A
containing AGI was expected to reduce the glycemic load, thereby
reducing glucose excursions. In Session 4, AGI was expected to exert
more inhibitory effects on glucose excursions.

The effects of additional ingestion of test foods on individual
glycemic regulation were evaluated to obtain reliable data. The
additional energy by ingestion was 207 kcal at most per day
(Table 2). This might affect the daily diet by an 8.7% increase at
most. Furthermore, whether this energy increase by ingesting test
foods could disturb glycemic regulation was examined by setting a
checkpoint between Sessions 3 and 4. The test was continued with
participants who showed no signs of glycemic dysfunction in
Sessions 1 and 2 by checking their CGM data.

Participants were asked to maintain their food choices during
the test sessions to eliminate health-conscious bias effects. Notably,
participants were asked during the test period not to consume foods
containing glucose syrup, which avoids the effect of AGI.
Participants were also asked to keep their own time-stamped diet
records during the study to confirm whether the experiments would
be successfully completed with no health-conscious bias.

2.4 CGM measurement

To complete the test trial, we required a wearable CGM system
that could operate continuously for 14 days. For this, we selected a
commercially available CGM system (Freestyle Libre Pro, Abbot
Diabetes Care Inc., United States, Japanese pharmaceutical
approval: 22800BZX00227,000). This system consisted of a sensor
attached to the upper arm. Plasma glucose levels translated from

intercellular fluid were recorded every 15 min for 14 days. No data
were missed as long as the CGM sensor was correctly attached (Tang
et al., 2020). Although the sampling rate was fixed at 4 cycle/h (every
15 min), it provided sufficient data for the analysis of glucose
excursions of >30 min (corresponding to 2 cycle/h) based on the
conventional sampling theorem.

2.5 Data analysis

2.5.1 Net mean amplitude of glucose
excursion (MAGE)

The MAGE is often used to numerically evaluate daily glucose
excursions. The MAGE is the average of upward (MAGE+) and
downward (MAGE−) excursions exceeding the standard deviation
of glycemic excursion data over a day measured by CGM as follows:

MAGE � MAGE+ +MAGE−( )/2

The MAGE can be systemically derived from a series of peaks
and nadir levels extracted from glycemic excursion profiles
measured by CGM (Marling et al., 2011). Glycemic excursion
fluctuations can be evaluated using the upper and lower
envelopes of the excursion profiles. Therefore, net glycemic
fluctuation amplitudes defined for each glycemic peak as |G(i) −
GN(i)| were introduced. Such a net glycemic fluctuation
amplitude can be readily derived from the glycemic peaks and
lower envelopes of glycemic excursions (Figure 3A). Here, the
peaks and nadirs were detected by utilizing the automatic peak-
search function with secondary-differentiation processing
provided by the software (OriginPro 2021b; OriginLab
Corporation, Northampton, MA, United States). The lower
envelopes derived from the detected nadirs were taken as
baselines and used to evaluate the net amplitudes of the
detected peaks. These were regarded as the net MAGE in
place of conventional MAGE. An example of the
approximation applied to a measured glycemic excursion is
shown in Figure 3B. Glucose excursions for each session were
characterized using the average net MAGE of all detected peaks.

We evaluated individual net MAGE as a function of HbA1c. A
regression analysis was conducted based on a conventional analysis
of variance (ANOVA) to investigate whether these parameters were
correlated. We then evaluated the individual basal net MAGE as a
reflection of the measures in the daily lives of the participants, taking
into account the net MAGE for Sessions 1 and 2 to minimize any
confounding effect of snacking on glucose excursions. Using these
individual basal net MAGE, we determined the difference between
the relative net MAGE and the basal net MAGE for each session as
△net MAGE. To simply evaluate the effect of AGI ingestion on net

TABLE 2 Total ingestion amounts of components involved in the test food per day during each session epoch.

Epoch Session 2 Session 3 Session 4

Additional carbohydrate g) 51.6 33.6 50.4

Additional energy (kcal) 206 134 202

Assumed energy increase rate (%) 8.7 5.6 8.5

Total AGI (Salacinol) ingestion (mg) 0 0.178 0.267
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FIGURE 3
Numerical evaluation of net MAGE. (A) Principle of evaluation. (B) An example of evaluating net MAGE using a glucose excursion profile.

