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Precise, reliable, and speedy contamination detection and disinfection is an

ongoing challenge for the food-service industry. Contamination in food-

related services can cause foodborne illness, endangering customers and

jeopardizing provider reputations. Fluorescence imaging has been shown to

be capable of identifying organic residues and biofilms that can host pathogens.

We use new fluorescence imaging technology, applying Xception and

DeepLabv3+ deep learning algorithms to identify and segment contaminated

areas in images of equipment and surfaces. Deep learning models

demonstrated a 98.78% accuracy for differentiation between clean and

contaminated frames on various surfaces and resulted in an intersection

over union (IoU) score of 95.13% for the segmentation of contamination.

The portable imaging system’s intrinsic disinfection capability was evaluated

on S. enterica, E. coli, and L. monocytogenes, resulting in up to 8-log reductions

in under 5 s. Results showed that fluorescence imaging with deep learning

algorithms could help assure safety and cleanliness in the food-service industry.
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Introduction

Eating at restaurants or institutional dining facilities is a part

of our lives worldwide. U.S. restaurant industry sales were

$780 billion in 2016 (Bartsch et al., 2018). The National

Restaurant Association says 47% of every 2016 food dollar

was spent in a restaurant, and the average American dined

out five times per week (Bartsch et al., 2018). Restaurants

handle a variety of raw foods, presenting a risk of cross-

contamination leading to foodborne illness. Cross-

contamination can happen at any stage of food handling,

from food processing to food serving, and in domestic

kitchens following an unintentional transfer of bacteria or

other microorganisms from contaminated surfaces to another

surface (Giaouris et al., 2014). In restaurants, cross-

contamination can occur during food preparation stages due

to poor cleaning and sanitization procedures, improper hand

hygiene, or improper separation of ready-to-eat foods (e.g., salad

and fresh fruits) from foods requiring cooking (e.g., meat)

(Weinstein, 1991; Jackson et al., 2000).

Foodborne illness outbreaks occur when people eat food

contaminated with a disease-causing agent (Hedberg, 2013).

Since restaurants allow people to gather for shared food

experiences, they also provide opportunities for outbreaks to

happen. Restaurants are more often linked to food illness

outbreaks than other food preparation sites. In 2017,

841 foodborne disease outbreaks were reported in the U.S.,

with restaurants accounting for two-thirds of these (Firestone

et al., 2021). The impact of these outbreaks is significant in the

cost of human health and mortality and the economic impact on

commercial establishments. The economic impact comes from

loss of revenue and damage to brand strength. Loss of income is

due to the cost of a facility shutdown while investigating and

remediating the problem, lost customers, and lawsuits (Bartsch

et al., 2018).

In 2015 the share value of a reputable restaurant chain in the

U.S. decreased by 18% in the first 2 months of an E. coli outbreak,

and their brand strength index fell by 27% (Brand Finance, 2018).

A 2013 study in the International Journal of Hospitality

Management reported that the negative impact on investment

value expressed as cumulative abnormal return (CAR) for

multiple publicly traded firms was significant in magnitude

(Seo et al., 2013). A 2018 study conducted by Brand Finance

estimating the impact on business equity showed that

“Businesses in the Restaurant & Food Services industry face a

risk of losing up to 19% of their Enterprise Value as a result of a

food safety incident.” Using the example of Darden Restaurants

Group, they calculated the business value at risk for Darden to be

$2.4 billion and for the industry as a whole, the business risk to be

$104 billion (Brand Finance, 2018).

During meal preparation, residues left on food processing

surfaces or equipment can create a favorable environment for

microorganisms to grow, often forming biofilms (Jun et al.,

2010). Foodborne pathogens associated with food poisoning

include Salmonella enterica, Listeria monocytogenes, and

Escherichia coli O 157:H7, which form robust biofilms

(Giaouris et al., 2014). Bacterial cells can easily release from

biofilms and quickly spread to other surfaces in the food

preparation environment (Trachoo, 2003). Release of

pathogenic bacteria from biofilms leads to cross-

contamination from preparation surfaces to prepared food.

Effective sanitization methods and food handling procedures

must be implemented to reduce the spread of foodborne

pathogens.

Currently, retail food and food-service businesses in the U.S.

are regulated by more than 3,000 state, local, and tribal entities,

responsible for maintaining oversight and inspection of over one

million food establishments (Food and Drug Administration,

2021). The most common testing method for microorganism

contamination is swabbing of food contact surfaces and

equipment for Adenosine Triphosphate (ATP) testing or

laboratory culturing (Verran et al., 2010). These methods can

be time-consuming and do not provide real-time detection of

potentially harmful microorganisms, allowing additional spread

of microorganisms through a food preparation facility. Swabbing

methods cannot test large surface areas even when swiped back

and forth (up to 100 cm2). More effective solutions are needed to

combat cross-contamination in restaurants and institutional

kitchens. Optical fluorescence imaging can provide this

improved confidence. Fluorescence imaging can play an

essential role in food safety and provide a fast and effective

method to detect biofilms and organic residues that are less

visible or invisible to the human eye. Real-time analysis to

identify invisible biofilms and organic residues, followed by

immediate disinfection, could reduce foodborne illnesses in

restaurants and institutional kitchens.

