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Soft bio-mimetic robotics is a growing field of research that seeks to close the
gap with animal robustness and adaptability where conventional robots fall short.
The embedding of sensors with the capability to discriminate between different
body deformation modes is a key technological challenge in soft robotics to
enhance robot control–a difficult task for this type of systems with high degrees
of freedom. The recently conceived Linear Repetitive Learning
Estimation Scheme (LRLES)–to be included in the traditional
Proportional–integral–derivative (PID) control–is proposed here as a way to
compensate for uncertain dynamics on a soft swimming robot, which is
actuated with soft pneumatic actuators and equipped with soft sensors
providing proprioceptive information pertaining to lateral body caudal bending
akin to a goniometer. The proposed controller is derived in detail and
experimentally validated, with the experiment consisting of tracking a desired
trajectory for the bending angle envelope while continuously oscillating with a
constant frequency. The results are compared vis a vis those achieved with the
traditional PID controller, finding that the PID endowed with the LRLES
outperforms the PID controller (though the latter has been separately tuned)
and experimentally validating the novel controller’s effectiveness, accuracy, and
matching speed.
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1 Introduction

The last 2 decades accelerated a paradigm shift in experimental robotics, driven in part
by computational advances as well as by the comparative analysis of biological systems. This
shift has catalyzed the development of sophisticated robots that are borrowed from general
principles of biomechanics and neurocontrol of living organisms, as delineated in the
foundational works of (Dickinson et al., 2000; Ijspeert, 2020). Despite remarkable progress
in crafting robots that mirror the form and function of biological entities, a significant gap
remains in replicating the adaptability and resilience inherent in natural locomotion. This
disparity is particularly evident in areas such as sensory perception and adaptive response
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mechanisms. The unparalleled dexterity of animals, exemplified by
geckos maneuvering on water surfaces (Nirody et al., 2018),
crocodiles in their prey-capture patterns (Fish et al., 2007), and
the enduring resilience of migratory fish (Crossin et al., 2004),
underscores the profound complexity and efficiency of biological
systems. This gap primarily arises from animals’ flexible anatomies
combined with integrated sensing, which grants them an ability
termed ‘morphological intelligence’ (Woodward and Sitti, 2018;
Martinez-Hernandez et al., 2019).

The objectives of bio-mimetic robotics encompass a triad of
goals: to decode and understand fundamental natural mechanisms,
to replicate biological components, and ultimately, to engineer
robotic systems that exhibit parallel functionalities. Recent strides
in soft robotics have been pivotal in emulating the functionality of
natural systems through the use of bio-mimetic materials (Coyle
et al., 2018; Sachyani Keneth et al., 2021). These soft robotic systems
offer distinct advantages, including ease of fabrication, inherent
safety, and the ability to interact delicately with their environment or
navigate through complex terrains (Shepherd et al., 2011; Shintake
et al., 2018). Various modes of actuation such as elastomeric
actuators, hydrogels, shape memory alloys (SMA), and
electroactive polymers (EAP) have emerged as the mainstay in
these systems (Appiah et al., 2019; Banerjee et al., 2021).

The study of aquatic locomotion is a focal point in soft robotics
due to its potential for advancing our knowledge of efficient,
adaptable movement in complex fluid environments. By
understanding the fundamental biological principles of aquatic
locomotion (Lighthill, 1975) and nature’s remarkable agility and
efficiency (Lauder et al., 2007), soft robotics aims to develop robots
that mimic those capabilities, enhancing our ability to design and
control machines for efficient navigation and operation in water-
based settings.

Fish in particular are renowned for their swift and efficient
movement through dynamically changing aquatic environments
(see Supporting Video 1), a trait that enables them to undertake
strenuous tasks such as upstream migration during fasting periods
(Crossin et al., 2004). The key to their exceptional energy efficiency
lies in their ability to modulate the amplitude and frequency of their
body undulations, leveraging the stiffness of their structure
(McHenry et al., 1995; Lauder et al., 2011). By synchronizing
body undulation frequency with the flow, fish swim efficiently,
harnessing energy from the fluid and converting it into
propulsion (Beal et al., 2006; Akanyeti et al., 2016; Liao and
Akanyeti, 2017). The oscillation of the caudal fin emerges as one
of the most efficient propulsion modes in terms of transport costs
(Rayner, 1986; Ludeke and Iwasaki, 2019), and underwater speeds
are enhanced significantly (Block et al., 1992), resulting in passive
propulsion even in deceased fish specimens (Liao et al., 2003).