FIGURE 4
Typical daily CGM traces representing glucose spikes. (A) The trace dominantly provided postprandial single glucose spikes. (B) The trace dominantly
provided postprandial pulsatile glucose excursions, which were presumed to be derived from a single glucose spike. S indicates a single-lobe glucose
spike, and P indicates a pulsatile glucose spike packet.
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MAGE, we combined the data from Sessions 3 and 4 as the AGI-
ingestion session and evaluated the session difference △net MAGE.
The statistical significance was tested with a one-sample t-test. The
△net MAGE was depicted as a function of HbA1c. A regression
analysis based on ANOVA was performed.

2.5.2 Characterization of the postprandial glucose
excursion pattern

In the current study, two types of postprandial glucose increase
were observed: single-lobe spike (Figure 4A) and pulsatile glucose
excursion (Figure 4B). Pulsatile excursion, which may be derived

FIGURE 5
Numerical evaluation of PSR using the visual inspection (VI) method. (A) The signal detection theory (SDT) principles for evaluating the reliability of
the VI method. The upper panel provides examples of typical CGM waveforms corresponding to single-lobe (left), pulsatile (right), and undeterminable
(middle) spikes. The lower panel represents the use of probability distribution functions in SDT for the detection of pulsatile and single-lobe spikes as a
function of the discrimination criteria of observers. (B) Index plots with box charts representing the means and standard deviations for the total
detectability data (d-prime) and criterion (c). (C)Net detection rates of the pulsatile and single-lobe spikes after eliminating the undeterminable spikes. (D)
The receiver operating characteristic (ROC) curve for the d-prime and criterion values as depicted in (B).
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from a single-lobe glucose increase, was considered, and the pulsatile
spike noted by P was counted while identifying the single-lobe
glucose spike as S.

All postprandial glucose excursions in the CGM traces for each
session were classified. The ratio of the number of single-lobe and
pulsatile spikes (PSR) emerging in each session was defined
as follows:

PSR ≡
Number ofpulsatile spike

Number of single − lob spike

The PSR for the session with no AGI was defined as PSR1, and
that for the session with AGI was defined as PSR2. Furthermore, a
ratio γ was defined as follows:

γ ≡ PSR2/PSR1

Because the PSR increases, the pulsatile spikes become more
dominant. The ratio γ indicates the effect of AGI on the promotion
of pulsatile spikes while suppressing single-lobe spikes.

Here, the PSR evaluation was performed by visual inspection
VI), with single-lobe spikes identified as isolated large peaks and
pulsatile spikes identified as a series of periodic small peaks. To avoid
the risk of discrimination errors due to observer bias inherent in this
VI method, we used signal detection theory (SDT) to determine the
validity of the method. SDT provides a numerical framework for
evaluating the detection of signals as distinct from noise (Decarlo,
2020) while separately assessing any cognitive bias of observers
(Jayakumar and Simpson, 2020; Locke and Robinson, 2021). While
these spikes were readily distinguishable by their typical waveforms,
there were also undeterminable spikes that reduced the distance
between the two populations and degraded their distinguishability.
SDT can separate undeterminable spikes to evaluate the net
distinguishability.

As shown in Figure 5A, we assumed two Gaussian populations
corresponding to the pulsatile and single-lobe spikes as a function of
the VI-based discrimination criteria. According to the SDT
framework, we introduce four judgment categories. These were
hit H), miss M), correct rejection (CR), and false alarm (FA). Hs
and CRs could be attributed to the reliable detection of the pulsatile
and single-lobe spikes, respectively, and corresponded to each
nonoverlapping portion of the population curve (in the figure,
blue represents pulsatile spikes and red, single-lobe spike). In
contrast, the Ms and FAs attributed to the undeterminable spikes
corresponded to the overlapping portions.

The distance between the two populations, defined as d-prime,
represented distinguishability, and the criteria set the threshold to
determine whether the spikes belonged to the pulsatile or single-lobe
group. As d-prime increased, its distinguishability improved.
Criterion (c) represents observer bias, with positive and negative
criteria representing prioritization of pulsatile and single-lobe
spikes, respectively. These SDT parameters were calculated using
the detection rates of R(H) and R (FA) as

d′ � Z R H( )[ ] − Z R FA( )[ ]
c � −1

2
Z R H( )[ ] + Z R FA( )[ ]{ },

where Z represents the normal inverse cumulative
distribution function.