Image processing and machine learning algorithms have

rapidly increased in food safety and food security applications,

especially in meat processing (Li et al., 2021; Shi et al., 2021).

Several studies have used threshold-based algorithms to detect

contaminated areas, but determining threshold values is

challenging, and inappropriate thresholds can contribute to

false-positive and false-negative results. Many fluorescence

imaging applications using thresholding were performed in

the absence of ambient light or self-illuminated instrument

displays, and fluorescence intensity thresholding can be

implemented more straightforwardly. Trying to accomplish

fluorescence imaging under ambient light conditions creates

additional complexity in establishing suitable thresholds (Seo

et al., 2019; Sueker et al., 2021).

More sophisticated and reliable algorithms are needed. Deep

neural network (DNN) algorithms, especially convolutional

neural network (CNN) algorithms, have become popular

machine learning methods in many fields (Taheri Gorji and

Kaabouch, 2019; Zuo et al., 2019; Gao et al., 2020; Rezaee et al.,

2020; Rezaee et al., 2022), including food safety (Zhou et al., 2019;
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Zhu et al., 2021). CNNmodels are advantageous because they can

automatically extract information from images and videos and

learn from them. Learned weights of a trained CNNmodel can be

saved and reused with a new dataset without re-training the

model (Ribani and Marengoni, 2019). DNN algorithms have

many food safety applications, including food recognition and

classification, calorie estimation, supply chain monitoring, food

quality assessment, and contamination detection (Pouladzadeh

et al., 2016; Nayak et al., 2020; Chen et al., 2021; Gorji et al.,

2022). Food-related applications of DNN algorithms have been

studied, but we know of no study on detection and segmentation

of organic residue or biofilm contamination in institutional

kitchens and restaurants.

Here, we use a new fluorescence imaging system developed

by SafetySpect Inc. (Grand Forks, ND) and two state-of-the-art

deep learning algorithms developed by Google researchers,

Xception, to identify video frames with contamination and

then DeepLabv3+, to precisely segment and label the

associated regions of contamination in a frame identified as

contaminated. A portable fluorescence imaging system for

“contamination, sanitization inspection, and disinfection”

(CSI-D) has been developed by SafetySpect (Sueker et al.,

2021). It provides mobility and flexibility for contamination

identification and disinfection on surfaces in institutional

kitchens and restaurants, even under bright ambient light.

However, to tap the enormous potential of this technology for

use in the food and food-service industries, the fluorescence

video or image frames captured by the system must be processed

and interpreted.

An automated method for analyzing these video frames and

detecting contamination will make work easier for inspectors.

After CSI-D detects contamination missed during cleaning, CSI-

D’s UVC germicidal illumination can disinfect the missed area.

CSI-D is not intended to provide primary sanitization but can

disinfect small areas missed during cleaning. We used several

bacterial strains, S. enterica, E. coli, and L. monocytogenes, to

evaluate the efficacy of the CSI-D system’s disinfection

performance and characterized the killing percentage based on

a range of UVC dosages to evaluate the effectiveness of this

additional safety barrier during food processing.

Materials and methods

Contamination detection and disinfection
technology

Much of the fluorescence in biofilms and food residues comes

from a limited number of organic compounds characterized by

conjugated double bonds (alternating single and double bonds)

that can fluoresce. Polyaromatic hydrocarbons, heterocyclic

compounds, and several highly unsaturated aliphatic

molecules comprise intrinsic fluorescent components (Valeur

and Berberan-Santos, 2012; Sikorska et al., 2019). The CSI-D is a

fast, convenient, and easy-to-use handheld automated imaging

inspection device that offers mobility and flexibility for

fluorescence-based detection of intrinsic fluorophore residues

on various surfaces (Sueker et al., 2021). CSI-D provides

detection, disinfection, and documentation of contaminants

on surfaces that might spread pathogens and cause disease.

