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The Talbot effect and the Lau effect have been usefully applied in optical
interferometry, and for designing novel X-ray devices, as well as for
implementing useful instruments for matter waves. In temporal optics, the
above phenomena play a significant role for reconstructing modulated, optical
short pulses that travel along a dispersive medium. We note that the Talbot-Lau
devices can be spatial frequency tuned if one employs varifocal lenses as a
nonmechanical technique. Thus, we identify a pertinent link between the Talbot-
Lau sensors and the development of artificial muscle materials, for generating
tunable lenses. Our discussion unifies seemly unrelated topics, for providing a
global scope on the applications of the Talbot-Lau effect.
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1 Introduction

The self-imaging phenomenon is a fundamental property of the diffraction patterns
generated by periodic structures. In several ranges of the electromagnetic spectrum, as
well as in matter waves, the self-imaging phenomenon has found a myriad of applications.
We recognize that a reappraisal on the subject is not a simple task. Despite their
importance, we decided to leave out the publications on X-rays, nonlinear optics, and
quantum optics (Bachche et al., 2017; Bouffetier et al., 2020; Deng et al., 2020; Dennis
et al., 2007; Morimoto et al., 2020; Nikkhah et al., 2018; Neuwirth et al., 2020; Hall et al.,
2021; Gerlich et al., 2007; Wen et al., 2013). Here, we focus in the applications on the
optical range, by noticing the usefulness of the self-imaging phenomena in optical
interferometry (Lau, 1948; Yokozeki and Suzuki, 1971a; Yokozeki and Suzuki, 1971b;
Lohmann and Silva, 1971; Lohmann and Silva, 1972; Bartelt and Jahns, 1979; Jahns and
Lohmann, 1979; Bartelt and Li, 1983; Bolognini et al., 1985; Ojeda-Castañeda et al., 1988;
Ibarra and Ojeda-Castañeda, 1993), for implementing novel optical sensors (Silva, 1971;
Chavel and Strand, 1984; Nakano and Murata, 1985; Chang and Su, 1987; Bernardo and
Soares, 1988; Su and Chang, 1990; Sriram et al., 1992; Gómez-Sarabia et al., 2019), and for
setting theta demodulators (Andrés et al., 1986; Ojeda-Castañeda and Sicre, 1986;
Chitralekha et al., 1989; Barreiro and Ojeda-Castañeda, 1993; Ojeda-Castañeda et al.,
1998). The later type of optical setups leads to the implementation of a noncoherent
version of the Abbe-Porter experiments (Ojeda-Castañeda et al., 1989a). We attempt to
link the basic theory of unrelated topics, for providing a global scope on the applications
of the Talbot-Lau effect. In Section 1, we emphasize the concept of noncoherent
superimposition of interference patterns. In Section 2, we identify the similarities and
the differences between the Talbot effect with the Lau effect, for discussing a noncoherent
version of the Talbot effect (Ojeda-Castañeda et al., 1989b; Gómez-Sarabia and Ojeda-
Castañeda, 2023a). In Section 3, we include the use of varifocal lenses, for governing the
presence of tunable fractions of the Talbot effect, at a fixed detecting plane. In Section 4,
we discuss the use of a linear combination of laterally displaced versions of the initial
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grating, for describing fractional Talbot images. In Section 5, we
discuss briefly modal dispersion for describing the presence of self-
images in optical fibers. In Section 6, we discuss a statistical model
for relating the average of randomly located Talbot images, with
certain optical sensors. In Section 7, for approaching the temporal
aspects of the self-imaging phenomenon, we discuss chromatic
dispersion in optical fibers.

2 Spatially noncoherent young fringes

We start by referring to the pioneering work of Rogers, who
described the use spatially noncoherent light, for obtaining two
beam interference patterns, with high visibility (Rogers, 1963). In
Figure 1, we depict the principle of the optical setup, which was
proposed by Rogers.

As shown in Figure 1, one can superimpose several
independent two-slit interferograms. To this end, one employs
a spatially noncoherent, periodic source. The extended source has
several slits. Each slit shifts laterally an independent
interferogram. Here, it is convenient to define the term “in-
register.” Each independent interferogram is a sinusoidal
irradiance distribution. All the interferograms have the same
period and the same modulation. Then, two interferograms are

“in-register,” if one of the interferograms is laterally displaced by
an integer number of their common period. And consequently,
the overall pattern has high visibility. In mathematical terms, let
us consider a 1-D model. For the two-slit interferometer with unit
magnification, at the detection plane, Π, the irradiance
distribution is

IΠ x( ) � 1
2
( ) 1 + cos 2 π

x

d
( )[ ]. (1)

This irradiance distribution is the irradiance impulse response,
of the optical setup in Figure 1. At the source plane, S, we consider a
set of mutually noncoherent point sources. Then, the irradiance
distribution, at the source plane, S, is

IS x́( ) � 1
2N + 1
( ) ∑N

n�−N
δ x́ + n p( ). (2)

Since the optical system is under noncoherent illumination, the
final irradiance distribution is

I x( ) � ∫∞
−∞

IS x́( ) IΠ x − x́( ) dx́ (3)

By substituting Eqs. (1, 2) in Eq. (3), we obtain

I x( ) � 1
2
+ 1

2N + 1
( )∑N

n�1
cos 2 π

x

d
+ 2 π

p

d
n[ ]. (4)

FIGURE 1
Noncoherent superposition of two independent (noncoherent)
interference fringes, in the classical optical setup of the two-slit mask.
In (A), two independent point sources are shown in distinct color, only
to emphasize their contributions. In (B), the several noncoherent
sources slits are periodically distributed along the horizontal axis.