Research into fish locomotion have spawned a plethora of soft
robotic designs capable of aquatic movement (Struebig et al., 2020;
Nguyen and Ho, 2021). These designs range from robots that mimic
the motion of tuna, surpassing their predatory speeds (Barrett, 1996;
Zhu et al., 2019), to platforms that execute rapid ‘C-start’maneuvers
similar to carangiform fish (Marchese et al., 2014), and even robots
capable of three-dimensional acoustic maneuvering (Hsieh et al.,
2016; Katzschmann et al., 2018). Additionally, lateral body motions
and reflex-based jumping capabilities have been integrated into
robotic designs (Fan et al., 2005; Kim et al., 2020; Zhao et al.,

2020; Yang et al., 2021). The intricacies of fish locomotion,
particularly the interplay between active and passive stiffness
control and the internal dynamics, offer a rich terrain for bio-
mimetic technology transfer (Low and Chong, 2010; Low et al.,
2010). Although fully passive fin systems have been developed to
mimic fish propulsion, challenges arise in adjusting thrust output
and drag in response to variations in flow velocity or frequency
(Jayne and Lauder, 1996; Yun et al., 2011; Yun et al., 2015). To
emulate the fish’s ability to adaptively modulate swimming body
undulations and utilize soft surfaces, a sensory-driven control
mechanism becomes essential.

This research resides at the intersection of bio-inspired and bio-
mimetic robotics (Kim et al., 2013; Hammond et al., 2023). We seek
to emulate the intricate locomotion observed in aquatic life,
contributing to the field’s evolution from leveraging general
biological principles to the precise replication of specific
functions. Our exploration of aquatic locomotion mechanisms
enhances our understanding of the way soft robotic designs can
mimic biological systems, offering innovative solutions for
navigating and interacting within fluid environments. This
approach not only advances robotics but also provides biologists
with tools to test hypotheses that may be impractical with living
specimens, thereby serving as invaluable assets in bio-mechanical
research (Siddall et al., 2021; Chellapurath et al., 2022).

In our exploration of aquatic locomotion, we examine the
biomechanics of fish such as the bluegill sunfish to inform the
design of our robotic fish (Schwalbe et al., 2019). Our robot utilizes a
flexible plastic foil to emulate the structural foundation of a fish’s
spine and is equipped with soft pneumatic actuators to mimic the
nuanced muscular movements, particularly in the tail region,
enabling realistic fish-like bending. The undulation frequency
selected for our robot is designed to represent a spectrum of fish
swimming behaviors, optimizing the system’s ability to mimic a
variety of natural locomotive strategies. The actuation mechanism
facilitates lateral body caudal bending, a key feature of efficient
aquatic propulsion. Furthermore, the choice of Dragon Skin™
silicone for the actuators is informed by the need to replicate the
natural flexural stiffness observed in aquatic organisms, ensuring a
balance between flexibility and rigidity crucial for effective
movement. This biomimetic approach, inspired by the dynamic
stiffness modulation strategies identified in aquatic species, aims to
capture the essence of efficient propulsion mechanisms in fish,
contributing to the advancement of soft robotics in simulating
natural aquatic locomotion.

Now, utilizing such a soft robotic fish platform equipped with
pneumatically actuated soft actuators and a soft bending sensor, as
illustrated in Figure 1, we aim to advance the understanding and
application of bio-mimetic robotics. The soft bending sensor enables
real-time monitoring and control of the bending amplitude of the
robotic fishtail during oscillation. This setup, in which the body
caudal fin undulation of the soft robotic fish exhibits repetitive
features, is particularly suited for testing Repetitive Learning
Controllers (RLC) (Xu and Yan, 2006; Marino et al., 2012;
Verrelli, 2016; 2022) or learning inverse kinematics (Zhao et al.,
2023). Indeed, the most suitable control design is one that solves an
output tracking control problem for uncertain nonlinear systems
characterized by unstructured uncertainties (that is when no
parameterization of the uncertainties is available) and by output
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reference signals that belong to the family of general periodic time
functions with a known period (piece-wise constant references or
sinusoidal references are special cases). RLCs are required (Marino
et al., 2012; Verrelli, 2016; Verrelli, 2022), since they are not model-
based and aim at performing a dynamic system inversion just
through the feedback, with the output tracking error being
reduced without increasing the feedback control gains (as
happens for the typical robust adaptive approach; the reader is
also referred to the discussion on the gains of the PID control of the
subsequent Section 2.3). On the other hand, the non-structured
periodic disturbance constituted by the reference input, whose effect
has to be nullified by the RLC, is highly uncertain and is very
complex in general, due to the nonlinearities of the system making
traditional resonant PID controllers be non-effective. Nevertheless,
finite memory implementations of control laws are needed in
practice. They should involve the use of a finite number of stored
values or be finite-dynamic-order controls. This is the case of the
linear repetitive learning control of (Verrelli et al., 2015) (see
theoretical foundations in (Tomei and Verrelli, 2015), in which
the delay involved within the repetitive learning estimation scheme
is approximated by Padé theory-based rational proper functions, so
as to approximate a delay-based infinite-dimensional system by a
finite-dimensional one. Owing to the dynamic linearity of Padé
approximants and the use of a stabilizing filter, the resulting Linear
Repetitive Learning Estimation Scheme (LRLES) generalizes the
classical integral action (typically used within the PID control for
robotic systems, with no “zeros” and relative degree two) to the case
of periodic (non-constant) references. The resulting learning scheme
is constituted by a transfer function with all its poles having a
negative real part, with the typical long-term instability issues of
classical RLCs, due to high-frequency disturbance noises, thus
being avoided.