Novel aspects of the CSI-D solution include the combination

of contamination identification and immediate remediation of

the potential threat (bacteria, virus) using UVC light disinfection

and image- or video-based documentation of this process to

provide traceable evidence of disinfection. At a distance of 20 cm,

the field of view (FOV) of the RGB camera used for fluorescence

imaging is 30 cm. Its lighting module consists of 275-nm and

405-nm light-emitting diode (LED) arrays and a heatsink for heat

dissipation from the LEDs and driver circuits. SafetySpect

designed the CSI-D illumination system to ensure adequate

illumination uniformity and intensity at the desired working

distance (between 12.5 and 20 cm) for fluorescence detection and

effective disinfection using the 275-nm LEDs for treatments of

2–5 s. Wireless communication enables remotely placed staff to

supervise inspections in real-time and instantly respond to

inspection concerns. Figure 1 shows the CSI-D device.

Contamination detection data collection

We collected data at six Edgewood long-term care facility

(LTCF) institution kitchens in North Dakota and two restaurants

in Los Angles, California, United States. Before data acquisition,

we had detailed discussions with each facility manager to better

understand their high-touch and high-risk areas, the cleaning

methods used, and any perceived sanitization concerns. The CSI-

D system was used to record video from multiple high-risk areas.

We scanned all identified high-risk areas such as trash bins,

fridge door handles, cutting boards, and preparation tables. We

captured the videos at 1,024 × 768 resolution and 24 frames per

second (FPS). 1 h and 35 min of video scans were used for further

analysis.

Figure 2A,B show examples of clean and contaminated

surfaces. Since many materials fluoresce naturally, clean

surfaces can show both green and red fluorescence. It is

insufficient to simply look for different colors in the dual-

band fluorescence images. What is important is to look for

fluorescence differences in the image that are different from

the background objects. Figure 2A, columns 4 and 5 show some

fluorescence differences that follow the background object’s

shape and are not contamination. In Figure 2B, we see

fluorescence differences in the form of spray and splash

patterns that are clearly different from the background object

fluorescence and are likely contamination. Depending on the

excitation wavelength, fluorescing food components can include

aromatic amino acids, vitamins A, E, B2, and B6, NADH
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coenzymes, phenolic compounds, chlorophylls, and porphyrins.

Process-derived elements that also fluoresce consist of Maillard

reaction products, food additives, and contaminants, including

antibiotics, pesticide residues, mycotoxins and aflatoxins, and

fecal contamination (Sikorska et al., 2019).

Contamination detection and
segmentation

We set out to accomplish two aims with our investigation.

Using a DNN model, we initially sought to distinguish between

images showing contamination on different surfaces

(contamination) and those showing no contamination (clean).

The precise locations of the contamination in the images we

previously classified as contamination images were subsequently

detected using a semantic segmentation approach.

A total of 72,381 frames were used for clean and

contamination classification, comprising 35,858 clean frames

and 36,523 contamination frames. Video segments containing

contamination were identified by two experts who were present

throughout the data collection. These segments contained many

frames, and many of these were sequential frames from video of

the same contamination but at different positions, angles, and

FIGURE 1
CSI-D device, Front view, and Rear view.

FIGURE 2
Fluorescence images captured by CSI-D (A) CSI-D fluorescence images of surfaces without indications of contamination. (B) CSI-D
fluorescence images of surfaces with indications of contamination.
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distances. This allowed faster labeling of video frames as

contamination and clean while providing different views for

the training of the algorithm. The frames, once reviewed, were

transferred to separate clean and contamination digital file

folders to later be used for training the model.

For the image segmentation, a total of 12,500 frames were

labeled at the pixel level by four image labelers under the

supervision of two experts present throughout the data

collection and another expert who provided review and

training remotely.

Contamination detection model
architecture

For the image classification aim, we used a state-of-the-art

CNN model named Xception to classify the video frames

recorded using the CSI-D device into two categories: clean

and contamination. Before feeding the data to the model, we

extracted frames from videos.

The Xception model was developed by Google (Chollet,

2017) by modifying modules of Inception (Szegedy et al.,

2015) with depthwise separable convolutions (DSC).

Xception’s high-performance architecture depends on two key

components: DSC and residual connections between convolution

blocks. Using DSC increases representational efficiency while

generating fewer parameters than standard CNNs, reducing

computational cost and memory requirements. Using residual

connections (He et al., 2015) addresses the vanishing gradient

problem (Hochreiter, 1998) common in very deep networks,

which causes architecture performance to saturate or degrade.

The backbone of Xception’s feature extraction is its

36 convolutional layers. These layers are divided into

14 modules connected by linear residual connections, except

for the first and last modules. The network performs channel-

wise pooling or cross-channel downsampling with each residual

1 × 1 convolution layer block (Lin et al., 2013). The 1 ×

1 convolution layer acts as a projection layer, aggregating

information across channels and reducing dimensionality.

This layer reduces the number of filters while adding non-

linearity and retaining crucial, feature-related information. In

the Xception architecture, the 1 × 1 convolution layer has a stride

of 2 × 2, reducing the feature map size in the residual path to

match it with the feature map size of the max pooling layer.