FIGURE 2
Proposed optical setups for superimposing several mutually
noncoherent interferograms. However, instead of using the two-slit
mask, we employ a polarization device. The noncoherent source is
formed by a set of narrow periodic slits. Any two slits are spatially
noncoherent. In (A) we use a Wollaston prism. In (B), we employ the
Savart plates.
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It is apparent from Eq. (4) that for p = L d, where L is a positive
integer number, there is an in-register condition. In other words, all
the sinusoidal variations overlap at their maxima values.

Of course, the in-register condition is not restricted to the
renown Young´s two-slits experiment. In Figure 2, we depict our
proposal for achieving in-register interference patterns, when
using polarization prisms. The polarizing prisms can generate
sinusoidal irradiance distributions, as those described in Eq. (1).
For example, for the Wollaston prism in Figure 2A, each element
of the source is an illuminating slit, which is spatially
noncoherent with any other slit. However, the whole source
can have the same polarization state (say, linear polarization
at 45°).

As depicted in Figure 2, let us consider a slit that is located off
axis, say by a distance x´ on the source plane. After being collimated
by a lens, this slit generates a tilted plane wave, which has linear
polarization at 45°. By using the Jones matrix formalism (Shurcliff,
1968), just before impinging on the Wollaston prism, the complex
amplitude distribution reads

E0 x; x́( ) �


2

√
2

( ) 1
1
[ ] exp − i π x́

λf
x( ). (5)

In Eq. (5) the lower case, Latin letter, f denotes the focal length of
the lens in Figure 2. After crossing theWollaston prism, the complex
amplitude distribution is

E1 x; x́( ) �
exp i 2π

α

λ
x( ) 0

0 exp −i 2π α

λ
x( )

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣ ⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦E0 x; x́( ). (6)

In Eq. (6) the lower case, Greek letter, alpha denotes the wedge
angle of the thin components forming theWollaston prism. And just
before the detection plane, a polarizer at an angle of 45° modifies the
state of polarization, as follows

E2 x; x́( ) �


2

√
2

( ) 1 1
1 1
[ ]E1 x; x́( ). (7)

After performing straightforward matrix operations, Eq. (7) can
be written as is expressed in Eq. (8)

E2 x; x́( ) � 1
1
[ ] cos 2 π

α

λ
x( ) exp − i π x́

λf
x( ). (8)

Therefore, at the detection plane the non-normalized version of
the irradiance distribution is

I2 x; x́( ) � 2 cos 2 2 π
α

λ
x( ). (9)

Equivalently, Eq. (9) can be written as the irradiance distribution
that reads

I2 x; x́( ) � 1 + cos 2 π
2 α
λ
x( ). (10)

We note that Eq. (10) is not normalized. For further details, the
reader is kindly addressed to reference (Françon and Mallick, 1971;
Gimeno-Gomez et al., 2023). Next, we substitute the irradiance
impulse response in the form of sinusoidal fringes, by a binary
irradiance impulse response.

3 The noncoherent Talbot effect

Under coherent illumination, the self imaging phenomenon is
known as the Talbot effect. And under suitable forms of
noncoherent illumination, one can obtain irradiance distributions
that have analogous properties to those obtained in the Talbot effect.
In the latter case, the self imaging phenomenon is known as the Lau
effect. In what follows, we describe mathematically the similarities
and the differences between these phenomena. To that end, let us

FIGURE 3
Schematics for relating the period, of the mutually noncoherent point sources, with the number N of Talbot self-images.
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consider as an input object a grating with a binary, amplitude
transmittance. The grating is represented by its Fourier series

g x( ) � ∑∞
m�−∞

Cm exp i 2 π
m

d
( )x( ). (11)

Under the paraxial regime, it is well-known that at a distance z,
the Fresnel diffraction pattern has the following complex amplitude
distribution

ψ x, z( ) � ∑∞
m�−∞

Cm exp − i π λ
m

d
( )2z( )[ ] exp i 2 π

m

d
x( ). (12)

By neglecting the walk-off effect, Eq. (12) can be rewritten in
terms of the Talbot distance, ZT = 2 d2/λ, as follows

ψ x, z( ) � ∑∞
m�−∞

Cm exp − i 2 π
z

ZT
( )m2( )[ ] exp i 2 π

m

d
x( ).

(13)
It is apparent from Eq. (13) that if the distance z is an integer

multiple of ZT, the Fresnel diffraction is the self-image of the initial
grating. In the following section, we consider that z is a fraction of
ZT. Here, we note that the binary grating reproduces itself. Then, its
irradiance distribution is also a binary distribution. Therefore, the
irradiance impulse response is

IΠ x( ) � ∑∞
m�−∞

Cm exp i 2 π
m

d
( )x( ). (14)

Equation (14) is the irradiance distribution of a grating. As
depicted in Figure 3, for achieving an in-register superposition, the
separation between the point sources must be

p � f

NZT
( )d. (15)

Equation (15) is the in-register condition. And consequently, Eq.
(2) now reads

IS x´( ) � 1
2N + 1
( ) ∑N

n�−N
δ x´ + n

f

NZT
( )d( ). (16)

By substituting Eq. (16) in Eq. (3), we obtain the final irradiance
distribution

I x( ) � ∑∞
m�−∞

Cm exp i 2 πmn
f

NZT
( )( ) exp i 2 π

m

d
( )x( ). (17)

From Eq. (17) we claim that the in-register condition leads to a
relationship between the focal length, of the collimating lens, with
the N-fold self-image

f � LN( )ZT. (18)
In Eq. 18 the upper-case letter L is an integer number. As

depicted in the upper part of Figure 3, the trivial case is obtained if
L = 1, and N = 1.

