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Abstract

Sepsis is an abnormal, life-threatening response to infection that leads to (multi-)

organ dysfunction and failure. It causes ~20% of deaths worldwide each year, and

most deaths related to severe COVID-19 share various molecular features with

sepsis. Current treatment approaches (antimicrobials and supportive care) do not

address the complexity of sepsis or its mechanistic heterogeneity between and

within patients over time. Systems immunology methods, including multiomics

(notably RNA sequencing transcriptomics), machine learning, and network biology

analysis, have the potential to transform the management paradigm toward

precision approaches. Immune dysfunctions evident very early in sepsis drive the

development of novel diagnostic gene expression signatures (e.g., cellular

reprogramming) that could inform early therapy. Sepsis patients can now be

categorized into “endotypes” based on unique immune dysfunction mechanisms

corresponding to varying severity and mortality rates, raising the prospect of

endotype-specific diagnostics and patient-specific immune-directed therapy.

Longitudinal within-patient analyses can also reveal mechanisms (including

epigenetics) that drive differential sepsis trajectories over time, enabling the

prospect of disease stage-specific therapy during and after hospitalization,

including for post-sepsis and long COVID syndromes. Achieving this

transformation will require addressing barriers to systems immunology research,

including its cost and resource-intensiveness, the relatively low volume of available

data, and lack of suitable animal models; it will also require a change in the mindset

of healthcare providers toward precision approaches. This should be prioritized in

multistakeholder collaborations involving research communities, healthcare

providers/systems, patients, and governments to reduce the current high disease

burden from sepsis and to mitigate against future pandemics.
KEYWORDS

sepsis, systems immunology, diagnostics, endotypes, RNA-Seq, multiomics, pandemics
frontiersin.org01

https://www.frontiersin.org/journals/science/articles/10.3389/fsci.2024.1469417
https://www.frontiersin.org/journals/science/articles/10.3389/fsci.2024.1469417
https://www.frontiersin.org/journals/science/articles/10.3389/fsci.2024.1469417
https://www.frontiersin.org/journals/science
https://www.frontiersin.org
http://crossmark.crossref.org/dialog/?doi=10.3389/fsci.2024.1469417&domain=pdf&date_stamp=2025-01-30
mailto:bob@hancocklab.com
https://doi.org/10.3389/fsci.2024.1469417
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/science/about#about-scope
https://www.frontiersin.org/journals/science/about#about-scope
https://doi.org/10.3389/fsci.2024.1469417
https://www.frontiersin.org/journals/science


Hancock et al. 10.3389/fsci.2024.1469417
Key points
Fro
• Sepsis, a complex and heterogeneous immune dysregulation
syndrome triggered by infection, is a major under-
recognized global cause of mortality and of pandemic-
related deaths.

• The multifaceted nature of sepsis requires systems
immunology approaches such as comprehensive omics
investigations and high-end bioinformatics analyses,
including machine learning.

• Systems immunology is beginning to transform sepsis
care toward precision medicine approaches, including
diagnostics to enable early detection and immune-
directed therapies tailored for specific sepsis subtypes
(endotypes) and stages in disease trajectories over time.

• Advances in epigenetics could inform future therapies
against long-term post-sepsis syndrome and
long COVID.

• Research and development toward precision sepsis care
should be at the heart of pandemic mitigation planning to
provide a pathogen-agnostic means to reduce mortality.
Introduction: sepsis as a major
medical emergency

Of all major causes of death and disability, arguably the least

acknowledged is sepsis. Sepsis is formally defined as an abnormal,

life-threatening response to infection that leads to (multi)organ

dysfunction and failure (1). The global burden of sepsis is far

higher than previously thought: an estimated 48.9 million cases

caused 11 million deaths in 2017 alone (2), representing 19.7% of

all deaths worldwide. Sepsis incidence and mortality rates show large

interregional differences, with the greatest burden in lower-income

areas (2). More recently, COVID-19 infected >690 million and killed

6.9–18 million people (as of October 2023) (3, 4) and, while caused by

a novel virus (SARS-CoV-2), in its most severe form it has striking

parallels to severe sepsis (5–7). Indeed, systems immunology studies

have revealed various molecular features shared by patients with

COVID-19 or non-COVID-19 severe sepsis; after a week in the

intensive care unit (ICU), these groups are indistinguishable in terms

of gene expression (8).