Figure 3 shows the Xception model’s architecture where the

data enters the input flow, then passes to the middle flow for eight

iterations, and finally, the exit flow. All convolution and

SeparableConvolution layers are followed by batch

normalization and a Rectified Linear Unit (ReLU) activation

function (Ioffe and Szegedy, 2015; Agarap, 2018). The batch

normalization can stabilize the learning process and significantly

reduce the number of training epochs needed by reducing the

internal covariate shift when training a deep learning model

(Ioffe and Szegedy, 2015). The default input image size for

Xception is (299, 299, 3), and the images will pass through

the entry flow.

The entry flow comprises four modules, including one

module of convolutional layers and three modules of

SeparableConvolution layers. The first module comprises a

layer of 32 filters with a kernel size of 3 × 3 and a stride of

2 × 2, and a layer of 64 filters with a kernel size of 3 × 3. For the

other three entry flow modules, each has two

SeparableConvolution layers and one max-pooling layer. The

filter sizes in these three modules are 128, 256, and 728, used in

that order. The kernel sizes are 3 × 3, and the strides are 2 × 2. The

input image dimensions change from 299 × 299 × 3 on entry to

19 × 19 × 728 on exit from the entry flow.

The feature maps then pass to the middle flow, consisting of

eight repeated modules, each of which includes three

SeparableConvolution layers with a filter size of 728 and a

kernel size of 3 × 3. The middle flow mainly learns the

correlations and optimizes the features after the feature spatial

dimensions are reduced in the entry flow.

In the final stage, the feature maps proceed to the exit flow

consisting of two modules, a residual block, and a non-residual

block. The residual block consists of two SeparableConvolution

FIGURE 3
The architectures of Xception model (Conv stands for convolutional layer).
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layers, with filter sizes of 728 and 1,024 used in that order,

followed by a max-pooling layer to reduce the dimensions of the

feature maps. The non-residual block also comprises two

SeparableConvolution layers, with filter sizes of 1,536 and

2048 used in that order. However, instead of using a max-

pooling layer, the two SeparableConvolution layers are

followed by a global average pooling layer that can minimize

model overfitting by reducing the final number of parameters in

the model. The model will use these final 2048 features for

classification. Since the first aim of this study is to classify

frames as Clean or Contamination, a binary classification task,

we used a sigmoid function as the activation function for the

output layer of the model. The sigmoid function is a nonlinear

activation function that squashes all values to a range between

0 and 1, providing the probability of belonging to either the Clean

or Contamination classes. We selected binary cross-entropy as

the model loss function due to our task’s binary nature. The

cross-entropy loss between the predicted and actual labels is

calculated using the binary cross-entropy method, and the results

can be either 0 or 1. The cross-entropy loss will increase if the

predicted labels deviate from the actual ones. The binary cross-

entropy loss is defined as follows:

Loss � − 1
N

∑
N

i�1
yi × log(p(yi) + (1 − yi) × log(1 − p(yi))) (1)

Where N denotes the training samples size, yi is the actual

label, p(yi) represents the predicted probability of class 1

(Contamination) and 1 − p(yi) denotes the predicted

probability of class 0 (Clean).

After defining the loss function, the model needs an

optimization algorithm to enhance the model performance by

changing the model weights and learning rate while minimizing

overall loss. We employed the Adam optimizer (Kingma and Ba,

2014), a stochastic gradient descent approach that estimates the first-

and second-order moments to calculate individual adaptive learning

rates for different parameters. Adam is computationally efficient, has

lowmemory demand, is invariant to diagonal rescaling of gradients,

and is useful for problems with big data and parameters.

Contamination segmentation model
architecture

Accurate segmentation of contaminated areas on a range of

different surfaces is very important because just identifying

contamination frames using the method described above does

not necessarily result in finding all the contamination.

Contaminated areas can be spread sporadically across the

surface, and it can be challenging to identify every single area

of contamination in the field of view. Organic residue and biofilms

may also contaminateminute areas on a surface, making it difficult

to detect even when contamination is identified in a video frame

during an inspection procedure. This difficulty is why we focused

on the segmentation of contaminated regions in the video frames

already identified as contamination as the second aim of this study.

Segmenting and pseudo-coloring contaminated regions can

make it easier for inspectors to identify and not overlook any

contamination. The many different types of objects and

surfaces in restaurants and kitchens can produce different

background fluorescence and reflections. There may be many

varying kinds of contamination present at the same time, so the

combination of these can make it likely that an inspector could

miss some area of contamination during an inspection. Pseudo-

coloring the contaminations—in our case, green for green

fluorescence and red for red fluorescence—can increase the

inspector’s discrimination of contamination during

monitoring. An effective model that accurately segments

contaminated regions for a range of surfaces in real-time

needs to be developed. The segmentation of the

contamination can also be helpful for both restaurant

cleaning crews and new health inspectors learning to

recognize potential contamination areas and understand how

to address potential sources of contamination and avoid cross-

contamination during their work. This knowledge can be

beneficial for assessing and improving cleaning processes

and sanitation standard operating procedures (SSOPs).