4 Tunable fractional Talbot images

For adding flexibility to the use of self-images, and to the
generation of Moiré patterns, Luxmoore proposed a simple
technique for controlling the spatial frequency of a master
grating (Luxmoore and Dickson, 1971). In Figure 4A, we show
an optical setup that reproduces Luxmoore technique. The master
grating, with fixed spatial frequency, is illuminated with a divergent
beam, and it is displaced along the optical axis. In this manner, one
can magnify the virtual Fourier spectrum, which is located at the
same plane of the illuminating point source.

For the next discussion, it is relevant to note the following. Here, we
employ the Fresnel diffraction in the paraxial regime. As noted by
Papoulis, the paraxial approximation is valid if the following condition is
satisfied (Papoulis, 1968). Let us denote by theta, θ, the angle between the
optical axis and the edge of the diffraction mask, which is located at the
distance z. One is allowed to use the paraxial regime if

θ < λ

25 z
( )1/4

. (19)

That means that for z = λ (2 × 104)/25, the angle theta should be
less than 0.05 radians. If at the edge of a grating the height is ten time
the period of the grating, 10 d, say with d = 0.1 mm, then θ = (1
(mm)/z (mm)). And consequently, the Fresnel approximation is
valid if z > 20 (mm). On the other hand, for specifically describing
the Talbot effect, Lohmann (Lohmann and Sinzinger, 1968) has
indicated that the paraxial approximation is valid if

z< 1

λ3
d

m
( )4

. (20)

In Eq. (20), again the lower-case letter “d” denotes the period of
the grating (say, 0.1 mm); m is the maximum value of the diffraction
order (say, m = 10); and the wavelength is λ = 6.38 × 10−4 mm. For

FIGURE 4
Optical setups for tuning the scale of the virtual Fourier spectrum,
which consequently controls the generation of a grating with variable
spatial frequency. In (A) the optical setup proposed by Luxmoore. In
(B) a recently proposed optical setup, which employs two
varifocal lenses for implementing a motionless technique.
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these values, we obtain that z < 38.5 (mm). Therefore, from Eqs (19,
20), we have that the paraxial approximation is valid if the value of
the distance z is located inside the interval 20 (mm) < z < 38.5 (mm).
For a non paraxial treatment of the Talbot effect see reference
(Cohen-Sabban and Joyeux, 1983). Also in Section 5, there is a non
paraxial treatment of self-imaging.

Next, we use the concept of the virtual Fourier spectrum, G(xs; z)
of the master grating. For the optical setup in Figure 4A, at the
source plane, the complex amplitude distribution is

G xs; z( ) � ∫∞
−∞

exp − i π
xs − x´( )2
λ z

( ) exp i π
x´2

λ z
( )g x´( ) dx´.

(21)
Next, if we substitute Eq. (11) in Eq. (21), we obtain the

mathematical expression of a Fourier transformation. For
expressing this transform, we employ the Talbot distance, ZT =
2 d2/λ. Then, we obtain

G xs; z( ) � ∑∞
m�−∞

Cm exp − i 2 π
z

ZT
( )m2( )[ ] δ xs + λ z

d
m( ).

(22)
Equation (22) represents the complex amplitude distribution of

the Fourier spectrum. At the middle of Figure 4, we show a lens with
fixed optical power. This element implements optically a Fourier
transform, from the source plane to the detection plane. Thus, at the
detection plane, we obtain the amplitude impulse response

ψ x, z( ) � ∑∞
m�−∞

Cm exp − i 2 π
z

ZT
( )m2( )[ ] exp i 2 π

m

d́
( )x( ).

(23)
From Eq. (23), we observe that the amplitude impulse response

has a new spatial frequency

1
d́

� z

f
( ) 1

d
. (24)

From Eq. (24), we note that by changing the axial distance z one
can control the spatial frequency of the amplitude impulse response.
However, due to the finite angular spread of the illuminating beam, this
technique introduces vignetting. And as pointed out in Eqs. (19, 20), for
some values of z the Fresnel formulation may be inadequate. To avoid
these limitations, in Figure 4B, we proposed to keep fixed the value of z,
and to use a pair of varifocal lenses for implementing a zoom system.
This device should magnify the Fourier spectrum, without changing its
axial position. The zoom system uses two varifocal lenses, which can be
generated by employing different techniques. Among others, by using
artificial muscles. Here, we concentrate our discussions on a Gaussian
design of a system for tuning the magnification of the Fourier spectrum
of a grating. For the sake of completeness, we include some previously
results that are not well-known (Mishra et al., 2014; Lee et al., 2019;
Gómez-Sarabia and Ojeda-Castañeda, 2020a; Gómez-Sarabia and
Ojeda-Castañeda, 2020b; Song et al., 2020; Gómez-Sarabia and
Ojeda-Castañeda, 2021; Gómez-Sarabia and Ojeda-Castañeda, 2023b).

