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Neural networks have been widely deployed in sensor networks and IoT systems due
to the advance in lightweight design and edge computing as well as emerging energy-
efficient neuromorphic accelerators. However, adversary attack has raised a major
threat against neural networks, which can be further enhanced by leveraging the
natural hard faults in the neuromorphic accelerator that is based on resistive random
access memory (RRAM). In this paper, we perform a comprehensive fault-aware attack
analysis method for RRAM-based accelerators by considering five attack models
based on a wide range of device- and circuit-level nonideal properties. The
research on nonideal properties takes into account detailed hardware situations
and provides a more accurate perspective on security. Compared to the existing
adversary attack strategy that only leverages the natural fault, we propose an initiative
attack based on two soft fault injection methods, which do not require a high-precision
laboratory environment. In addition, an optimized fault-aware adversary algorithm is
also proposed to enhance the attack effectiveness. The simulation results of an MNIST
dataset on a classic convolutional neural network have shown that the proposed fault-
aware adversary attack models and algorithms achieve a significant improvement in the
attacking image classification.

Keywords: security of IoT systems, hardware security, adversary attack, neuromorphic accelerator, nonideal
property, fault injection

INTRODUCTION

The rapid development of deep learning algorithms and hardware in recent years has brought
great success in a wide range of applications, some of which serve distributed systems such as the
Internet of Things (IoT) and computer vision. However, deep learning meets two aspects of
hardware problems in real-world implementation, especially in distributed scenarios. On the
one hand, it is a severe challenge to meet various requirements of neural applications for the
current hardware, including but not limited to computation throughput, latency, energy
efficiency, and bandwidth efficiency in both training and inference stages. As a consequence,
many accelerators schemes have been explored to better support the deployment of the neural
network, in which the RRAM-based neuromorphic circuit is one of the most promising schemes
that provides orders of magnitude improvement in the area, energy, and speed compared to
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CMOS-based platform/accelerators, such as TPU/GPU (Kim
et al., 2012; Giacomin et al., 2018; Hu et al., 2018; Liu et al.,
2018). On the other hand, privacy leakage is a critical threat in
distributed systems from a security perspective. Sending data
from the sensor networks to the cloud can incur the users’
concern that their secure data/behavioral information will be
illegally captured by malicious agencies/persons (Chen and
Ran, 2019). Hence, edge computing that deploys a
computation engine in-site and locally processes the data
captured from sensors becomes an attractive option for
applications in distributed systems (AWS, 2022; Ha et al.,
2014; Zhang et al., 2015; Hung et al., 2018; Mohammadi et al.,
2018; Chinchali et al., 2018; Liu et al., 2019). Meanwhile, a
distributed system can benefit from both RRAM-based
accelerator and edge computing to achieve better
performance, privacy, and longer working life (Hsu et al.,
2019; Zhou et al., 2019; Singh et al., 2021).

Unfortunately, the trend of deploying RRAM-based accelerators
in edge computing raises new security risks. Traditionally, neural
networks are vulnerable to well-designed adversary attacks, which
misleads classification by adding human-unnoticeable perturbation
on the input samples. For example, adversary attacks can efficiently
corrupt the intelligence of image classification or even manipulate
the result of classification by slightly modifying the pixels in an
image (Goodfellow et al., 2014; Carlini and Wagner, 2017; Madry
et al., 2017). Although many software-domain defense strategies,
such as adversarial training (Goodfellow et al., 2014), gradients
masking (Papernot et al., 2017), and model distillation (Papernot
et al., 2016), have been developed to substantially reduce the
adversary attack success rate, hardware-based adversary attacks
are proposed to further enhance the attack. Because of the
distributed deployment of the RRAM-based accelerator, edge
computing hardware is accessible to adversaries. Several
hardware-based adversary attack methods have been designed to
largely strengthen misleading ability by actively injecting faults to
the weights of neural networks in digital memory. The fault
injection methods target bit-flipping on critical positions by
remote trojans, such as row hammer attacks (Rakin et al., 2020;
Rakin et al., 2021), or invasive physical attacks like the laser injection
technique (Liu et al., 2017a; Breier et al., 2018). However, those
methods mainly target the digital system, and the security
investigations for emerging RRAM-based analog accelerators are
still insufficient. As emerging devices, RRAMs usually suffer from
the immaturity of the fabrication technology and exhibit natural
hard/soft faults (resistance stuck or drift), especially those that have
multiple resistance states and represent multi-bit weights in a single
cell. Since the neuromorphic system possesses an inherent error
tolerance, minor nonideal characteristics in devices cannot induce
noticeable accuracy degradation and can be considered “benign”
(Temam, 2012). The RRAM-based neural network accelerators
with ‘benign’ faults can properly operate pre-trained functions in
the testing/operation but are vulnerable to fault-aware adversary
attacks.