We further checked d-prime and the criteria for all the data
acquired in the current study. Since the Ms and FAs for the
underminable spikes were not dissociable, we evaluated R (FA)
using half of the underminable spike number for convenience,
assuming no significant differences between the pulsatile and
single-lobe populations. As shown in Figure 5B, we confirmed
that d-prime differed significantly from the zero level (averaged
d-prime = 1.47, SD = 0.40, p = 3.6E-10, power = 1), suggesting that
the VI method can provide fair distinguishability. In contrast, the
slightly negative criterion (c = −0.11, SD = 0.23) did not reach
statistical significance (p = 0.077, power = 0.43), suggesting sufficient
neutrality to exclude the possibility of observer bias. With this VI
method, we achieved sufficient detectability in both pulsatile (0.79 ±
0.095(SD)) and single-lobe spikes (0.73 ± 0.098 (SD)) for PSR
evaluation (Figure 5C). Finally, we evaluated the receiver
operating characteristic (ROC) curve (Figure 5D) to ensure that
the IV-based discrimination was conducted according to the
criterion while minimizing chance judgments. Taken together,
these evaluations confirmed that the detection ratios obtained via
the VI method were a reliable measure of PSR as PSR �
R(H)/R(CR).

2.5.3 Evaluation of the periodicity of
pulsatile spikes

The CGM traces were analyzed to evaluate the net MAGE
through every glycemic peak on the traces as |G(i) − GN(i)|. The
temporal information of the peak provided each interval of the two
adjacent peaks. Such intervals represent the instantaneous period of
the pulsatile glucose spikes. Therefore, all intervals belonging to the
glucose excursion in a session epoch were summed, and a
distribution curve was depicted using the kernel density
evaluation (KDE) method. Additionally, a peak interval was
identified as the period of the pulsatile spikes, ranging from 60 to
120 min. The KDE peaks with longer intervals were considered to be
attributed to the meal interval.

2.5.4 Statistics
Differences in net MAGE between the groups were statistically

evaluated using one-way repeated measures analysis of variance
(ANOVA). Correlations between two parameters were evaluated by
regression analysis using Pearson’s correlation coefficient r) and F
and p-values based on ANOVA. A p-value <0.05 indicated statistical
significance. All statistical analyses were performed using OriginPro
2021b (OriginLab Corporation, Northampton, MA, United States).

3 Results

3.1 Individualized AGI effects on glucose
excursions

Although AGI ingestion overall reduced the glucose excursion,
some participants showed large glucose excursions despite AGI
ingestion (Figure 6A). Thus, the correlation between glucose
excursion and HbA1c as a clinical parameter was investigated to
clarify this individual difference (Figure 6B). A significant positive
correlation was observed for nonAGI-ingestion sessions (r = 0.71,
F = 14.5, p = 0.0019) and AGI-ingestion sessions (r = 0.76, F = 17.6,
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p = 0.0011). The correlation in the AGI session provided lower
glucose excursions than that in the nonAGI-ingestion session. This
indicates that AGI ingestion was generally effective for reducing
glucose excursions independently of HbA1c, although glucose
excursion increased with HbA1c.

However, the efficiency of glucose excursion reduction differed.
The efficiency, evaluated by △net MAGE between the nonAGI-
ingestion and AGI-ingestion sessions, showed severe individual
variance for higher HbA1c levels, whereas the efficiency tended to
increase with increasing HbA1c levels (Figure 6C). The variance was
attributed to individuals who deviated from the tendency, some of
whom ruled out AGI effects. Hence, glucose responses for individuals
with higher HbA1c levels should be considered by considering two
glucose response types (higher and lower sensitivities to AGI).

3.2 Temporal features of postprandial
glucose responses

As described in the Methods section, two postprandial glucose
response patterns, i.e., single-lobe and pulsatile spikes were
observed. Both of these two types appeared in almost all CGM
traces across all participants. The frequencies of the single-lobe spike
and pulsatile spike packet differed with the conditions (nonAGI
ingestion or AGI ingestion) and individuals. The PSR was used to
examine the differences arising from the conditions and individuals.