In Figures 4A, B, we depict a paraxial ray that departs from
virtual Fourier plane with an angle u0. This angle should be reduced,
by the factor M, for obtaining the exit angle u2. The M factor

represents the lateral magnification, which is generated using two
varifocal lenses. In mathematical terms,

u2 � u0

M
. (25)

Equation (25) specifies the angular magnification.
The varifocal lenses have optical powers that vary with the

magnification. For the first lens, the optical power reads

K1 � 1
s
( ) 1 − s

z
( ) 1 − 1

M
( ). (26)

In Eq. (26) the lower-case letter “s” denotes the separation
between the varifocal lenses. This distance has a fixed value. For
the second lens, the optical power is

K2 � − M − 1
s

( ) 1
1 − s

z

( ). (27)

In the Supplementary Appendix SA, we write the paraxial ray
tracing equations for validating the use of these optical powers. The
pair of varifocal lenses magnify the lateral size of the virtual Fourier
spectrum, by a factor M, while preserving the axial location of the
virtual Fourier spectrum. Then, Eq. (27) becomes

ψ x; z( ) � ∑∞
m�−∞

Cm exp − i 2 π M2 z

ZT
( )m2( ) exp i 2 πm

Mz

fd
( )x( ).

(28)

It is apparent from Eq. (28) that the influence of the distance z
(which has a fixed value) can be controlled by the factor M square.
This magnification impacts on the quadratic phase factor for setting
fractions of the Talbot length, without moving the master grating.
And consequently, one can generate a fractional Talbot image, at the
fixed detection plane. From Eq. (28), we note that the new spatial
frequency has a linear relationship with the magnification M, that is

1
d́

� Mz

f
( ) 1

d
. (29)

Furthermore, from Eq. (29), we recognize that we do not need to
move axially the master grating for magnifying the Fourier
spectrum. In other words, from Eqs. (28, 29) we claim that, even
when the axial position z is fixed, by tuning the magnificationM, one
can control both the fractions of the Talbot length, and the spatial
frequency of the output grating. For illustrating the previous results,
we consider the case z = ZT/4. For this case Eq. (28) reads

ψ x;
ZT

4
( ) � ∑∞

m�−∞
Cm exp − i

π

2
M2( ) m2( ) exp i 2 πm

Mz

fd
( )x( ).

(30)
In the next section, we discuss some applications related to this result.

5 Fractional Talbot images: linear
combination of the initial grating

In a remarkable contribution, Guigay described fractional
Talbot images, as a linear combination of the initial grating
(Guigay, 1971). Guigay proposed to divide the unit cell, of the
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grating, in N-fold sub cells. And to section the axial displacements in
N-fold fractions of the Talbot length. Here, we depart from Guigay
proposal, by considering as two independent variables, the number
of sub cells and the axial distance z. So, we consider the following
linear combination

ψ x, z( ) � ∑N−1

n�0
Wn z( ) g x − n

N
d´( ). (31)

In Eq. (31) the number of terms is N. From Eq. (31) we expect
that the complex weighting factors, Wn, will depend only on the
selected value of the position M2 z. As before, the function g(x) is
represented by its Fourier series. However, as is expressed in Eq.
(31), now the grating is laterally shifted, from its on-axis position, by
the fraction (n/N) d. By substituting the Fourier series expansion of
the function g(x).

ψ x, z( ) � ∑∞
m�−∞

Cm ∑N−1

n�0
Wn z( ) exp − i 2 π mn

N
( )⎡⎣ ⎤⎦ exp i 2 π

m

d́
x( ).
(32)

From a simple comparison, between Eqs (31, 32), we obtain that

exp − i 2 π M2 z

ZT
( )m2( ) � ∑N−1

n�0
Wn z( ) exp − i 2 π

mn

N
( ). (33)

We recognize that the right-hand side of Eq. (33) is a discrete
Fourier transform. Hence, we can obtain the weighting factors by
taking an inverse discrete Fourier transform. That is,

Wn z( ) � 1
N
( ) ∑N−1

t�0
exp − i 2 π M2 z

ZT
( )t2( ) exp − i 2 π

n t

N
( ).

(34)
For illustrating the usefulness of this general result, we discuss

the simple case of N = 2. For this case, Eq. (34) becomes

Wn z( ) � 1
2
( ) 1 + −1( )n exp − i 2 πM2 z

ZT
( )[ ]. (35)

Now, by using Eq. (35), we obtain the two following
weighting factors:

W0 z( ) � exp − i πM2 z

ZT
( ) cos πM2 z

ZT
( ). (36)

W1 z( ) � i exp − i πM2 z

ZT
( ) sin πM2 z

ZT
( ). (37)

Therefore, if we substitute Eqs (36, 37) in Eq. (31) for an
arbitrary value of z, we have that the fractional Talbot image has
the following complex amplitude distribution

ψ x, z( ) � exp − i πM2 z

ZT
( ) [cos πM2 z

ZT
( ) g x( )

+ i sin πM2 z

ZT
( )g x − d́

2
( )]. (38)

As depicted in Figure 5, we can apply Eq. (38) for implementing
an array illuminator, which is useful for Talbot interferometry. For
this application, we set z = ZT/4, and M = 1. Then, Eq. (38) becomes

ψ x,
ZT

4
( ) � 


2
√
2

( ) g x( ) + g x − d́

2
( )[ ]. (39)

We use the complex amplitude distribution, in Eq. (39), for
illuminating an object under test. In Figure 5, we show the object
under test, which is located at the back focal plane of the optical
setup. Then, at a distance ZT/4 after the back focal plane, we place a
second grating for generating Moiré patterns.