This study thus presents an original comparative analysis
of trajectory tracking for a desired fishtail bending angle
envelope under constant oscillating frequency, using the
innovative PID-LRLES in comparison with the typically used
PID controller.

The remainder of this manuscript is organized as follows:
Section 2 outlines the experimental setup, the PID controller,
and the PID-LRLES, along with the experimental procedures;
Section 3 presents our experimental findings; and Section 4

discusses the implications of this work and outlines future
research directions.

2 Materials and methods

2.1 Experimental setup

2.1.1 Soft robotic fish platform
The soft robotic fish platform used in this work (Figure 1)

consists of a flexible plastic foil, representing the backbone of the
animal, to which two soft pneumatic actuators are glued to provide
bending actuation. A frontal cuff (3D-printed, ABS) serves as an
attachment point to the fixed mast, while another flexible tail cuff
(3D-printed, TPU A95) holds the passive caudal fin. The cuffs also
help streamline the overall fish profile. The main body is made
following a similar method as described by Jusufi et al. (2017) and
based on the work of Mosadegh et al. (2014). The flexible backbone
foil (0.52 mm thick shim stock: Artus, Inc.) has a flexural stiffness
comparable to that of a fish (9.9e-4 [Nm2] Jusufi et al. (2017)), and
the actuators, made using a silicone-based elastomer (Dragon Skin™
20, Smooth-On Inc.), are glued using a dedicated silicone adhesive
(Dowsil 734 Flowable Sealant, DOW). A soft capacitive sensor (1-
Axis Soft Flex Sensor, Nitto Bend Technologies) is affixed to a
flexible foil extension above the midline to measure the bending
angle while the fish is actuated. Care is taken to have both ends of the
sensor rest above both cuffs to measure the bending angle across the
actuators to have a more precise control. Thanks to the sensor’s
narrow build and its softer stiffness compared to both the plastic and
the silicone parts of the robot, the effect of the sensor on the
structural rigidity of the fish-like robot is minimal and can be
neglected, not significantly altering the robot’s overall flexibility
or movement dynamics. Previous work from Wright et al. (2019)
employed resistive eutectic gallium-indium (eGaIn) sensors to
estimate the bending angle. As those sensors cannot measure
both positive and negative angle values alone, two units, one on
each side of the fish, have to be combined to extract a complete
measurement. Additionally, for the bending to create sufficient
stretching of the eGaIn sensors, they have to be placed at a
distance from the midline. The capacitive sensor, on the other
hand, can measure both positive and negative angles accurately,

FIGURE 1
(A) Illustration of the soft pneumatic fish spine and (B) its physical realization.
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can be placed directly on the midline, and requires less calibration
effort. For these reasons, and because the resistive sensors are also
more fragile, the capacitive sensor was selected in the end.

The pressure network system used to power the soft actuators is
illustrated in Figure 2. A digital pressure regulator (ITV0050-3BS,
SMC) supplies between 0.7 and 2.5 bar (actuator working range) of

FIGURE 2
Schematic of the soft fish platform’s pneumatic actuation circuit. The external pressurized air source provides the regulator with a stable 2.5 bar
input. For each actuator at any point in time, one of the two connected solenoid valves is opened to either fill the actuator at the controlledmain pressure
(0.7–2.5 bar) or release it to atmospheric pressure.

FIGURE 3
Illustration of the controller implemented on the MyRIO to control the soft robotic fish.
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compressed air to the system in a controlled fashion. Each actuator is
governed by two solenoid valves (SYJ7320-5LOU-01F-Q, SMC) that
either connect it to the pressure system controlled by the regulator,
or the atmosphere. An air tank allows to store some pressure during
actuation and helps mitigate the variations created by the release of
actuator pressure in the atmosphere. A real-time microcontroller
(myRIO-1900, National Instruments) acts as the Control Unit of the
robotic platform. It samples the bending sensor via I2C at 1 kHz and
runs the control loop at the same frequency, generating the actuating
signals to the valves and control signal to the pressure regulator as
displayed in Figure 3.