A few works have investigated the impact of ‘benign’ nonideal
properties in RRAM-based hardware on adversary attacks toward
image classification. One work discusses how the nonideal
properties reduce the adversary attack success rate and

concludes that the RRAM-based neuromorphic hardware is
inherently robust against adversary attacks (Bhattacharjee and
Panda, 2020). While a recent work points out that the hard faults
in the RRAM crossbar array can be leveraged to substantially
enhance the adversary attack strength and effectively
breakthrough software defense strategy (Lv et al., 2021). In
this previous work, the investigation is focused on the
software domain and the nonideal properties are simplified as
‘hard fault’, i.e., the corrupted weights are fixed to the maximum
or minimum value of a layer in neural networks. In this paper, we
will analyze and enhance the faults/variation-based adversary
attack based on rich RRAM nonideal behaviors and circuit
characteristics in neural network accelerators. The major
contributions of this work are highlighted in the following.

• This work develops adversary attack models based on the
rich and detailed nonideal properties that exist in the RRAM
crossbar array, including soft-faults (i.e., conductance
variation, hereinafter referred to as ‘variation’) and hard-
faults. A novel perspective of nonideal properties at the
circuit level is provided, including the realization of signed
weights and the distributions of faults considering the
mapping strategy. Such a perspective promotes the scope
of hardware-aware adversary attacks.

• The device-level and circuit-level attack models investigated
in this paper enable the active enhancing/creating of the
natural faults/variation and increase the effectiveness of
attacks. By using normal images, projected gradient
descent (PGD) adversary images, and fault-aware
adversary images as inputs, comprehensive evaluations of
performance are performed with a convolutional neural
network trained with theMNIST handwritten digits dataset.

• We enhance the fault-aware adversary attack method by
reducing the amplitude of perturbation and increasing the
number of perturbed pixels in input images. Without
increasing the total change in pixels values, the enhanced
algorithm not only improves the ability to mislead the
classifier but also eliminates the obvious traces of changes.

The rest of this work is organized as follows. In
Introduction, the background of conventional and fault-
aware adversary attacks is provided. In Introduction, the
properties of emerging RRAM devices and RRAM-based
neuromorphic circuits that can be leveraged by adversary
attacks are introduced. The experiment setup as well as the
proposed fault-aware adversary attack models are given in
Introduction. We provide the simulation results of the attack
models and analyze them in Introduction. In Introduction, an
enhanced attack algorithm is proposed and evaluated. Finally,
we discuss several potential defense methods in Introduction.

BACKGROUND OF CONVENTIONAL AND
FAULT-AWARE ADVERSARY ATTACK

Researchers have developed rich adversary attack techniques to
undermine the security of neural networks in various areas. Here,
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we discuss one of the most popular attack targets, neural
networks for image classification. The purpose of adversary
attack can be concluded as adding human-invisible
perturbations in test images to mislead the classification,
which can be expressed as:

C(W , xi + δp) ≠ C(W , xi),
∣∣∣∣∣∣∣∣∣∣δpn∣∣∣∣∣∣∣∣∣∣< ϵ (1)

where C (•) refers to the predictions of the neural network,W, xi,
and δp, denotes the network weights, test image, and
perturbations, respectively, and ϵ represents the constraints of
perturbations and ensures that the image edition cannot be easily
recognized by a human. Conventional adversary attack methods
usually add the perturbation test images by using the gradients
(Goodfellow et al., 2014; Carlini and Wagner, 2017; Madry et al.,
2017), while defense techniques are proposed as effective
countermeasures (Goodfellow et al., 2014; Papernot et al.,
2016; Papernot et al., 2017).

In a previous work (Lv et al., 2021), natural hard-fault in
RRAM is utilized to break through protected neural network
accelerators. Such an attack bypasses conventional protection by
assuming users will ignore the benign hard fault in hardware.
Compared to the fault-aware attack that injects faults by Trojan/
physical methods, it is harder to prevent this method because the
faults utilized are naturally existing. The fault-aware adversary
attack on an RRAM-based accelerator first measures the faults in
the RRAMs that store the weights of a neural network. Then,
attackers find perturbation-vulnerable positions in a given test
image xi. The standard of vulnerability is the gradient difference
ga, which is defined by (Lv et al., 2021):

ga(xi) � g′(xi) − g(xi) (2)
where gradient g′ of test image xi is calculated by a neural network
model with fault, and gradient g is calculated in the fault-free
model. For a pixel with coordinator (j, k), a larger ga(xi(j, k) )
indicates a stronger ability to distort the prediction, so the fault-
aware adversary attack selects the pixel with the largest ga to add
perturbation. Starting from a clean image, the perturbation is
added by following a greedy algorithm, i.e., gradually increasing
the number of perturbed pixels and the amplitude of the newly
added perturbation until the classification is mislead or the
perturbation reaches the limitation. We adopt this algorithm to
test the proposed attack models for different fault types and design
an enhanced method based on it.