The main advantage of this type of illuminations is that it does
not generate occluding regions, on the sample under test. For further
details, the reader is addressed to the reference (Lohmann, 1988;
Leger and Swanson, 1990). In Section 6, we will apply Eq. (39) for

FIGURE 5
Schematics depicting the use of the varifocal system, for generating a no occluding periodic illumination on a sample. At the back focal plane, the no
occluding periodic illumination impinges on a pair of transparent disks. At the top of the schematics, we include a photograph of the sample, as well as a
photograph of the Talbot interferograms.
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describing the propagation of optical short pulses in a
dispersive medium.

Regarding the previous results, we recognize that for the same
value of z = ZT/4, but now with M = 2, Eq. (38) becomes

ψ x,
ZT

4
( ) � g x( ). (40)

Equation (40) indicates the conditon for obtaining a self-image.
Thus, without any longitudinal displacement, we generate an

illuminating wave that is structured as the grating itself. Of course,
many other possibilities are open by tuning the magnification M.

6 The self-imaging phenomenon in
optical fibers

For understanding the formation of spatial self-images inside an
opticalfiber, it is necessary to consider two conditions. The first condition
is to identify the wave functions that represented the Eigen-modes,
associated to the propagation inside the guiding media. For the second
condition, one needs to express the propagating of an arbitrary wave as a
linear superposition of the Eigen-modes. For the self-imaging
phenomenon, one requires phase coincidence between the several
Eigen-modes. If the condition for phase coincidence is not satisfied,
the wave exhibits modal dispersion. Ulrich clearly identified these two
conditions (Ulrich, 1975; Ulrich and Ankele, 1975).

For satisfying the first condition, we employ the formal solution
of the wave equation inside the guiding media. For clarifying the use
of this approach, in what follows, we start by employing the formal
solution for a wave that travels in free space. We will note that this
treatment leads to the identification of the Bessel beams, as the
Eigen-modes of free space propagation. In mathematical terms, for
our current discussion, we express Helmholtz equation as follows

∂2

∂z2
ψ x, y, z( ) � − k2 1 + k− 2 ∂2

∂x2
+ ∂2

∂y2
( )[ ] ψ x, y, z( ). (41)

The formal solution of Eq. (41) is

ψ x, y, z( ) � exp i k z






















1 + k− 2

∂2

∂x2
+ ∂2

∂y2
( )( )√⎡⎢⎣ ⎤⎥⎦χ x, y( ). (42)

In Eq. (42), the initial condition is the function χ(x, y) = ψ(x, y,
z = 0). Several years ago, for identifying the sufficient and necessary
conditions for obtaining self-images, one of us recognized a simple
method. The Eigen-modes are obtained by noting that the initial
function should satisfy the differential equation

∇2
⊥ χ x, y( ) � − ε2 χ x, y( ). (43)

In Eq. (43) the lower-case Greek letter ε represents the Eigenvalue
associate to the transversal Laplacian operator, in rectangular
coordinates, ∇2

⊥ = (∂x2 + ∂y2). The Eigenvalue, ε, has dimensions of
(1/length). By substituting the left-side of Eq. (43) in Eq. (42), we obtain
the mathematical expression for the propagating wave

ψ x, y, z( ) � exp i k z












1 − ε

k
( ) 2( )√⎡⎢⎣ ⎤⎥⎦χ x, y( ). (44)

The solution in Eq. (44) is the Eigen-mode. Trivially, Eq. (43) is
solved if the initial function is a 2-D plane wave, namely

χ x, y( ) � A exp i k L x +My( )[ ]. (45)

In Eq. (45) the upper-case letters L an M denote the direction
cosines. Then, the Eigen-mode is

ψ x, y, z( ) � A exp i k z














1 − L2 +M2( )( )√[ ] exp i k L x +My( )[ ].

(46)
Equation (46) represents the propoagation of a tilted plane wave.

The obligatory phase coincidence, if you will the modal non-dispersive
condition, is the well-known requirement for obtaining self-images. Of
course, the above formulation can be repeated for a different coordinate
system. Indeed, for cylindrical coordinates, Eq. (42) becomes

ψ r,φ, z( ) � exp i k z





























1 + k− 2

∂2

∂r2
+ 1
r

∂
∂r

+ 1
r2

∂2

∂φ2
( )( )√⎡⎢⎣ ⎤⎥⎦χ r,φ( ).

(47)
Equation (47) only describes the formal solution. For finding the

Eigen-mode, one needs to solve the differential equation

∂2

∂r2
+ 1
r

∂
∂r

+ 1
r2

∂2

∂φ2
( )χ r,φ( ) � − ε2 χ r,φ( ). (48)

It is common in mathematical physics to employ the method of
separation of variables, for solving this type of partial differential
equation. Hence, we assume that the solution has the form

FIGURE 6
Schematics representing a random lateral displacement of a
point source, which illuminates with a tilted plane wave a fixed optical
grating. In (A) a single point source, at time t = δt. In (B) the several
position of the point source at time t. The time average impulse
response is denoted as < I (x, y)>.
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χ r,φ( ) � R r( ) exp i mφ( ). (49)

By placing this function in Eq. (49), we obtain a differential
equation for the radial function R(r). That is,

d2

dr2
+ 1
r

d

dr
+ ε2 − m

r
( )2( )R r( ) � 0. (50)