2.1.2 Test rig
Experiments were conducted within a large water tank located at

the Swiss Federal Laboratories for Material Science (Empa) with a
cross-sectional area measuring 0.6 × 1 m2, accommodating a fully
transparent test section extending up to 6 m in length (Figure 4A).

The soft robotic fish platform was suspended in the center of the
test section and secured in place by two extra aluminum beams on both
sides of the mast for stability. A video camera was placed above the
platform to capture the robotic fish’smidline kinematics (Figure 4B). To
avoidwaves and reflections at the water surface, the recordingwasmade
through a Plexiglas tray in contact with the water at all times.

2.2 From PID control to PID-LRLES

The control of the tethered soft robotic platform aims at developing
a general control strategy that can be also deployed on an untethered
underwater robot, mimicking the size and behavioral traits of living fish.
Controlling robotic fish plays a pivotal role in achieving bio-mimetic
swimming performance, ultimately leading to a system that closely
resembles its natural counterparts. While various model-based control
approaches can potentially be applied to soft robotic systems akin to
other robotic platforms, the lumped nature of soft-systemmodels–with
internal states just being representative of complex neglected dynamics
and parameters that are uncertain–limits the applicability of certain

theories and algorithms that require more than the knowledge of the
structural properties of the model, such as relative degree, high-
frequency gain, and minimum-phase. Controlling soft robots thus
presents a significant challenge, necessitating the exploration of
viable and optimally effective control strategies capable of managing
the soft body and leveraging its intrinsic intelligence.

In our model, the primary control objective revolves around
regulating the pressure within the soft actuators. This pressure
modulation dynamically influences the entire robotic fish system
by altering thrust and side force, generating torque at each joint,
ultimately impacting the final bending angle of the tail, considered as
an end-effector of the robot.

Owing to the repetitive features of the body caudal fin undulation of
the soft robotic fish, the linear repetitive learning control strategy of
(Verrelli et al., 2015) is here adopted: the dynamic linearity of Padé
approximants and the use of a stabilizing filter make the LRLES
generalize the classical integral action to the case of periodic (non-
constant) references. In particular, a LRLES of such a type (referred to as
LC(s) hereafter) is added, in this section, to the control scheme for fish
robots, to endow the PID control with a mechanism that is able to track
general periodic reference signals besides constant ones. Referring to the
model established in (Lin et al., 2021), where the design was applied to
an n-link rigid structure, Mn represents the vector consisting of the
control torques of the pressure inside the fish actuator. The control
problem thus concerns the design of the controller for the last joint q,
which will provide the maximum bending angle of the fish due to the
end of the tail (referring to Figure 5 (a), q is obtained by taking the
modulus of the bending angle and computing its envelope). The
scenario is thus similar to the one in (Verrelli et al., 2015), once the
feedback signal,

F t( ) � _~q + γ~q
~q � q − q*,

(1)

is defined by the (possibly filtered) linear combination _~q + γ~q (with
positive weights γ and 1) of the tracking error ~q and its time
derivative _~q, where q denotes the available output and q* the
corresponding periodic reference signal.

FIGURE 4
Experimental setup for the soft robotic swimming experiments. (A) General setup of the water tank. (B) Schematic of the robotic platform placed in
the water tank.
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2.2.1 PID control
The F -PI controller (or equivalently the ~q-PID controller):

UPID t( ) � − kpF t( ) − ki∫t

0
F τ( )dτ, (2)

with transfer function

L UPID t( )[ ] s( ) � − kp + ki
s

( )L F t( )[ ] s( ) (3)

was initially employed for the control of a soft robotic fish by (Lin
et al., 2021). Controller (2) is referred to as ~q-PID controller since, if
~q is the only available error (and the derivative can be numerically
obtained), then (2), on the basis of theF -definition, can be explicitly
rewritten for zero initial conditions as

UPID t( ) � −Kp~q t( ) −Ki∫t

0
~q τ( )dτ − Kd

_~q t( ) (4)

in terms of the proportional, integral, and derivative gains
Kp � kpγ + ki
Ki � kiγ
Kd � kp.

(5)

This controller is widely used in diverse dynamic systems,
including industrial, robotic, and biological applications and
stands as the first viable candidate due to its robust performance.
The PID controller operates by continuously calculating the error
value from the difference between a desired setpoint and the
measured process variable. It incorporates a proportional and a
derivative term–each with the corresponding gain–to stabilize the
error system, along with an integral term to reconstruct the constant
reference input that guarantees perfect output regulation to any
constant output reference.