In this research, instead of using traditional threshold-based

algorithms to segment the contamination, we used a semantic

segmentation method to conduct pixel-level classification for each

frame to precisely segment contaminated regions on various

surfaces. The first step requires pixel-level annotation to assign

each pixel of a frame into a specific class. A deep CNN is then

trained on the annotated data to classify clean, green fluorescent,

and red fluorescent pixels. Later the trained model is tested on an

unseen data test set to predict the pixel class. Since we are dealing

with three classes in this research, the segmentation task can be

considered a multi-class pixel-wise classification. We used

MATLAB image labeler to label each video frame pixel to

create the semantic segmentation training and testing datasets.

The MATLAB image labeler provides a swift and easy way to

annotate images by drawing shapes that can be assigned region of

interest (ROI) labels. Our study only segmented the contamination

regions on the surfaces, and the remaining pixels were labeled as

background. The ground-truth-labeled pixels were categorized as

background, green fluorescent, and red fluorescent.

To carry out the semantic segmentation task, we employed

DeepLabv3+ (Chen et al., 2018), a state-of-the-art semantic

segmentation algorithm designed by Google. Figure 4 shows

how DeepLabv3+ is composed of an encoder and decoder

architecture. The encoder can encode multi-scale contextual

information, and the decoder module provides for a more

precise and accurate recovery of object boundaries. The

encoder section consisted of three key components: the

ResNet architecture, Atrous convolutions, and Atrous Spatial

Pyramid Pooling. The ResNet is used as the network backbone to

Frontiers in Sensors frontiersin.org06

Gorji et al. 10.3389/fsens.2022.977770

https://www.frontiersin.org/journals/sensors
https://www.frontiersin.org
https://doi.org/10.3389/fsens.2022.977770


extract the features. In this study, we used ResNet50. The Atrous

convolution, also called dilated convolution, is a powerful

approach in dense prediction applications. When using a deep

CNN, Atrous convolution enables the model to fine-tune the

resolution at which feature responses are generated. It also

enables the model to efficiently expand the field of view of the

filters to include more context without increasing the number of

parameters and computing requirements. DeepLabv3+ also

employs Atrous Spatial Pyramid Pooling (ASPP) applied on

top of the extracted features from the backbone network.

Parallel ASPP layers, with an increasing dilation rate, are used

to aggregate multi-scale context, which can robustly segment

objects while considering picture context at multiple scales. Since

the contamination can be either a tiny or extensive area in this

study, we used the default DeepLabv3+ dilation rate of 6. In order

to acquire the final segmented mask for the input image, the

output of the ASPP layers is first concatenated and then fed

through a 1 × 1 convolution layer with 256 filters that generate

rich semantic information.

For the decoder section, the features generated by the encoder

are bilinearly upsampled by a factor of four before being

concatenated with the equivalent low-level features from the

network backbone that have the same spatial resolution. A 1 ×

1 convolution layer is applied to the low-level features extracted by

the backbone network to reduce the channel numbers and avoid

outweighing the importance of the encoder features and making

the training process more difficult. Finally, after concatenating the

low-level features with the rich features from the encoder, a few 3 ×

3 convolution layers are applied to achieve sharper segmentation,

and then upsampling by a factor of 4 is performed to generate the

final segmented image output.

Bacteriological methods

Strains
Four strains each of Escherichia coli, Salmonella enterica

subspecies enterica, and Listeria monocytogenes were selected

for the study (Supplementary Information). E. coli strains

included one non-pathogenic strain (ATCC 25922 (American

Type Culture Collection, Manassas, VA)), one antimicrobial-

susceptible strain with few virulence factors, and two

pathogenic strains (one O157:H7 strain and one multi-drug

resistant strain). Salmonella strains representing four serotypes

FIGURE 4
The architectures of DeepLabv3+ model.
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were selected: Enteritidis, Infantis, Typhimurium LT2, and

Heidelberg. To represent L. monocytogenes, strains from

serotypes 1/2a and 1/2b were selected, along with two

hypervirulent serotype 4b strains.