By employing the change of variable k r = t, we can rewrite Eq.
(50), and its solution, as

t2
d2

dt2
+ t

d

dt
+ t2 − m2( )Jm t( ) � 0. (51)

In Eq. (51) the radial function Jm(t) is the Bessel function of the
first kind, and integer order m. Therefore, Eq. (52) denotes the
Eigen-mode

ψ r,φ, z( ) � A exp i k z









1 − m2( )√[ ] Jm k r( ) exp i mφ( ) . (52)

For understanding the condition for obtaining self-images, the
reader is kindly addressed to Eq. (11) in reference (Lohmann et al.,
1983). In that paper, some of us noted that in the frequency domain,
the Eigen-modes can be related to the nonparaxial rings, which were
used by Montgomery for stating the necessary and sufficient
conditions for self-imaging (Montgomery, 1968). It is interesting
to note that after 4 years, from the publication of this solution, other
researcher rediscovered this solution. The same solution was
denoted with the now popular misnomer “diffractionless” beams
(Durnin, 1987). Next, we note that the above formulation is indeed
also useful for describing wave propagation in a guiding media
(Ojeda-Castañeda and Noyola-Isgleas, 1990; Szwaykowski and
Ojeda-Castañeda, 1991). Now we consider the following
expression for the Helmholtz equation, in cylindrical coordinates,

∇2
⊥ + ∂2

∂z2
+ k2 N2 r( )[ ]ψ r,φ, z( ) � 0. (53)

In Eq. (53) we denote the transversal Laplacian operator as in
Eq. (54).

∇2
⊥ � ∂2

∂r2
+ 1
r

∂
∂r

+ 1
r2

∂2

∂φ2
. (54)

In Eq. (54), the transversal Laplacian is expressed in polar
coordinates. If the employ again the same arguments for finding
the Eigen-modes, we need to solve the differential equation

k− 2 ∇2
⊥ +N2 r( )[ ] R r( ) exp i mφ( ) � −ε2R r( ) exp i mφ( ). (55)

Equation (55) is a general differential equation. As in the
reference (Ojeda-Castañeda and Noyola-Isgleas, 1990), and in
(Okoshi, 1982), we consider the following alpha power, radial
refractive index profile. For values of r inside the interval (0, R),
the profile is

N2 r( ) � N2
1 1 + A

r

R
( )2α−2 + B

r

R
( )α−2[ ]. (56)

In Eq. (56) the lower case, Greek letter, alpha is a real number.
For the values of r, where r > R, the refractive index profile is

N2 r( ) � N2
1 1 + A + B[ ] � N2

2 . (57)

From Eq. (57) we note that if B = 0, then α ≥ 1. And if B ≠ 0, then
α ≥ 2. For finding the Eigen-modes, as in Eq. (48), we use
the function

r2
d2

dr2
+ r

d

dr
−m2 + k2N1 − ε2( )r2 + A

kN1

Rα−1( )2

r2 α + B
kN1( )2
Rα−2( )rα[ ] R r( )

� 0.

(58)

The above differential equation, in Eq. (58), has two expressions
that are known in the mathematical physics literature (Bell, 1986).
Due to the lengthy derivations, we only discuss one case out of two.

FIGURE 7
Visibility variations caused by the spread of the random locations of a single point source. From (A–C), we assume that the probability density
function is uniform, with three different values of L in Eq. (33).
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For A > 0 and B = 0, according to Bell (Bell, 1986), the differential
equation takes the known expression

r2
d2

dr2
+ 1 − 2 a( )r d

dr
+ a2 − m2 γ2( ) + b2 γ2 r2[ ][ ] R r( ) � 0.

(59)
By a simple comparison between Eqs (58, 59), we have that

α � 1; a � 0; γ � 1; b � kN1




A

√
;R r( ) � Jm kN1




A

√( ) r( ). (60)

Thus, by using Eq. (60), for this case, the Eigen-mode is

χ r,φ( ) � c Jm kN1




A

√( ) r( ) exp i mφ( ). (61)

In Eq. (61) the lower-case letter “c” denotes an arbitrary
constant. To the best of our knowledge, the condition for non
modal dispersion is unknown.

7 Self-imaging: statistical aspects

Next, we consider a nonconventional application of the
Talbot-Lau effect. We extend our previous descriptions to
statistical optics. This description is useful for two specific
applications. First, one can evaluate the random movements of
a point source as depicted in Figure 6A. Since this type of motion
clearly alters the “in-register” condition, one needs a statistical
model. Second, for a noncoherent illuminating slit, any
geometrical deformations can be considered as the presence of
non-aligned, independent point sources as depicted in Figure 6B.

For these two applications, it is relevant to comprehend
the impact of random locations in an averaged interferogram.
To this end, in what follows, we develop the concept of an average
optical transfer function (Frieden, 1991). As is discussed in the
Supplementary Appendix SC, the average irradiance
distribution is

〈I x( )〉 � 1
2
+ 1
2
Re ΦX

1
d
( ) exp i 2 π

x

d
( ){ }. (62)

In Eq. (62), the function ΦX(μ) denotes the characteristic
function of the random process. Its independent variable is the
spatial frequency μ. The Fourier transform of Eq. (62) is the average
optical transfer function

〈H μ( )〉 � 1
2
δ μ( ) + 1

4
ΦX −1

d
( ) δ μ + 1

d
( ) + 1

4
ΦX

1
d
( ) δ μ − 1

d
( ).