An amplitude control system, prototyped in Simulink, incorporating
sensor noise effects, was designed and tested (Lin et al., 2021). This
control system extracts the maximum amplitude within each half period
from the oscillating strain signal. The PID controller demonstrates
robust behavior against sensor noise, exhibiting fluctuations around
the step point under noises. Furthermore, periodic references, though
piece-wise constant, repeatedly induce transient error behaviors.

2.2.2 PID-LRLES
The RLC idea comes from the observation that animals can

enhance task execution through repeated trials. In contrast to non-
learning controllers, the repetitive learning mechanism utilizes the
error signal coming from p previous executions (p ∈ N+) within a
repetitive framework in order to harness experience and refine the
closed-loop performance.

Following (Tomei and Verrelli, 2015), let the [m, m]-Padé
approximant of e−sT being given by

P m,m[ ] sT( ) � Pm −sT( )
Pm sT( ) (6)

with

Pm sT( ) � ∑m
k�0

m
k

( ) 2m − k( )!
2m( )! sT( )k. (7)

Then, define the proper transfer function

P s( ) � ∑p
i�1

αiP m,m[ ] isT( ) ^
np s( )
dp s( ) (8)

which approximates the Laplace transform ∑p
i�1αie−isT of the delay

mechanism contained within the “high-order” repetitive learning
estimation scheme of (Tomei and Verrelli, 2015):

FIGURE 5
(A) Control Scheme; (B) PID-LRLES and (C) PID controller.
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ξ̂* t( ) � α1satMξ
ξ̂* t − T( )( ) + α2satMξ

ξ̂* t − 2T( )( )
+/ + αpsatMξ

ξ̂* t − pT( )( ) − μbφj*T
t( )F t( )

ξ̂* t( ) � 0, ∀ t≤ 0

(9)

in which:

• satMξ
(·): R → [−Mξ − δs,Mξ + δs] is a class C1 odd

increasing function satisfying (δs is an arbitrary positive
real) satMξ

(q) � q for any q ∈ (0,Mξ], limq→∞satMξ
(q) � Mξ +

δs and |q1 − q2|≥ |q1 − satMξ
(q2)| for any |q1| ≤ Mξ, q2 ∈ R;

• φx(·): R+
0 → [0, 1] (x > 0) is a class C1 increasing function for t ∈

[0, x] with φx(0) � _φx(0) � 0, _φx(x) � 0 and φx(t) = 1 for any
t ≥ x, which endows the ξ̂*-signal with some continuity properties;

• μ and αi, 1 ≤ i ≤ p, are positive design parameters with αi
satisfying

∑p
i�1

αi � 1, αi ≥ 0, 1≤ i≤p; (10)

• b = α1 + 2α2 + / + pαp and j* = min{j: αj > 0}.

Such a learning estimation scheme relies on a weighted sum of
the information stored in the p previous executions: the weights αi,
1 ≤ i ≤ p are extra degrees of freedom that allow the control design to
take into account the whole available information about the past to
improve the performance of a periodic system. If αj* � 1 and αi = 0
for 1 ≤ i ≤ p with i ≠ j*, then the estimation scheme reduces to the
classical ‘first order’ one in which the input reference ξ*(t) is
interpreted as a periodic signal with period j*T.

When the action of the saturation function is neglected and
φj*T

(t) ≡ 1 is considered, (9) reduces to

ξ̂* t( ) � α1ξ̂* t − T( ) + α2ξ̂* t − 2T( ) +/ + αpξ̂* t − pT( ) − μbF t( ),
(11)

which satisfies

1 −∑p
i�1

αie
−isT⎛⎝ ⎞⎠L ξ̂* t( )[ ] s( ) � − μbL F t( )[ ] s( ) (12)

in the Laplace domain. On the other hand, if ξ*0(t) denotes the
function which is equal to ξ*(t) on the set [0, T) while being zero
outside it, then we can write

ξ* t( ) � α1ξ* t − T( ) + α2ξ* t − 2T( ) +/ + αpξ* t − pT( )
+ α1 +/ + αp( )︷������︸︸������︷�1

ξ*0 t( ) + α2 +/ + αp( )ξ*0 t − T( )
+/ + αpξ*0 t − p − 1( )T( )

ξ* t( ) � 0, ∀ t< 0 (13)

which plays the role of an infinite-dimensional exosystem
reproducing the time T-periodicity of ξ*(t). The initial function
ξ*0(t) (just like the initial condition for a finite-dimensional
exosystem) is the only unknown quantity to the controller to be
dealt with bymeans of the feedback action −μbφj*T

(t)F(t). We then
rewrite the above exosystem as

α _ξ* t( ) � − ξ* t( ) + β α1ξ* t − T( ) + α2ξ* t − 2T( )[
+/ + αpξ* t − pT( )] + σ t( )