ATTACKABLE DEVICE/CIRCUIT
PROPERTIES

In this section, we investigate the properties of emerging RRAM
devices and RRAM-based neuromorphic circuits, which build the
foundation of fault-aware adversary attack models that are
proposed in Attackable Device/Circuit Properties.

Hard/Soft Faults in RRAM Devices
RRAM devices are area-competitive (multi-level data in one
4F2 cell (Münch et al., 2019)) for large-scale neuromorphic

circuits partly because of their compact nanoscale integration.
However, this feature also leads to lower reliability, i.e., more
hard/soft faults. There are multiple mechanism candidates for
building RRAM cells, ranging from filamentary (Prezioso et al.,
2015; Yu et al., 2015), phase change (Burr et al., 2015; Kim et al.,
2015), ferroelectric ram (Kaneko et al., 2014), to conductive-
bridge (Jo et al., 2010; Jeong et al., 2015). For most device
mechanisms, the realization and retention of multi-bit data
storage on the nanoscale are very challenging due to several
issues.

First, permanently hard faults (i.e., stuck at On/Off resistance
state) are common due to improper read/write current/voltage,
environment stimulus, and/or natural damage (Lv et al., 2015;
Jiang et al., 2016; He et al., 2019; Yeo et al., 2019; Fadeev and
Rudenko, 2021; Wu et al., 2021). Second, imperfections exist in
the complicated fabrication process, such as feature size
shrinkage, line-edge roughness, and oxide thickness fluctuation
can lead to variations in the resistance of RRAM (i.e., soft faults).
Although minor variations can be compensated during the
programming process of RRAM, some faults that lead to
extremely high or low conductance cannot be fixed once the
fabrication is done. In addition, because of the inherent particle
drift and the currents periodically passthrough RRAM during the
operation, the values stored in RRAM vary with time (Lv et al.,
2015; Jiang et al., 2016). Without rewriting weight values, the
accuracy of stored weights in RRAMs will degrade even if the chip
is not operating (Fadeev and Rudenko, 2021). Moreover, all
environmental factors, such as temperature, electrical fields,
magnetic fields, and illumination, affect the resistance state.
For example, the temperature has been shown to have a
strong positive correlation with the conductance variation/fault
rate of RRAM (Lv et al., 2015; Jiang et al., 2016; Fadeev and
Rudenko, 2021; Wu et al., 2021). Such influence of temperature
may be exaggerated by the chip cooling limitation in a dense
layout, such as 3-dimensional stacked RRAM architecture for
higher area efficiency (An et al., 2019; Lin et al., 2020). In
addition, the distribution of variation/fault rate changes with
the uneven distribution of corresponding factors. For example,
the center positions in 3-dimensional stacking RRAM
architecture encounter more faults due to a higher
temperature (Beigi and Memik, 2016), and the locally
enhanced electric field generated by the irregular shapes at the
edge of the filamentary RRAM array causes more faults (Lv et al.,
2015). All the sources of soft/hard faults above can be utilized by
adversaries to mislead the neural network.

There are several types of solutions to reduce the variation
mentioned above. For permanent variation/fault, solutions at the
programing stage have been proposed to alleviate the hard faults
and soft faults caused by inherent mismatches (Tunali and Altun,
2016; Liu et al., 2017b; Xia et al., 2017; Xia et al., 2018). However,
some solutions (Liu et al., 2017b; Xia et al., 2017) require
redundant hardware to replace corrupted memristors with the
functional ones, and other solutions (Tunali and Altun, 2016; Liu
et al., 2017b; Xia et al., 2018) need error correction using
additional memristors (Tunali and Altun, 2016; Liu et al.,
2017b; Xia et al., 2018). The additional memristors and error-
correcting circuits significantly increase the costs and create
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difficulty in hardware implementation as the depth of the neural
network grows. For temporary variation/fault, a straightforward
solution is to simply check and rewrite all the weights stored in
RRAMs during the inference period (Xia et al., 2018), which is
time- and energy-consuming due to the complicated process, a
large number of weights, and requirement of data
communication. Since IoT/sensor networks are energy-
sensitive, such a fault detection process cannot be frequently
performed when the classification accuracy of neural networks
has not met a noticeable degradation. In addition, adding cooling
equipment, protecting mask, better quality control, and specific
design can alleviate the temporary variation/fault. However,
prevention of temporary variation/fault may induce a
significant challenge and cost because in many cases sensors/
computation nodes in distributed network may work in a variety
of unstable outdoor harsh environments, and these devices are
considered as low-cost consumables. In conclusion, the benign
faults will widely exist with the neuromorphic accelerator for a
long period of time.