(63)
Now, for our numerical simulations, we employ a uniform

probability density function that reads

pX ζ( ) � 1
L
( ) rect

ζ

L
( ). (64)

It is worth notincing that in Eq. (63), the spread (of the random
positions) is governed by the length, L, of the rectangular window.
The Fourier transform of Eq. (64) is the characteristic
function, which is

ΦX μ( ) � sinc L μ( ). (65)

The average irradiance distribution is

FIGURE 8
Probability density functions and their associated characteristic functions. The cut-off, spatial frequency of the characteristic function is equal to the
same value, say, 2 (1/mm). In (A, C) the probability density functions. In (B, D), the characteristic functions. At the top, the uniform distribution. At the
bottom, a Gaussian distribution.
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〈I x( )〉 � 1
2
+ 1
2
sinc

L

d
( ) cos 2 π

x

d
( ) . (66)

From Eqs (65, 66), we note that the characteristic function
impacts on modulation of the detected grating. For visualizing the
influence of L on the visibility, in Figure 7 we plot three irradiance
distributions associated to three different values of L.

Of course, if the random set of positions obeys a different
probability density function, then the visibility will be modulated
by a different characteristic function. For example, if the probability
density function is Gaussian, with zero mean and with standard
deviation equal to σ, the probability density function reads

pX ζ( ) � exp − ζ2

2 σ2
( ). (67)

Please note that Eq. (67) is not normalized. Its characteristic
function is

ΦX μ( ) � exp − 2 π σ μ( )2( ). (68)

It is instructive to illustrate the differences, between Eqs (65, 68), by
assuming that the characteristic function has the same cut-off, spatial
frequency. In Figure 8, we show the probability density functions and
their associated characteristic functions.

For the same cut-off frequency, one expects that for detecting
random variations a Gaussian process is more sensitive than a uniform
process. In the following section, we extend our previous discussions, by
considering the temporal version of the Talbot-Lau effect.

8 Temporal optics: short pulse
reconstruction

The Talbot-Lau effect is commonly considered as a purely spatial
phenomenon. However, in a renowned paper, Jannson and Jannson
noted the similarities between Talbot imaging and the propagation of
optical short pulses in a dispersive medium (Jannson and Jannson,
1981). In Figure 9, we show the schematics for our current analysis. We
consider the presence of a slow-varying, complex amplitude envelope, χ
(t, z), whichmodulates the continuous wave (CW) coming from a laser.
For further details, the reader is kindly addresses to references (Marcuse,
1980; Lohmann and Mendlovic, 1992; Papoulis, 1994; Naulleau and
Leith, 1995; Azaña and Muriel, 1999).

In what follows, we employ the following notation. Along the
dispersive medium, the propagation length is z. We consider that a
loss-less dispersive medium, which is characterized by a phase-only
transfer function. The dispersion function of the medium is β (ω).
This function is conveniently expressed as Taylor series expansion,
around the angular frequency ω0. That is,

β ω( ) �∑∞
n�0

1
n!

ω − ω0( )n d

dω
( )n

β ω( )[ ]∣∣∣∣∣∣∣∣
ω�ω 0

. (69)

If in Eq. (69), we consider only the initial three terms, the
coefficients are denoted as follows. The first coefficient, Beta sub-
zero, is frequency independent and it is consequently ignored. The
second coefficient, Beta sub-one, is associated to the group velocity. The
third coefficient, Beta sub-two, is known as the first-order, dispersion

FIGURE 9
Schematics of the setup for analyzing the propagation of the slow-varying complex envelope, along a dispersive medium.

TABLE 1 Table that describes the analogies between the self-imaging phenomena in spatial optics, and in temporal optics.

Self-imaging Talbot effect Lau effect

Domain

x: Spatial Periodicity, d Interference Pattern In-register Noncoherent Superposition

t: Temporal Periodicity, T Slow-Varying Envelope In-register Envelopes

Along the columns, the pertinent effect. Along the rows, the spatial case and the temporal case.
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coefficient. Then, the phase-only transfer function is commonly
approximated as

H ω( ) � exp − i β2z
2
ω2( ). (70)

Under a convenient analogy, the transfer function in Eq. (70) is
like the kernel that is associated to Fresnel diffraction. More on that
in what follows. Once that we have the transfer function, we can
write the integral transform that describes the time evolution of the
slow-varying, complex amplitude

χ t, z( ) � ∫∞
−∞

Χ ω( ) exp − i
β2 z

2
ω2( ) exp i tω( )dω. (71)

In Eq. (70) the function X(ω) is the Fourier spectrum
of the slow-varying, complex amplitude envelope. Equivalently,
by remembering that ω = 2 π μ, we can write Eq. (71) as

χ t, z( ) � 2 π ∫∞
−∞

G μ( ) exp − i 2 π π β2 z( )μ2( ) exp i 2 π μ t( )dμ. (72)

In Eq. (72) we change the notation of the functions, G(μ) =X(ω), for
incorporating the change of variable, μ=ω/(2 π). Now, it is convenient to
remember that a periodic, time signal can be written as the convolution

g t( ) � u t( ) *∑∞
m�−∞

δ t − T( ). (73)

In Eq. (73) the function u(t) denotes the amplitude of the unit pulse,
of the periodic time signal. The Fourier spectrum of Eq. (73) is

G μ( ) � ∑∞
m�−∞

U
m

T
( )δ μ − m

T
( ). (74)

By substituting Eq. (74) in Eq. (72) we obtain the expression that
describes the evolution of the slow-varying, complex amplitude envelope