ξ* t( ) � 0, ∀ t< 0 (14)

where the signal σ(t) can be obtained by comparison. Then, we
design the (1 + p · m)-finite-dimensional approximation of the
exosystem as (ξ̂*(0) � 0, Π(0) = 0)

α
_̂
ξ* t( ) � − ξ̂* t( ) + β CpΠ t( ) +Dpξ̂* t( )[ ] − μbF t( )
_Π t( ) � ApΠ t( ) + Bpξ̂* t( )

(15)

where (Ap, Bp, Cp, Dp) is a minimal realization of the proper transfer
function P(s). Here, Ap is a Hurwitz matrix, dp(s) is a p · m-order
polynomial whereas α ∈ [0, 1), β ∈ (0, 1] are assumed to guarantee
that the polynomial

qπ s( ) � αs + 1( )dp s( ) − βnp s( ) (16)

has all the roots belonging to C−. The term CpΠ(t) +Dpξ̂*(t) is
nothing else than the Padé approximation of the delayed
term ∑p

i�1αiξ̂*(t − iT). The resulting filter β/(αs + 1) is
introduced to force the learning estimation scheme in the
Laplace domain

L ξ̂* t( )[ ] s( ) � β

αs + 1
( )P s( )L ξ̂* t( )[ ] s( ) − μb

αs + 1
( )L F t( )[ ] s( )

(17)
to have a transfer function

LC s( ) � L ξ̂* t( )[ ] s( )
L F t( )[ ] s( ) �

− μbdp s( )
qπ s( ) (18)

with all the poles belonging to C−. Such a transfer function
reinforces the integral action within the controller, leading to
the PID-LRLES:

L UPID−LRLES t( )[ ] s( ) � − kp + ki
s
+ LC s( )( )L F t( )[ ] s( ) (19)

The incorporation of the (α, β)-filter is necessary for this
purpose since, when α = 0 and β = 1, s = 0 is a root of qπ(s)
according to

P s( )|s�0 � ∑p
i�1

αiP m,m[ ] isT( )|s�0 � ∑p
i�1

αi � 1. (20)

Notice that, for α = 0, β < 1 and α1 = 1, αj = 0 (j = 2, . . . , p), the
equivalent exosystem

α _ξ* t( ) � − ξ* t( )
+ β α1ξ* t − T( ) + α2ξ* t − 2T( ) +/ + αpξ* t − pT( )[ ]
+ σ t( )

ξ* t( ) � 0, ∀ t< 0 (21)
becomes

ξ* t( ) � βξ* t − T( ) + σ t( )
ξ* t( ) � 0, ∀ t< 0

(22)

where the solution of

ξ* t( ) � βξ* t − T( ) (23)
evaluated at any t = t* + kT (t* ∈ [0, T), k = 0, 1, . . . ) constitutes a
decreasing sequence converging to zero. The preceding equation can
be rewritten as
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ξ* t( ) � ξ* t − T( ) + β − 1( )ξ* t − T( ) (24)
in which the second term on the right-hand-side (with β − 1
sufficiently small) plays a stabilizing role, which leads to a
bounded-input bounded-output estimation law without the use
of saturation functions or projection algorithms.

2.3 Experimental protocol

The experiment consists of tracking a desired trajectory for the
envelope containing the amplitude of the bending angle of the robotic
fish. The platform is actuated at a constant frequency (called flapping
frequency) and 0.55 duty cycle (5% co-contraction). The experiment is
performed three times, each time with a different flapping frequency;
the tested frequencies are 0.8, 1.0, and 1.2 Hz, and the controllers have
been tuned to the case of a flapping frequency of 1.2 Hz. The envelope is
used to obtain a positive, smoother signal. The desired profile of the
envelope is described by a sine wave with period T = 30 s, an amplitude
of 0.1 rad, and a 0.6 offset. The experimental procedure compares the
tracking performance of the PID controller and the PID-LRLES
depicted in Figure 5. Both controllers have been separately tuned
manually to signals with the same frequency during preliminary
experiments (through a trial and error tuning procedures), with the
PID controller gains resulting inKp = 3,Ki = 0.28, andKd = 0.15 (look at
the corresponding step response in Figure 6 (c)) and the PID-LRLES
gains resulting inm = 7, p = 3, α1 = 0.3, α2 = 0.2, α3 = 0.5, γ = 4, β = 0.99,
μ = 0.4950, ki = 0.3 and kp = 0.01. Notice that the PID controller, which