Culture methods
Bacterial strains were streaked from frozen biomass onto

selective agar and confirmed by transferring isolate biomass onto

a panel of selective agars. E. coliwas streaked onMacConkey agar

(BD, Franklin Lakes, NJ) and confirmed on MacConkey agar,

MacConkey agar with sorbitol, Simmons Citrate agar, and L-agar

(Lennox LB Broth base with 1.5% agar; Neogen, Lansing, MI);

plates were incubated at 37°C for 18–24 h. Salmonella strains

were streaked onto XLT4 agar (XLT4 agar base and supplement,

Neogen), incubated at 37°C, and scored at 24 and 48 h. Isolates

were confirmed on XLT4, Brilliant Green, and Lennox LB agars

(Neogen), which were incubated for 18–24 h at 37°C. L.

monocytogenes strains were streaked on Modified Oxford agar

(“MOX”, Neogen) and incubated for 48 h at 37°C, with plates

scored at 24 and 48 h. Isolates were confirmed on MOX, Palcam

(BD), an L. monocytogenes chromogenic agar (R&F products,

Downers Grove, IL), and tryptic soy agar with yeast extract

(“TSA-YE”; tryptic soy broth with 1.5% agar and 0.6% yeast

extract; Neogen), and incubated for 24 h at 37°C.

For E. coli and Salmonella, biomass from L-agar (<7 days old)
was transferred to L-broth (10 ml) and incubated at 37°C

overnight (18–24 h). For L. monocytogenes, tryptic soy broth

(10 ml) was inoculated with biomass from TSA-YE and

incubated at 37°C for 48 h, with the tube caps loosened.

Disinfection
Within 1–1.5 h prior to UVC exposure, broth cultures were

serially diluted in 1X Phosphate Buffered Saline, pH 7.4 (Gibco

Laboratories, Gaithersburg, MD), and 100 µl of two consecutive

dilutions was manually spread plated onto agar plates. For E. coli

and Salmonella, 1:105 and 1:106 dilutions were plated onto

L-agar. For L. monocytogenes, 1:104 and 1:105 dilutions were

plated onto TSA-YE. Four replicates per set of experimental

conditions were plated, along with four control plates per strain.

Initial S. enterica concentrations were 1.7 × 108–1.0 × 109, initial

E. coli concentrations were 4.6 × 108–8.1 × 108, and initial L.

monocytogenes concentrations were 2.2 × 107–5.3 × 107.

Inoculated agar plates were exposed to UVC at two

intensities (10 mW/cm2 or 5 mW/cm2), for durations of 1,

3, or 5 s. The distance of the light from the agar was 12 cm for

the high-intensity samples and 20 cm for low-intensity samples.

To ensure colonies would not be too large or crowded to count

the next day, all plates were incubated first at room temperature

for 2–3 h, and then at 37°C for 18–20 h for E. coli and S. enterica,

and at 37°C for 48 h for L. monocytogenes, scoring at 24 and

48 h. Colony counts were performed manually. Experiments

were conducted on three separate days, each focusing on one

species.

Contamination detection system setup

To implement themodels for classification and segmentation, we

used the Keras framework as a high-level API for neural network

development.We used aTensorflow-GPUv2.7.0 backend on aGPU-

enabled workstation with an NVIDIA GeForce RTXTM 3090 with

24 GB of G6Xmemory. We used theWindows 10 operating system.

Results

Model performance for identification
between clean and contamination frames

We used two approaches for evaluation. First, we randomly

chose 70% of the frames for training and 20% to validate the model

for each epoch, holding out the remaining 10% of the frames to test

the model performance. Secondly, we used leave-one-out cross-

validation (LOOCV), but applied it to the facility level rather than the

image frame level. From eight institutional kitchens and restaurants,

we trained and validated our model on seven facilities, tested it on

one facility, and iterated this eight times. Each facility was part of

training, validation, and testing, so we could evaluate how well the

model could generalize when facing a new facility and environment.

The model was trained and validated over 100 epochs,

choosing categorical cross-entropy as the loss function and

Adam as the model optimizer, with a learning rate of 0.0001.

The model batch size, or the number of frames utilized in one

iteration during the training process, was set to 32.

We evaluated the model performance using six metrics:

accuracy, precision, recall, F-score, and area under the curve

(AUC). The first five metrics are described in Eqs 2, 3 below:

Accuracy � (TP + TN)
(TP + TN + FP + FN), Precision � TP

TP + FP
,

Recall � TP
TP + FN

(2)

Specificity � TN
TN + FP

, Fscore � 2 ×
Precision × Recall
Precision + Recall

(3)

Here TP, TN, FP, and FN represent true positive, true negative,

false positive, and false negative, respectively. The accuracy shows

how accurate the model is at differentiating clean and

contamination frames. The precision shows what proportion of

the positive samples (in our case, contamination) were identified

correctly. The recall or sensitivity is the number of the true

predicted positives divided by the total number of true positives

and false-negative predictions and indicates the proportion of

actual positive observations (contamination class) that were

detected correctly. F-score is a harmonic mean of precision and

recall used to evaluatemodel performance.We used the area under

the curve (AUC) of the receiver operating characteristic (ROC) to

assess the model’s ability to differentiate between clean and

contamination classes.
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FIGURE 5
Performance of the Xception model (clean vs. contamination frames) (A) Xception model accuracy during training and validation. (B) Xception
model loss during training and validation. (C) Xception model confusion matrix when applied to the test set.
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We trained and validated the model over 100 epochs and

monitored accuracy and loss, as shown in Figures 5A,B. We then

applied the model to the test set. The Xception model achieved an

accuracy of 98.78%, precision of 99.12%, recall of 98.47%, specificity of

98.44%, F-score of 98.80%, and AUC of 99.91%. Figure 5C shows the

confusionmatrix representing themodel’s classification performance.