RRAM Crossbar Array and Circuit Design
RRAM crossbar array is the core part of a neural network
accelerator, which performs the most computation-dense
MVM operation. In this section, we analyze the circuit-level
model of the RRAM array and the corresponding impact of
variation/fault on the neural network.

The first noticeable point is the representation strategy of
weights. As shown in Figure 1B, MVM (V • W) is realized by
programming the conductance of the RRAM cells to store the
weight matrix (W). Then, the analog voltages are applied to the
word line to represent the input vector (V). The currents flowing

through RRAM cells are accumulated in bit lines and transformed
to voltages by trans-impedance amplifiers (TIA) for the
multiplication/summation results. In the previous work, the
weight is represented by a single cell as shown in Figure 1B,
and it assumes the faulty weights are stuck at the maximum/
minimum value among cells in a neural layer. While according to
a recent state-of-the-art work that achieves a real-world
neuromorphic accelerator (Yao et al., 2020), using two
memristors to represent one weight value is more practical
and precise and leads to easier implementation. As shown in
Figure 1C, W1,1 is represented by the conductance of a pair of
RRAM cells, Gp(1,1) and Gn(1,1), which are connected to input V1

and inversed input -V1, respectively. If W1,1 is a negative value,
the current flowing into the bit line can be calculated as:

I(1,1) � V1(Gp(1,1) − Gn(1,1)), Gp(1,1) ≪Gn(1,1) (3)
Since the minimum conductance value is usually not within

the stable working conductance range for storing data, the RRAM
cell that does not store information (Gp(1,1) in Eq 3) can be
regarded as negligible.

If one of the RRAM cells in a pair is faulty and stuck at
maximum or minimum conductance, seven possible

FIGURE 1 | (A) Diagram of fully-connected layer, (B) assumed 1-RRAM-1-weight weights mapping in previous work, (C) mapping signed weights by using
complementary RRAMs to represent positive and negative values, (D) diagram of convolution layer, and (E) mapping method for convolution layer.

TABLE 1 | All eight results of getting 1 cell stuck at minimum/maximum
conductance.

Gp - > Gmin Gn - > Gmin Gp - > Gmax Gn - > Gmax

+|W(i,j)| 0 +|W(i,j)| +|Wmax| |W(i,j)|-|Wmax|
-|W(i,j)| -|W(i,j)| 0 |Wmax|-|W(i,j)| -|Wmax|

Frontiers in Sensors | www.frontiersin.org May 2022 | Volume 3 | Article 8962994

Shang et al. Fault-Aware Adversary Attack

https://www.frontiersin.org/journals/sensors
www.frontiersin.org
https://www.frontiersin.org/journals/sensors#articles


consequences can happen as shown in Table 1; Figure 2
illustrates how a weight value is changed when one of the
RRAM cells in the pair is stuck at minimum conductance. It
can be observed that directly using the device fault rate for the
evaluation of fault-aware adversary attack rate causes an
overestimation in the weight difference.

Second, the method of mapping weights to the RRAM
crossbar array affects how the variation and fault distribute in
weights. As discussed above, multiple reasons can lead to the
uneven distribution of variation or faults. As an example, the
temperature model in Figures 3A, B shows that variations/faults
have a higher probability to occur in the center area of each layer
of the RRAM stack because of higher temperatures. By assuming
one layer contains one crossbar array, the mapping-aware
variation/fault analyses can be performed to investigate how
different fault-dense areas affect the adversary attack. In this
paper, we consider the mapping scheme of the twomost common
layers in neural networks, i.e., the fully-connected layer and
convolution layer. A mapping method of the fully-connected
layer can be found in Figures 1A, B, where input Vi is the output
of the upper layer, and Ii is the input of the lower layer. Hence,
W2,3 denotes the weight connecting nodes one to two and 2–3.

The mapping method of the convolution layer can be found in
Figures 1D, E, where templates are reshaped as vectors and
placed in the bit line direction in the crossbar array. Since
variation and fault is more likely to happen in the center area,
they will affect different parts of weights in different layers. The
affection and analysis will be investigated in RRAM Crossbar
Array and Circuit Design.