does not contain the learning estimation scheme, has to increase its
proportional and derivative gains–compared to the ones within the
PID-LRLES (recall (5 leading to Kp = 0.34, Ki = 1.2, and Kd = 0.01)–and
decrease the integral gain in order to exhibit a comparable–though
worse–closed-loop behavior. This is further illustrated by Figure 6
presenting the comparative tracking results (a-b) with respect to the
PID with equivalent gains, namely, with Kp = 0.34, Ki = 1.2, and Kd =
0.01: a largely worse performance is obtained for the PID control,
highlighting the advantageous learning features of the LRLES. It is
worth recalling that themidline motion of the fish is primarily captured
using built-in soft sensors, providing real-time control feedback. At the
same time, the external camera is used to capture the swimming swing
of the whole fish spine, both active backbone and passive tail, and
reconstruct it offline to have a qualitative understanding of the fish’s
undulatory motion, see Figures 6D–F.

All experiments start with the fish oscillating in an open loop,
meaning that the actuation chambers are inflated alternatively for a
fixed andpredefined amount of time.After some iterations, the amplitude
of the bending angle envelope reaches a steady state, and at that moment,
the desired controller is turned on, allowing the robotic fish to track the
desired trajectory for the amplitude of the bending angle envelope.

3 Results

The experimental procedure compares the PID controller’s and
the PID-LRLES’s performance in tracking different periodic desired

FIGURE 6
Bending angle (A) and its envelope (B) with the PID controller under equivalent gains (namely, Kp =0.34, Ki =1.2, and Kd =0.01) while tracking
ref =0.6+0.15 sin (2π t/30); (C) step response of the PID controller with gains Kp =3, Ki =0.28, and Kd =0.15; the flapping frequency is 1.2 Hz; (D, E, F) illustrate
the midline motion pattern of the fish’s foil during a complete swimming swing captured with the external camera. They display variations in oscillation
magnitude while tracking signals with different bending amplitude envelopes q. The thick lines indicate the backbone of the fish, which corresponds to
the bending angle measured with the bending sensor, while the dashed lines represent the passive movement of the tail. The leading edges are on the left.
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trajectories of the fishtail bending angle envelope. In particular,
Figure 7 and Figure 8 show the tracking accuracy during the
experiments with reference signals ref = 0.6 + 0.15 sin (2π t/30)
and ref = 0.6 + 0.05 sin (2π t/30) + 0.05 sin (2π t/15) + 0.05 sin (2π t/
10), respectively. The PID-LRLES performs better than the PID
controller in tracking the desired trajectories (though the PID
controller was separately tuned, as aforementioned), being at the
same time faster and more accurate, regardless of the value of the
flapping frequency. The root mean square error (RMSE), calculated
over an oscillation period of the reference trajectory (20–50 s) for
Figures 7, 60–90 for Figure 8, is in fact summarized in Table 1: the
PID-LRLES outperforms the PID controller, with lower RMSEs in

all the experiments. Nevertheless, Figures 7D–F illustrates the fish
kinematics by plotting the mid-line kinematics of the fish backbone
(solid line) and tail (dashed line) in three different moments of the
experiments, with the fish tracking respectively the minimum, the
medium, and the maximum tracked values for the bending angle
envelopes q = 0.5, q = 0.6 and q = 0.7 rad.

The high-frequency oscillations in Figure 7 (b-d-f) are at flapping
frequency. We attribute this behavior to the abrupt changes in the
oscillatory direction that happen when the control system switches the
active actuator, causing the 3D-printed support to rattle in its location
(see accompanying video). Both controllers proved to be robust to
unmodeled disturbance at a price of small oscillations.

FIGURE 7
The extract analyzes the tracking accuracy of a soft robotic fish platform, specifically comparing the bending angle (A,C, E) and its envelope (B,D, F)
under different control conditions, flapping frequency f=1.2, f=1.0, f=0.8 Hz and a reference signal ref =0.6+0.15 sin (2π t/30). Both controllers are tuned
with a flapping frequency of f = 1.2 Hz ‘ref’ denotes the target amplitude envelope for the tail oscillation. ‘PID’ represents the data measured using the
Proportional-Integral-Derivative (PID) controller with gains Kp =3, Ki =0.28, and Kd =0.15. ‘PID-LRLES’ refers to measurements obtained using a
separately tuned PID controller augmented with the Linear Repetitive Learning Estimation Scheme (LRLES) method.
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4 Discussion and future work

In this study, we have successfully developed and implemented a
Proportional-Integral-Derivative with a Linear Repetitive Learning
Estimation Scheme (PID-LRLES) controller on a soft robotic fish
platform. This novel controller demonstrates a significant improvement
in performance over the traditional PID controller in tracking periodic
signals. Its success is particularly notable in the context of soft robotic
systems, which often contend with uncertain parameters and unmodeled
dynamics. This advancement is not just a technical achievement but also a
critical step forward in thefield of soft robotics, showcasing the potential of
advanced control methods in managing complex dynamic systems.