A significant negative correlation was observed between the
individualized frequency ratio and HbA1c levels for both the
nonAGI-ingestion session (r = −0.65, F = 10.7, p = 0.0055) and
AGI-ingestion sessions (r = −0.61, F = 7.58, p = 0.016) (Figure 7A).

FIGURE 6
Characterization of individualized net MAGE. (A) Correlation between net MAGE and HbA1c in the nonAGI (represented by red color) and AGI
(represented by block color) sessions. Statistically significant correlations were observed (AGI-ingestion session: r = 0.71, F = 14.5, p = 0.0019; AGI-
ingestion session, r = 0.76, F = 17.6, p = 0.0011). (B) Individual differences in the effects of AGI on the reduction of glucose excursions. △net MAGE was
calculated based on the average net MAGE in the nonAGI-ingestion session. (C) Individual differences in AGI effects (represented by △net MAGE
between AGI-ingestion and nonAGI-ingestion sessions) as a function of HbA1c.
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These findings indicate that the frequency dominance of the
pulsatile spike packets decreased with increasing HbA1c levels,
and the frequency dominance of the single-lobe spikes increased
with increasing HbA1c levels. Despite such HbA1c dependence, the
PSR for the AGI-ingestion condition always exceeded that for the
nonAGI-ingestion condition, indicating the inhibitory effect of AGI
on glucose excursions independently of HbA1c.

Because AGI ingestion had an impact on the reduction of
glucose excursions and the increase of the frequency dominance
of the pulsatile spike packets, the correlation between △net MAGE

and γ (=PSR2/PSR2) was examined (Figure 7B), with γ representing
the AGI effect on improving the frequency of pulsatile spike packets
while suppressing the frequency of single-lobe spikes. A significant
negative correlation was observed between△net MAGE and log10 γ

(r = −0.88, F = 44.8, p = 0.000015). This indicates that the frequency
dominance of the pulsatile spike packets contributed to the
reduction of postprandial glucose excursions. Furthermore, how
the ratio γ reflecting the AGI was individualized using HbA1c was
examined to clarify why the sensitivity to AGI individually
differed (Figure 7C).

FIGURE 7
Characterization of postprandial glucose excursions using two typical glucose response types: single-lobe spike and pulsatile spike packet. The
appearance frequency was numerically evaluated using the PSR, which was defined as the number of the types, PSR ≡ Number of pulsatile spike packet

Number of Single−lob spike . PSR1 and
PSR2 corresponded to the nonAGI-ingestion and AGI-ingestion sessions, respectively. (A) PSR1 and PSR2 were separately depicted as a function of
HbA1c. Negative correlation with statistical significance was obtained for both conditions (For PSR1, r = −0.65, F = 10.7, p = 0.0055; PSR2: r = −0.61,
F = 7.58, p = 0.016). (B)△net MAGE, indicating the AGI effect on the reduction of glucose excursions, was correlated with the logarithmic ratio γ (=PSR2/
PSR1). γ reflects the efficiency of AGI in promoting the appearance of pulsatile spike packets while suppressing the appearance of single-lobe spikes. For
γ > 1, AGI is effective in promoting pulsatile spike packets while replacing single-lobe spikes, and vice versa for γ < 1.△net MAGE versus log10 γ provided
negative correlation (r = −0.88) reaching statistical significance (F = 44.8, p = 0.000015). (C) Individual differences in sensitivity to AGI ingestion as a
function of HbA1c. Individuals with higher HbA1c levels exhibited variant efficiencies ranging from negative to positive. The efficiency tended to increase
with HbA1c. r: Pearson’s correlation coefficient.
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Interestingly, γ tended to increase with increasing HbA1c levels
while exhibiting a large variance for higher HbA1c levels.
Furthermore, the two variant cases providing γ < 1 corresponded
to the two variant cases providing △net MAGE >0 in the AGI-
ingestion session. The tendency of increasing γ with increasing
HbA1c levels and the negative correlation between PSR and
increasing HbA1c levels appeared to be discrepant. However,
upon visual inspection of all the CGM traces, the pulsatile spike
packets were highly frequent for lower HbA1c levels independently
of AGI ingestion, indicating that AGI did not contribute to
suppressing the small-number single-lobe spikes in the AGI-

ingestion session. In contrast, AGI effectively suppressed large-
number single-lobe spikes in individuals with high HbA1c levels.