Fourth, due to the immature fabrication process of
emerging RRAM devices, a special precision extension
technique can be deployed to improve the weight precision.
For example, Figure 4 shows a method of using three 2-bit
RRAM cells to represent one 6-bit weight value by applying
quantified input voltages and summing three output currents.
This exposes the accelerator to a novel risk of attack towards
quantification.

NOVEL ATTACK MODELS

According to the device properties and the details of circuit
design investigated in Novel Attack Models, we propose five
fault-aware attack models. Several assumptions are first given,

FIGURE 2 | Circuit diagram of four results of getting 1 cell stuck at minimum conductance.

FIGURE 3 | (A) 3-dimensional RRAM crossbar array stack for higher area efficiency, (B) temperature map in RRAM stack.
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then modelized attack strategies are designed to prepare for
further benchmarking.

Assumptions of Adversary Attack
We adopt the same assumptions in previous work for
investigating the fault-aware adversary attack (Lv et al., 2021):

(1) White box: the adversary has access to the full architecture
and parameters of the neural network model, as well as the
labels for provided inputs.

(2) Model of neural networks: the details of neural network
architecture are provided in Figure 5, in which
convolution layers and fully-connected layers are followed
by the ReLU activation function. We also deploy an existing
adversarial training defense mechanism to strengthen the
robustness of neural networks against adversarial attacks
(Madry et al., 2017).

(3) Data set and perturbations: the fault-aware adversary
examples are generated by adding extra perturbations to
the conventional adversarial examples (M. A. E. Challenge,
2017). The conventional adversarial examples have l∞
norm of perturbations on pixels that do not exceed ∈ �
0.3 in Eq 1. For the extra fault-targeted perturbations, the
restriction of their amplitude is the final pixel value should
not exceed [0, 1]. To maintain the concealment of
perturbation against the human eye, only around 1%
(10 pixels for MNIST data set) of fault-targeted
perturbations are allowed. The attack framework is built
on Tensorflow.

Attack Models
According to the discussion in Attack Models, an original binary
attack model and five novel variation/fault attack models are
developed as shown in Figure 6. By independently analyzing each
of them, the attack models can be accordingly categorized as
follows.

Original Baseline Binary Attack Model: this model adopts the
same configurations in previous work (Lv et al., 2021), which
assumes all the faults are evenly distributed, faulty values are
positive or negative maximum absolute values (i.e., binary) in a
layer. Meanwhile, all the parameters, as well as faulty values in the
neural network, are known to the attacker.

Attack Model 1: regarding the fault model in Figure 6A, we
assume only 1 cell in a pair is faulty because of the low fault rate.
Thus, the random hard faults in the RRAM crossbar array result
in seven kinds of change in each weight value according to
Table 1. To verify the necessity of this model, we also
investigate how the attack can be affected if adversaries
simplify Attack Model 1, i.e., apply the Baseline Attack Model
to circuits with a dual RRAM representation. The faults could be
the natural faults during the fabrication, or the faults created
during a long operation. Because the adversaries have access to
the neural network accelerator, fault testing algorithms, such as
March-C, can be applied to detect the hardware faults
information (Chen et al., 2014; Liu et al., 2016). With
unlimited access to the peripheral read/write circuits in a non-
invasive way, attackers can also read out the conduction of the
functional cell in the faulty pair and calculate the real stored
weight value. Notably, based on the relation between temperature
and fault rate, adversaries can actively apply long-term
temperature raising or short-term baking to increase the fault
rate in the RRAM chip. Compared to existing laser-based fault
injection that is accurate to bit, the temperature-based approach
is inexpensive and can be performed in-situ instead of in-
laboratory environments. That also makes the attack fast and
stealthy without the need for the device to be offline.
Furthermore, the temperature-based active fault injection
reduces the inherent faults that are vulnerable to the adversary
attack.

Attack Model 2: as shown in Figure 6B, for the RRAM arrays
that do not have enough hard faults to trigger the fault-based

FIGURE 4 | Diagram of using multiple RRAMs to extend the precision of one weight value. Here, three 2-bit cells are utilized to represent a weight value of 6-bit
precision, and the input voltages are scaled to different weights of each cell.

FIGURE 5 | Architecture of neural network for MNIST.
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adversary attack, adversaries can utilize the variations in the
RRAM chip to enhance the attack ability. As discussed in
Attack Models, the variation in conductance widely exists in
hardware and deteriorates with the increase in operating time
and temperature. Adversaries are able to access the variation
information by leveraging the inherent read function, which is
slower than fault detection because of the large number of
parameters in deep neural networks. However, it is still
advantageous for convenient in-situ attacks and the ability to
enhance variations by manipulating operation temperature. The
amplitude of variation in every RRAM cell obeys a normal
distribution with the standard deviation σ (Chen et al., 2017).