χ t, z( ) � 2 π ∑∞
m�−∞

U
m

T
( ) exp − i 2 π π β2

T2
z( ) m2( )

exp i 2 π
m

T
t( ). (75)

By a simple comparison between Eqs. (23, 75), we recognize that
there is an analogy between the propagation of slow-varying,
complex amplitude envelope and the complex amplitude
distribution of a fractional Talbot image. The resemblance can be
emphasized by defining the following Talbot distance

ZT � T2

π β2
. (76)

If one uses the definition in Eq. (76), then Eq. (75) reads

FIGURE 10
Pictorial description on the use of matrix formalism, which illustrates the reversibility on the evolution of the unit cell in a dispersive medium. In (A),
the short binary pulse travels a distance equal to one quarter of the Talbot length, z = ZT/4; and then it becomes a phase-only, short pulse. In (B), the
phase-only short pulse travels one quarter of the Talbot length, and it becomes a binary short pulse.
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χ t, z( ) � 2 π ∑∞
m�−∞

U
m

T
( ) exp − i 2 π z

ZT
( ) m2( ) exp i 2 π

m

T
t( ).
(77)

From Eqs. (23, 77), we claim that in principle, one can translate
the mathematical tools of the spatial Talbot-Lau, to its counterpart
in the time domain. For the temporal signals, we can use the
mathematical tools that we developed in Section 4, and in the
Supplementary Appendix SB. The above-described analogy can
help us to understand the possibility of having a Lau effect in the
propagation of the slow-varying complex envelope. If you will, one
can obtain a noncoherent temporal Talbot effect in the time domain.
This idea is depicted in Table 1. For further details, the reader is
kindly addressed to the references (Lancis et al., 2006; Torres-
Company et al., 2006; Ojeda-Castañeda et al., 2007; Ojeda-
Castañeda et al., 2009; Lohmann and Ojeda-Castañeda, 2023).

For emphasizing the analogy under consideration, we discuss the use
of the matrix formalism for the temporal case, for N = 2. As in Eq. (35),
Section 4, the unit cell changes from its initial function, u(t), to a new
function, ψ (t, z). If one uses the formalism in Supplementary Appendix
SB, this transformation can be expressed as the matrix product

ψ0

ψ1
( ) � W0 z( ) W1 z( )

W1 z( ) W0 z( )( ) 1
0

( ) . (78)

By substituting the value of the Wn coefficients in Eq. (78)
we obtain

ψ0

ψ1
( ) � exp − i π

z

ZT
( ) cos π

z

ZT
( ) i sin π

z

ZT
( )

i sin π
z

ZT
( ) cos π

z

ZT
( )

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ 1

0
( ) .

(79)
Hence, for z = ZT/4, the matrix product reads

ψ0

ψ1
( ) �



2

√
2

exp − i
π

4
( ) 1

i
( ) . (80)

The result in Eq. (80) indicates that the initial unit cell,
associated to a binary grating with duty cycle equal to one-half,
has been transformed into a unit cell that has two subcells. The new
unit cell is a transaparent structure; as is depicted in Figure 10.

The matrix, at the central part of Eq. (79), has an inverse matrix.
Thus, the matrix operation can be reversed. So, we can go back, from a
transparent unit cell to amplitude binary cell as is depicted in
Figure 10B. It is relevant to note that despite the advantage gained
in simplicity, by using the matrix formalism, one cannot describe the
ringing effects on the edges of the unit cell. Further details in (Arrizon
et al., 1996; Bradburn-Tucker et al., 1999; Ojeda-Castaneda et al., 2015).

9 Conclusion

We have defined an in-register condition. This definition was
employed to describe the Lau effect as the noncoherent
superposition of independent interferograms. The description
consists in adding, in irradiance, several laterally shifted replicas of
an initial interferogram. The superposition generates patterns with both
high visibility and high light throughput.

We have indicated that for implementing the above procedure,
one employs a spatially noncoherent source, which is masked with a
periodic set of narrow slits. We have extended this interpretation for
increasing the high light throughput of polarization devices, which
are commonly employed with a single point source.

For tuning the spatial frequency of the master grating, we have
described analytically the method proposed by Luxmoore. And for
avoiding the need of any mechanical compensation, we have
described the use of a varifocal system, which can magnify the
spatial frequency of a master grating. For this type of devices, we
have identified the presence of a quadratic phase factor, which can be
tuned with the magnification. This result was applied for generating,
at a fixed plane, tunable fractions of a Talbot image.

We have further developed the description of the fractional Talbot
images, departing from Guigay´s initial proposal. We have expressed
the fractional Talbot images as a linear combination of the initial
grating. We have applied this formulation for describing a simple array
illuminator for Talbot interferometry. The illuminating beam does not
generate occluding regions on the sample to be assessed.

The proposed formulation is particularly useful for evaluating the
changes of the unit cell, for variable axial locations, z, independently
from the number of sub cells. It can mathematically be expressed, in
simple terms, by employing a matrix formalism.

We have discussed the use of a differential operator, which solves
formally the Helmholtz equation in free space, as well as in guiding
media. We have shown that the formal solution helps to obtain the
Eigen-modes of free space, and those in guiding media. Simple
examples illustrate the benefits of this nonconventional approach.

For proposing sensors that detect randomvariations, of the position of
a point source, we have discussed the use of a time average optical transfer
function. And, we have extended our discussion to the reconstruction of
sub cells short pulses, which travel along a dispersive medium.
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