3.3 Periodicity analysis of the pulsatile
glucose excursion

Pulsatile spike packets as a type of postprandial glucose response
were observed. Furthermore, pulsatile glucose excursions not
limited to postprandial responses were observed. Hence, the
pulsatile glucose excursions that appeared during the entire

FIGURE 8
Features of pulsatile glucose excursions in the frequency domain. (A)Distribution of peak-to-peak intervals of glucose excursions provided by time-
series CGM data. The distribution curves were produced using the kernel density evaluation (KDE) method. (B) Individual differences in peak interval
versus HbA1c. Pearson’s correlation coefficient r = 0.53, F = 5.7, p = 0.033. Conventional statistical analysis of the intervals provided mean = 1.65 h
(98 min) and SD = 0.38 h (23 min). (C)Distribution of individualized peak intervals of pulsatile glucose excursions. Although the intervals were widely
distributed for the nonAGI condition, the interval distribution was reduced. The mean peak interval for the AGI-ingestion condition was significantly
smaller than that for the nonAGI condition. (D) Intervals of pulsatile glucose excursions were negatively correlated with the frequency dominance of
pulsatile spike packets replacing single-lobe glucose spikes. Pearson’s correlation coefficient r = −0.39 reached statistical significance (F = 5.1, p = 0.031).
Intervals beyond 2.75 h were excluded because they were regarded as meal–meal or meal–snack intervals.
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session periods in the frequency domain were characterized. Thus,
the distributions of peak-to-peak intervals of glucose excursions
were examined.

Figure 5 shows the individualized KDE curves derived from the
histograms of the intervals where the bin was set at 0.2 h. The
participants provided similar KDE curves with peak intervals
around 1.5 h, except for individuals who provided longer
intervals beyond 2 h (Figure 8A). These longer intervals were
attributed to the meal–meal interval, not pulsatile glucose
oscillations. The correlation between individual intervals and
HbA1c levels was investigated (Figure 8B). A significant negative
correlation was observed (r = 0.53, F = 5.6, p = 0.033).

Glycemic load reduction by AGI ingestion was expected to
shorten the intervals of pulsatile glucose spike packets. The
individualized mean intervals were widely distributed for the
nonAGI-ingestion condition, and the interval distributions were
considerably reduced (Figure 8C). However, no significant
difference in the peak interval was observed between the
nonAGI- and AGI-ingestion conditions, whereas the mean
interval for the AGI-ingestion condition was slightly smaller than
that for the nonAGI condition. Furthermore, how the frequency
dominance of the pulsatile glucose spike packets affected the pulse
intervals was examined. The pulse intervals were negatively
correlated with the frequency dominance of the pulsatile glucose
spike packets (r = −0.39, F = 5.1, p = 0.031) (Figure 8D).

4 Discussion

This study demonstrated the validity of our proposed method
for evaluating glucose dysregulation by CGM during a short-term
test period under reduced glycemic load. The results showed that
postprandial glucose excursions were divided into two types: single-
lobe spike and pulsatile spike packet. The pulsatile spike packets
exhibited ultradian rhythms with a mean of 98 min. Furthermore,
such ultradian glucose oscillations were observed throughout the
day and were not limited to postprandial glucose responses. These
results showed that the observed ultradian glucose excursions,
including the spike packets, could be attributed to pulsatile
insulin secretion.

Many studies have revealed that insulin secretion is pulsed in
two dissociable modes (Sonnenberg et al., 1992; Sturis et al., 1993).
One is a fast mode with a period ranging from 5 to 15 min (Lang
et al., 1979; Pørksen et al., 2002; Hollingdal et al., 2005; Pedersen
et al., 2005; Schmitz et al., 2008), and the other is a slow mode with
an ultradian period ranging from 50 to 150 min (Simon et al., 1987;
Sturis et al., 1995; Simon, 1998; Simon and Brandenberger, 2002).
These two insulin secretion modes arise from different mechanisms.
The fast mode is attributed to intracellular coherent cooperation via
tight junctions (Dyachok et al., 2008; Dhumpa et al., 2014; McKenna
et al., 2016; Ng et al., 2021), whereas the slow mode is attributed to
the glucose–insulin negative feedback system for maximizing
glucose utilization (Sturis et al., 1991; Bruce et al., 2022). Because
glucose and insulin are tightly coupled by this negative feedback
loop, the glucose excursion reflects the ultradian insulin rhythms.
Thus, the ultradian pulsatile glucose excursions, including
postprandial spike packets, were thought to be caused by the
above tight glucose–insulin coupling.