Attack Model 3: for the RRAM array that utilizes 3-
dimensional RRAM stacks or those that have more defects in
fabrication, adversaries can leverage the higher fault rate caused
by thermal or other stimuli. While the positions of such faults in
an array are unevenly distributed according to the type of the
stimuli. Hence, using the thermal and electric field fault
mechanisms discussed in Attack Models as examples, we create
the models of the distribution of fault positions as shown in
Figure 6C to investigate the impact of fault distributions on the

attack success rate. The fault type in this model is assumed to be
hard faults. The fault rates of RRAM cells in the first model (c-1)
and the non-fault rate in the second model (c-2) are assumed to
be exponentially related to the distance from the cell to the center
of the array. For example, the fault rate in the model (c-1) can be
expressed as:

Pf(i, j) � 2

������������((i−M
2 )2+(j−N

2)2)
√

(4)
where (i, j) is an arbitrary position in an M × N array. Also, the
two uneven distributions are normalized to ensure the same total
fault rate as the baseline binary attack model.

Attack Model 4: for the weight representation method that
extends the precision by using more RRAM devices (i.e., more
MVM blocks), we propose the attack model as shown in
Figure 6D. Since the improved weight precision in the
RRAM-based neural accelerator comes with the price of more
crossbar arrays as well as peripheral circuits, power gating
schemes can be deployed to provide a customizable precision.
The energy can be optimized accordingly by cutting off the power

FIGURE 6 | Overview of five fault/variation models.
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supply for the MVM block that represents the least significant
bits. However, adversaries can access the hardware and
maliciously shut down those MVM blocks to create a
quantification error, which intentionally induces the
conductance variation within [−δ, 0] when rounding toward
the nearest representable number, where δ is the minimum
resolution of the degraded weight value.

Attack Model 5: the attack model is shown in Figure 6E aims
to investigate the sensitivity of fault-aware adversary attacks
regarding the positions and types of layers. To avoid reading
all parameters and accelerating the attack process, adversaries can
only enhance and detect the faults in layers that are most effective
in improving the attack success rate. Here, this attack model is
separated by two assumptions. The first one assumes that the
original accelerator does not have a fault and randomly creates
faults to the layers that are effective to adversaries (for example,
by locally increasing temperature). Another is a control group
that only reads part of layers from an all-layer faulty chip, which
aims to test whether the absence of partial fault information can
disable the attack. For both assumptions, we set the convolution
layers (close to input) or fully-connected layers (close to output)
as the layers that we acknowledge all the faults as shown in
Figure 6E.

EVALUATION OF THE PROPOSED ATTACK
MODELS

Configuration of Evaluation
In order to obtain a robust adversary attack model, first, the given
neural network is fully trained by the existingmethod (Madry et al.,
2017; M. A. E. Challenge). Then, the faults or variations are added
to simulate the potential and real conditions of the hardware. Since
all the discussed faults are due to the nonideality of the RRAM
devices in a crossbar array, the faults/variation are only added to
the weights among layers, while the existing work adds faults to all
trainable variables, including bias (Lv et al., 2021). This setting and
the training method will lead to a difference in the accuracy and
attack success rate. Here, the attack success rate is defined as the

baseline accuracy minus accuracy after the attack. We use 500
MNIST handwriting figures as testing examples to create
conventional adversary examples as well as fault-aware
adversary examples. For each fault/variation setting, neural
network models with 20 different faults/variation are generated
for the purpose of sampling.

Evaluation Results
The simulation results from Attack Model one to five are
shown in the figures below. ‘Without Attack’, ‘PGD’, and
‘Faults/Variation Attack’ denote inputting image examples
with no perturbation, PGD adversary perturbation, and
faults/variation-based adversary perturbation, respectively.
The curves for the baseline prediction show that the
RRAM nonideality in neuromorphic accelerator does not
lead to noticeable degradation in figure classification.
Meanwhile, the lines of the PGD attack indicate that the
conventional adversary attack cannot efficiently leverage
the natural faults/variation in hardware to enhance the
attack success rate.

Figure 7A includes the attack success rates generated by the
Binary Attack Model and Attack Model 1. The result shows that
Attack Model one results in a higher classification rate, which is
because two out of the seven conditions in Table 1will not lead to
an error in weight value. The dotted curve shows that applying
Baseline Attack Model to a circuit with dual RRAM
representation will lead to degradation in attack effectiveness.
This result indicates that it is necessary to select a correct attack
model to ensure the attack success rate.