Table 1 shows the results of the LOOCV approach where each

time, we removed one facility from the training process, trained the

model on the seven remaining facilities, and then tested on the

removed facility. As expected, the lowest performances resulted

when we removed either of the two facilities with the most

frames (Facility No. 6 or 7). By withholding facility no. 6,

20,526 frames (28.35% of the total frames) were removed from

training and validation, and similarly, by withholding facility no. 7,

17,527 frames (24.21% of the total frames) were removed from

training and validation. The drop in performance from removing

these facilities with relatively large numbers of frames shows that

they contained meaningful information. These could include the

facility architecture, ambient light, variety of the background, and a

greater variety of contamination patterns, which can help the model

learn more robustly.

Image segmentation of contamination

We used the DeepLabv3+ semantic segmentation model to

identify precise areas of contamination on a variety of surfaces in

12,000 image frames that had been annotated for contamination

by four experts. We used 70% of the data for training, 20% for

validation, and 10% for testing, over 100 epochs. Since the task is a

multi-class pixel-wise classification (background, green

fluorescence, and red fluorescence), we chose categorical cross-

entropy for the model loss function. We used Adam (learning rate

of 0.0001) for the model optimizer and a batch size of 32.

To evaluate the DeepLabv3+ performance, we used the same

metrics as for classification evaluation. However, we employed a

differentmetric to evaluate the segmentation performance, replacing

accuracy with intersection over union (IoU). Since contamination is

often a tiny part of the image, accuracy is commonly greater than

99%, making it less suitable for evaluating performance. IoU, also

known as the Jaccard index, quantifies the percentage overlap

between the regions annotated by human experts (ground truth)

and the model prediction. The following equation defines IoU:

IoU � TP

(TP + FP + FN) (4)

Eq. 5 shows how we also used false positive rate (FPR) and false-

negative rate (FNR) to evaluate the segmentationmodel performance.

FPR � FP

(FP + TN), FNR � FN

(FN + TP) (5)

The model was able to segment contamination on multiple

surfaces into background, green-fluorescence, and red-T
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fluorescence classes, with a mean IoU of 95.13%. Background

IoU was 99.65%, green-fluorescence IoU 92.57%, and red-

fluorescence IoU 93.18%. The model segmented

contamination with 98.99% precision, 99.89% recall, 99.95%

specificity, 99.89% F-score, 0.05% FPR, and 0.11% FNR.

A visual representation of how accurately our model could

segment the red and green fluorescence contaminations on

different surfaces shows example images from our test set

selected randomly from six types of surfaces (Figure 6). CSI-D

fluorescence image frames are shown in the first row, segmentation

by the model in the second row, and segmentation by our human

experts (ground truth) in the last row.

Comparing ground truth with model output shows that the

model accurately segments green and red fluorescence from

contamination on various surfaces, including a cabinet door,

cup rack, kitchen range, microwave oven, counter-top, and toilet

seat. The images show that the model can address contamination

in the form of tiny droplets, sprays, splashes, and larger areas like

spills or smears. They also show that the model can detect green

fluorescence, red fluorescence, or red-green combinations.

Bacterial disinfection

When plated cultures of the four strains of E. coli were

subjected to high intensity (10 mW/cm2) UVC for 1, 3, or 5 s,

complete growth inactivation was observed. Similarly, complete

inactivation was observed for all strains exposed to lower

intensity (5 mW/cm2) UVC for 3 and 5 s. Some growth was

observed for two strains exposed to the low-intensity UVC for 1s;

however, this treatment reduced the final colony count by

90–99%.

Similar results were observed when S. entericawas exposed to

UVC. Growth was completely inactivated when the Enteriditis

strain was subjected to UVC under all conditions. As with the

E. coli, the growth of the other three S. enterica serovars was

completely inactivated under all intensity/time combinations

except when exposed to low-intensity UVC for 1 s.