Our work builds upon and extends our previous foundational studies
(Jusufi et al., 2017; Lin et al., 2021; Schwab et al., 2021; 2022).While Jusufi
et al. focused on open-loop control experiments without feedback on the
oscillating tail’s position, and Lin et al. limited their exploration to a PID
controller for single step-response tracking, our approach achieves faster
and more accurate tracking. This progress is attributed to both the
innovative PID-LRLES controller and enhancements in the mechanical
structure of the robotic fish. However, the pioneering work by Lin et al.
remains a valuable reference, especially in their use of eutectic gallium-
indium (eGaIn) stretch sensors for bending angle measurements.

While our controller’s performance in environments with incoming
waterflow (that is able to change the dynamics of the systemby adding an

FIGURE 8
The extract analyzes the tracking accuracy of a soft robotic fish platform, specifically comparing the bending angle (A,C, E) and its envelope (B,D, F)
under different control conditions, flapping frequency f=1.2, f=1.0, f=0.8 Hz and a reference signal ref =0.6+0.05 sin (2π t/30)+0.05 sin (2π t/15)+0.05 sin
(2π t/10). Both controllers are tuned with a flapping frequency of f = 1.2 Hz ‘ref’ denotes the target amplitude envelope for the tail oscillation. ‘PID’
represents the data measured using the Proportional-Integral-Derivative (PID) controller with gains Kp =3, Ki =0.28, and Kd =0.15. ‘PID-LRLES’ refers
to measurements obtained using a separately tuned PID controller augmented with the Linear Repetitive Learning Estimation Scheme (LRLES) method.
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apparent fluid stiffness) remains untested due to unforeseen constraints,
we hypothesize that the PID-LRLES controller could effectively estimate
and compensate for periodic components of drag variations caused by
flow. This capability wouldmark a significant advancement in robustness
compared to classical control methods. Future research will focus on
employing resistive soft sensors in place of the capacitive sensors used in
this work to test this hypothesis. Resistive sensors are expected tomitigate
the electromagnetic disturbances encountered in the flow tank and refine
the process of bending angle measurement.

Looking ahead, our aim is to refine current tail design limitations
for enhanced bio-mimicry while further developing the soft robotic
fish platform, with a specific focus on water pressurization to remove
the buoyancy effect and experimental validation in flow tank
conditions. Indeed, the next phase of research will involve
integrating the flow regime into the control structure of the PID-
LRLES, aiming for a more holistic and responsive control system.
This approach promises to open new avenues in the design and
control of soft robotic systems, contributing to our understanding of
bio-mimetic robotics and its application in dynamic aquatic
environments. Furthermore, even though the significance of the
passive tail, extending from the midpoint to the tail end, is implicitly
considered as its movement results from the actuation of the front
portion, we also aim at focusing, in future work, on specific fluid
motion and criteria analysis–including the Strouhal number
(Schwab et al., 2022) that correlates with vortex shedding
dynamics–for enhancing the accuracy of fish performance
replication. Finally, our study focused on dynamics primarily in
forward motion rather than upstream, where extreme disturbances
in dynamics might pose challenges beyond the compensation
capabilities of any controller type. Regarding the response speed,
Figure 6, Figure 7, Figure 8 have shown that the PID-LRLES achieves
a more satisfactory convergence to the reference profiles compared
to the traditional PID controller (though with significantly larger
proportional and derivative gains in Figure 7; Figure 8), indicating
its superior performance in terms of faster reaction (besides the
steady-state behaviour). The development of an autonomous
swimming robot and the redesign for optimal shape and
hydrodynamics indeed represent the next steps and challenges
for our future work. Finally, it is worth mentioning that PID-
LRLES, whose compensation strategy also mimics a learning
action that has to face periodic external disturbances, might even
be successfully adopted in the case in which periodic waves influence
the motion of the fish robot.
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TABLE 1 Root Mean Square Error (RMSE) over an oscillation period of the
reference trajectory (20–50 s) of Figure 7 and (60–90 s) of Figure 8 with
different flapping frequencies. RMSEs are respectively EPID for the PID and
EPID-LRLES for the separately tuned PID-LRLES controller. Both controllers
are tuned with a flapping frequency f = 1.2 Hz.

Figure Frequency [Hz] EPID [rad] EPID−LRLES [rad]

7 0.8 0.0373 0.0224

7 1.0 0.0305 0.0148

7 1.2 0.0314 0.0108

8 0.8 0.0410 0.0327

8 1.0 0.0355 0.0348

8 1.2 0.0427 0.0342
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