Ultradian pulsatile glucose excursions, including spike packets,
exhibited frequency dominance by AGI ingestion while replacing
single-lobe spikes. Since AGI reduces glycemic load, the frequency
dominance of pulsatile glucose excursions could be attributed to this
glycemic load reduction. However, the mechanism by which
glycemic load reduction contributes to promoting ultradian
pulsatile glucose excursions remains unclear. This may be
attributed to the time-delay model (Li et al., 2006).

The model suggests that a large time difference between glucose
and insulin generates large glucose spikes, whereas a small difference
generates ultradian pulsatile glucose excursions via glucose–insulin
coupling based on their native feedback loop (Figure 9A). Thus, we
considered that AGI reduced the difference by reducing the glucose
absorption rate, thereby achieving glucose–insulin coupling
accompanied by ultradian glucose excursions (Figure 9B).

Many studies have shown that pulsatile insulin secretion not
only in the fast mode (Pørksen, 2002; Pørksen et al., 2002; Satin et al.,
2015; Lee et al., 2017; Laurenti et al., 2021) but also in the slow mode
(O’Meara et al., 1993; Simon et al., 1994) is beneficial for
maintaining glucose homeostasis. The finding of this study that
frequency dominance of the pulsatile glucose spike packets
contributed to reducing overall glucose excursions throughout
the day by AGI ingestion may be involved in such benefits.
Therefore, the PSR, defined by the number of pulsatile spike
packets and single-lobe glucose spikes, could be a key parameter
for evaluating the risks of glycemic dysregulation.

The purpose of our proposed method was to provide
personalized risk assessments of glucose dysregulation for non-
DM patients beyond the limitations of conventional clinical
diagnostic criteria. This aim was in line with that of the previous
studies in which the concept of glucotypes was presented (Hall et al.,
2018; Breschi et al., 2021). These studies argue for the validity of
using the glucotypes for such personal assessments and consider
whether glucotype classification is more informative than average
glucose levels (Hulman et al., 2021).

Our finding that net MAGE is positively correlated with HbA1c
is not very informative. However, we also found that the appearance
ratio for pulsatile versus single-lobe spikes exhibited large variability
at the higher end of the HbA1c range, suggesting that the ratio may
reflect glucose dysregulation levels. Furthermore, the ratio was
greatly improved in those with higher HbA1c by glycemic load
reduction via AGI ingestion. This indicates that individual glucose
responses may be dynamic and change in accordance with glycemic
load. As such, it may provide a more useful measure than HbA1c.
This finding in the present study diverges most from the focus of
previous glucotype research.

The proposed method has some limitations. One is highlighted
by the existence of individuals showing null effects of AGI on
reducing their glucose excursions. Causes of elevated glucose
levels include stress hormones associated with not only insulin-
dependent endocrine systems but also the central nervous system,
such as cortisol (Ortiz et al., 2019; Bentele et al., 2021; Ouyang et al.,
2022). Further studies are needed to explore the mechanism by
which glycemic dysregulation occurs in such individuals. Another
limitation is highlighted by the validity of AGI in reducing the
glycemic load. The results showed that the period of ultradian
excursions increased with increasing HbA1c levels, suggesting
that the AGI effect diminished with increasing HbA1c levels.
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This is explainable by the fact that an increase in HbA1c levels
reflects the risk of glucose dysregulation that may obstruct
glucose–insulin coupling. Nevertheless, some individuals with
even higher HbAc1 levels improved ultradian glucose excursions
by AGI, suggesting that AGI is expected to recover degraded
glucose–insulin coupling for higher HbA1c levels. However, in
this study, the maximum HbA1c level of the participants was
5.6%, which was within the normal range (4.6–6.0%). Further
studies with individuals with much higher HbA1c levels
(5.8–6.4%) are needed.