The results of Attack Model two are shown in Figure 7B, in
which the variation-based adversary attack effectively reduces the
worst accuracy in the baseline attack model from 60.5 to 49.4%.
That means the widely existing minor variation in RRAM
crossbar arrays can be utilized to create a larger impact on the
final predicted results. the hard faults can be quickly detected by
array-level scanning and replaced by backup/spare cells, the
variation in RRAM possesses better concealment since
comparing the conductance of each RRAM cell with standard
value is extremely time-consuming.

FIGURE 7 | (A) Results of Attack Model 1, and (B) results of Attack Model 2.
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In Figure 8A, we can observe that two uneven distributions of
faults in an RRAM crossbar array, i.e., Attack Model 3, reduce the
attack success rate. This indicates that the attack is less effective if
the positions of faults are dominated by unevenly distributed
stimuli or fabrication mismatch.

The attack results of Attack Model four are shown in
Figure 8B, which claims precision degradation as a promising
method to create value variation for adversary attacks. The attack
effectiveness proven by Attack Model two and four indicates that
not only hard fault but also the small conductance variation can
lead to significant gradients difference and open a door for
adversary attack.

In Figure 9A, adding faults in convolution layers, i.e., the
first two layers, results in a much lower accuracy compared to
the attacked classifier that only has faults in fully-connected
layers. Although fully-connected layers have a dominant
number of parameters (99.06%) in the neural network
used for simulation, those layers do not play an important
role in the fault-based attack. On the contrary, only adding
faults to convolution layers achieves comparable attack
effectiveness compared to the Original Binary Attack
Model, which has faults in all layers. This proves the

hypothesis in previous work, i.e., the faults in neural
accelerator need several layers to broadcast and thus
enhance the impact on classification.

However, Figure 9B indicates that only detecting partial
faults of an accelerator that has faults in every layer will
weaken the fault-aware adversary attack. provide a
conclusion that the in-situ faults detection can obtain
~100 × acceleration if the active fault injection can be
focused on the area that is closer to the input (for

FIGURE 8 | (A) Results of attack Model 3, and (B) results of attack Model 4.

FIGURE 9 | (A) Results of attack Model 5, in which all faults in the chip are known, (B) results of attack Model 5, in which only the faults in certain layers are known.

FIGURE 10 | Comparison of adversary attack images on MNIST. The
disconnected positions are marked by red circles. The images generated by
the proposed attack is with perturbations limited within [-0.2, 0.2].
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example, irradiating part of the 2-dimensional RRAM area
with infrared rays). This substantially improves the
practicality and concealment of deploying the attack.

ENHANCED FAULT-AWARE ADVERSARY
ATTACK

The existing fault-aware adversary attack algorithm adds
perturbations on a few pixels in adversary images. The amplitude
of the perturbation is unlimited, which means a black pixel can be
inversed as white in the grey image. As shown in Figure 10, such a
unconstrainted modification leads to obvious manipulations in the
attacked images. A typical phenomenon is the discontinued strokes
of numbers, which can be easily detected and defended. The original
intention of the full-ranged perturbation is to ensure that a sufficient
change can be accumulated in the gradient ascent direction. Hence,
we propose to increase the number of perturbations and limit the
amplitude of each perturbation. This method ensures the trigger of
misclassification by a large number of perturbations but each
perturbation is less noticeable.

We denote the perturbation range as [−δmax, δmax], then the
full-ranged perturbation is within [-1.1] for MNIST images. As can
be observed in Table 2, the proposedmethod achieves better attack
effectiveness with a smaller average change in pixel values of an
image. The new strategy not only reduces the number of
discontinued strokes in the original position (e.g., ‘5’ in the
third row of Figure 10), but also motivates the algorithm to
find a new misleading pattern (e.g., ‘1’ in the third row of
Figure 10), which explains the improvement in attack success
rate. The images on the third row of Figure 10 illustrate that the
algorithm no longer creates obvious disconnection in handwritten
figures. Compared to the images generated by the existing method,
the ones generated by the proposed method achieve a similar
appearance as the original images. Moreover, since the attackable
images with different perturbation ranges do not always overlap,
independently applying attacks with different ranged perturbations

can further improve the attack effectiveness. For example,
performing an attack of 10 perturbations within [-1,1] and 20
perturbations within [-0.35,0.35] results in a 17.2% improvement
in the attack success rate without increasing the change of pixel
values. Performing an attack by traverse through 10 perturbations
within [-1,1] and 20 perturbations within [-0.1,0.1] [-0.2,0.2]
[-0.3,0.3], and [-0.35,0.35] further reduce the accuracy to 40.6%.
In addition, the enhanced attack is also deployed on targets with
different fault types. As shown in Table 3, the method is applicable
to both other hard faults (dual RRAM) and soft faults (normal
variation and degraded precision).