Complete growth inactivation was also observed for L.

monocytogenes strains subjected to high-intensity UVC at all

exposure durations except for strain LM3, where growth was

reduced by 2.3 Logs (>99%) after 1s. As with the S. enterica

and E. coli strains, at the low UVC intensity, L. monocytogenes

growth was completely inactivated when exposure was 3 or 5 s, but

some cells grew after the 1s exposure. Additional strain details and

treatment results can be found in the Supplementary Information.

Discussion

Inspection of institutional kitchens and restaurants plays a

critical role in preventing foodborne disease outbreaks. Visual

FIGURE 6
DeepLabv3+model performance on selected test set video frames (A)CSI-D fluorescence image frames input toDeepLabv3+. (B)DeepLabv3+
segmented image output. (C) Same images segmented and labeled by human experts.
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inspection is the most commonmethod for cleanliness assurance,

although inspection results vary depending on the person

performing the inspection’s food safety knowledge, hygiene,

and diligence (Kassa et al., 2001). Because contamination may

not be perceptible or due to location, low concentration, or

interference by surface reflections, the inspecting person

misses some areas of contamination (false negative) or

identifies some areas as contaminated that are not (false

positive). The impact of false positive is that would be

insufficient trust that the system is cost-effective because of

unnecessary recleaning or delays in the start-up of a food

processing plant. The impact of false negatives would be an

increase in contamination that could result in food illness

outbreaks and damage to brand reputation and brand value.

This study aims to improve cleanliness assurance in

institutional kitchens and restaurants by combining new

imaging technology and state-of-the-art deep learning

algorithms. For accurate, reliable, and speedy inspections,

automated analysis of potential contamination is needed, and

we have shown that deep learning-based models can swiftly

identify contamination using a portable handheld scanning

technology.

Using CSI-D to identify contamination in institutional

kitchens and restaurants allows fast detection and immediate

response to clean contaminated areas. In addition to visual

inspection, swab-based methods such as adenosine

triphosphate (ATP) testing are the most frequent scientific

methods used to ensure environmental cleanliness in

institutional kitchens and restaurants (Sanna et al., 2018).

CSI-D can complement swab-based methods by providing

guidance on where to swab, thereby increasing swab analysis

efficiency and reducing costs and production downtime waiting

for cleanliness assessment. Since CSI-D is a handheld device

with automated contamination detection, it can substantially

decrease person-hours and costs required for sanitization

inspection.

CSI-D technology can also be used to train inexperienced

health inspectors (and managers) to identify and locate

contamination that is less visible to the eye during visual

inspections. It is extremely important for managers to know

these patterns as well so that cleaning and sanitation are done in

the most efficient, effective manner. Identification of

contamination on surfaces with a variety of colors or

background textures can be tricky, even with fluorescence-

based imaging. Sometimes the contaminated area can be a

tiny area on a big surface or many contaminated spots across

multiple views, which can increase risk. Materials fluoresce to

varying degrees, so just looking for something glowing is

insufficient; an observer must consider how the fluorescence

pattern differs from the background. With deep learning and an

effective and reliable detection model, CSI-D provides a precise

and consistent method for detecting contamination, making the

inspection process faster and more effective.

Protection from contamination for inspectors and staff while

addressing sanitization issues is the goal of the CSI-D’s

disinfection capability. E. coli, S. enterica, and L.

monocytogenes are diverse species, and the strains tested in

this study may not represent the range of within-species

responses to UVC exposure. However, under laboratory-based

conditions in this study, the UVC system is highly effective for

inactivating these common foodborne pathogens. More work is

needed to explore environments (matrices, densities, mixed

populations, etc.) where food production and preparation

systems encounter bacteria, and the appropriate UVC

intensity/time combinations required to inactivate them.

Conclusion

This study presents a fluorescence-imaging technology

combined with deep learning algorithms to capture images,

identify video frames with contamination, segment the

contamination in identified video frames, and disinfect

organic-based residue and biofilms. We used CSI-D, a

handheld fluorescence imaging device (SafetySpect Inc.), to

collect data from eight institutional kitchens and restaurants.

To classify “clean” and “contamination” frames, we used a state-

of-the-art deep convolutional neural network architecture,

Xception. Classification results for 72,381 “clean” and

“contamination” frames yielded a 98.78% accuracy. To

precisely segment contamination, we used a semantic

segmentation algorithm, DeepLabv3+, on 12,000

“contamination” frames achieving an IoU score of 89.34%.

We verified the CSI-D’s UVC disinfection ability on three

foodborne illness-associated pathogens, including S. enterica,

E. coli, and L. monocytogenes. All were deactivated in less

than 5 s after being exposed to UVC illumination from the

CSI-D, achieving log reductions of up to 8.0 for active bacteria.

We have demonstrated that fluorescence-imaging

technology combined with deep learning algorithms can

improve the level of safety and cleanliness, protecting staff

and customers of companies and institutions in the food-

service industry.
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