Another limitation was that we did not measure insulin and
glucose simultaneously. Insulin resistance is a crucial risk factor for
diabetes mellitus (DM). Hyperinsulinemia is a marker for metabolic
dysfunctions, including insulin resistance (Ward et al., 1990;
Dankner et al., 2009; Thomas et al., 2019), suggesting that

hyperinsulinemia may be placed upstream of insulin resistance
(Janssen, 2021). Thus, the progression of metabolic dysfunction
can be evaluated by monitoring both insulin and glucose, which is
why simultaneous insulin-glucose measurement is of great
importance and provides greater benefits not only for DM
patients but also those in the preclinical stages of DM (Meigs
et al., 2020). Future studies should address this issue further, and
this will be aided by the ongoing development of wearable insulin
monitoring devices (Sabu et al., 2019; Liu et al., 2022; Psoma and
Kanthou, 2023).

An issue we have not clarified in this study is the mechanism by
which glycemic load reduction causes ultradian pulsatile glucose
excursions. Recent research suggests that insulin oscillations
regulate cellular energy metabolism via the AKT-insulin pathway
in the frequency domain (Kubota et al., 2012; Purvis and Lahav,

FIGURE 9
A glucose–insulin coupling model. (A) Under regular glycemic load, a small time difference between glucose and insulin forms an ultradian
glucose–insulin coupling mode, whereas a large difference due to delayed insulin secretion disrupts glucose–insulin coupling, resulting in large spike
generation. (B) Under reduced glycemic load, the time difference is effectively reduced, and the ultradian glucose–insulin coupling mode is recovered
even for delayed insulin secretion. The glucose response necessarily exhibits ultradian oscillation.
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2012; Kubota et al., 2018). Whether ultradian oscillations can be
explained by such molecular mechanisms must be determined by
future studies.

In conclusion, this study provides a simple method for
evaluating the risks of glucose dysregulation from time-series
data acquired by a wearable CGM system. This method
analyzes data obtained during regular daily life while ingesting
supplemental foods containing AGI to reduce the overall dietary
glycemic load. The results showed that AGI effects on daily glucose
excursions provided frequency-dominant pulsatile glucose spike
packets with lower peaks, replacing single-lobe spikes with higher
peaks. The analysis of the glucose excursion data in the frequency
domain revealed that the pulsatile glucose spike packets were
involved in ultradian glucose oscillation, which is an index to
show the health of glucose–insulin homeostasis. The proposed
method evaluates how glucose dysregulation is recovered by
reducing the glycemic load during daily life. This method
provides information that is much different from that of
traditional tests conducted under higher glycemic load,
compensating for them.

Many studies have used wearable CGM sensors to examine
glucose excursions in the daily lives of healthy individuals and
determine their potential as a tool with which to evaluate the risk
of type-2 DM. However, these studies have only evaluated
postprandial glucose excursions, and the data obtained is
discussed in terms of the standard features of a conventional
glucose–insulin response. Consequently, personal assessments
tend to be based on the criteria used for diagnosis (Stefan et al.,
2015; Taylor et al., 2019; Nguyen et al., 2020; Bermingham
et al., 2023).

In contrast, our method of evaluating glucose excursions in
relation to ultradian rhythms enables a more precise investigation of
individual glucose dysregulation away from homeostasis (Asher and
Zhu, 2023). There is growing evidence that glucose homeostasis is
regulated not only by the simple glucose–insulin axis but also by
complex nonlinear systems that respond to a wide variety of factors,
including neurophysiological (Singh et al., 2018; Yaribeygi et al.,
2022), genetic (Partch et al., 2014; El-Athman et al., 2019;
Bonnefond and Semple, 2022), and epigenetic (Zheng et al.,
2015; Maude et al., 2021; Wu et al., 2023) variables, as well as
neurotransmitters such as serotonin (Paulmann et al., 2009; Ohara-
Imaizumi et al., 2013). This study has highlighted the importance of
developing a precise and individualized medical approach to DM
(Chung et al., 2020; Franceschi, 2022).We hope that our method will
contribute to this.
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