POTENTIAL DEFENSE METHODS

Since conventional fault-based adversary attacks aim to actively
inject faults to selected parameters in memory by Trojan, some
defense methods have been proposed to successfully prevent most
of the threats (Liu et al., 2017c; Gu et al., 2017; Chen et al., 2018;
Wang et al., 2019). However, they do not apply to the RRAM-
targeted attack method for two reasons. First, some of those
countermeasures can detect and remove the misleading by
analyzing the results of testing classification. But the natural
faults appear randomly in RRAM cells and hence are immune
to such defense methods. Second, a fault-aware adversary attack
assumes that the user simply transplants the neural network to
the hardware and ignores the nonideality of the circuit while the
defense methods require the full information of the prepared
chip. Third, these defense methods are not designed to effectively
defend the attack during the inference stage. Even if the full
information of the nonideality is known and fixed, none of the
defense methods can be deployed to prevent the faults/variations
that occur during the operation or are injected in-situ.

Checking data integrity is another approach to solve/alleviate the
fault-based adversary attack. However, popular data error detection/
correction techniques, such as error-correction code (ECC), do not
apply to the analog circuit. Besides, inherent faults are unfixable, and

TABLE 2 | All eight results of getting 1 cell stuck at minimum/maximum conductance. 10 perturbations occur in the range of [-1.1] and the remaining ranges have 20
perturbations.

Rang
of perturbation

[-1.1] [-1.1]
or [-0.35.0.35]

Traverse
5 ranges

[-0.1.0.1] [-0.2.0.2] [-0.3.0.3] [-0.4.0.4] [-0.5.0.5] [-0.6.0.6] [-0.7.0.7]

Accuracy 60.5% 43.3% 40.6% 77.9% 69.4% 57.7% 50.8% 45.1% 40.8% 40.7%
Average Changed Pixel Values 4.1 4.1 4.0 0.87 1.0 2.8 3.2 4.6 5.6 6.4

TABLE 3 | Comparison of original and enhanced adversary attacks on hard faults (dual RRAM) and soft faults (normal variation and degraded precision). The five ranges for
the enhanced attack are the same as in Table 2.

Other fault types Dual RRAM Variation (σ � 5 × 10−3) Precision (bit = 3)

Original Attack Accuracy 64.1% 46.4% 67.2%
Average Changed Pixel Values 4.1 4.0 4.2

Enhanced Attack with 5 Ranges Accuracy 48.2% 38% 56.2%
Average Changed Pixel Values 3.9 3.8 3.9
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knowing their existence cannot prevent the attack. As discussed in
Potential Defense Methods, dynamically replacing unfixable RRAM
cells with backup cells is not practical. Moreover, for the faults/
variations that are fixable and occur during the operation, the user can
repair/replace them by repetitively scanning the RRAM status.
However, such a naive approach is inefficient and leads to
unacceptable overheads in delay and power consumption. In
addition, the designer can consider adding temperature (or other
stimuli) sensors on the chip to monitor environmental temperature
status and report to the user once an anomaly happens. However, this
method is inapplicable to malicious stimuli that focus on partial
RRAM, and it cannot solve the faults/variation caused by inherent
nonideality. Finally, destroying the physical reading port of
neuromorphic hardware can prevent the attacker from accessing
fault/variation information, which is previously used to protect secure
data in memory. Unfortunately, this scheme also blocks access to the
device when an update needs to be performed on the neural network.
As a result, it is only suitable for one-time training and stable digital
memory with a long data retention time.

CONCLUSION

In this paper, five faults/variation-based adversary attack
models are developed based on detailed nonideal properties
that exist in the RRAM crossbar array. By analyzing the device-
and circuit-level phenomena, the scope of the attack is

extended from simple and abstract binary hard faults to
non-binary faults, randomly injected faults, uneven-
distributed faults, and soft faults. The investigation reveals
that adding faults to neural layers that are closer to input is
much more efficient than those closer to output. More
importantly, the quantification error and conductance
variation are proven to be effective under the variation-
aware attacks, in which the conductance variation achieves
a 49.4% improvement in attack success rate compared to the
attack based on original binary faults. Finally, an enhanced
attack method is proposed to obtain more stealthy adversary
images with up to 19.9% better attack success rates.
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