Critically, sepsis in its most severe forms (i.e., leading to organ

failure) can be a major killer, with overall in-hospital case fatality rates

averaging >22% (2). Septic shock, defined by hypotension and

hyperlactatemia that require vasopressor use, has even higher in-

hospital mortality rates of 30–50% (9). Even surviving a bout of sepsis

does not guarantee future health: so-called “post-sepsis syndrome”

(10)—and its counterpart, long COVID (11)—is associated with

long-term major health problems, with up to 40% of survivors

suffering physical, cognitive, and/or physiological effects, while

>70% of patients who survived a first episode of sepsis were

readmitted into acute care in the following year (10). Sepsis

primarily affects already clinically vulnerable patients, including
ntiers in Science 02
those of older age or who are immunosuppressed (e.g., due to

AIDS, cancer, or immunosuppressant medications) (12). Patients

aged over 65 years account for the majority of sepsis cases (13) and

thus the incidence is expected to increase as populations age.

The acute and longer-term complications confer enormous direct

healthcare costs and indirect socioeconomic costs that are potentially

greater than those of coronary heart disease or stroke (14). The

enormous contribution of sepsis is often under-recognized in reports

of disease burden. For example, the World Health Organization

(WHO) lists the major global causes of death as ischemic heart

disease (16%), stroke (11%), and chronic obstructive pulmonary

disease (COPD; 6%) (15, 16). Conversely, if one collects diseases

into syndromes, cardiovascular diseases (~30%) and cancers (16.4%)

are the major killers (17). Thus, despite having mortality and

morbidity rates rivalling these major diseases, sepsis does not

appear in the top 10 global causes of death. Why is this? First and

foremost, sepsis is not usually a line item on any country’s death

statistics, since it tends to be associated with diverse infections and

often involves co-morbidities (17) (underlying ailments that

predispose patients to a higher probability of severe sepsis, such as

diabetes, hypertension, heart disease, malignancy, end-stage renal

disease, and COPD). Thus, sepsis is usually buried beneath other

statistics. A second reason is the massive heterogeneity of sepsis (18–

20) in terms of its underlying causes, clinical presentation and

symptomology, and rate of progression, as discussed further below.

Third, sepsis is difficult to define, especially in the very early stages of

a patient’s medical journey (21). Indeed, there have been three diverse

international consensus statements on the characteristics of sepsis

and these shifting sands have not helped to crystalize a workable

definition of early sepsis (1, 20). This lack of a definition can not only

result in a delay in therapy, which is associated with worse morbidity

and mortality rates (22, 23), but also contributes to deemphasizing

sepsis as the underlying cause of downstream issues. Moreover,

significant barriers to understanding the larger scope/burden of

sepsis remain, including coding of infection and organ dysfunction

to ensure consistency, measurement of quality metrics, and

benchmark strategies to evaluate outcomes.

Currently, sepsis management focuses on antimicrobials and

supportive care, measures that fail to address the complex immune

system dysfunctions that underlie sepsis and its heterogeneity

between and within patients over time. This article describes how

systems immunology methods are now starting to address these

challenges—substantially elucidating the many mechanisms involved

and transforming the current treatment paradigm toward a future of

precision care.

Specifically, we explore how these techniques are elucidating.
(i). programming, i.e., common aspects of immune

dysfunction evident very early in sepsis (at first clinical

presentation) are driving the development of novel

diagnostic signatures,

(ii). inter-patient heterogeneity, i.e., how the sepsis syndrome

can be categorized into five distinct and diverse mechanistic

groupings (endotypes) to allow novel, precision approaches

to diagnosis and immune-directed therapy, and
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(iii). within-patient staging, i.e., how a greater understanding of

the mechanisms driving the progression of sepsis and the

associated long-term disease trajectories should enable

disease stage-specific therapies as well as treatments for

post-sepsis complications, including long COVID.
Finally, we argue that collaborative multidisciplinary and multi-

stakeholder research and action to transform the diagnosis and

management of sepsis should be a priority to mitigate against future

pandemics, as well as the present and rising burden from sepsis.
Immunity as a complex system
of responses

Fundamentally, immunity enables an organism to resist a

particular infectious disease or pathogen. It involves a complex

and integrated system of interwoven responses guided by specific

cells and proteins. These responses are both hard-wired into the

organism and dynamic in the sense that they can be influenced by

induction and repression of specific genes, proteins, chemicals,

metabolites, and regulatory elements, and adjusted through

adaptive mechanisms that include gene rearrangements and

epigenetic modulation. Estimates of the numbers of individual

proteins/genes involved in the immune response vary (24), but

there are likely as many as 5,000 out of the ~11,000 expressed genes

in humans, attesting to and reflecting the complexity of immunity.

Systems biology tools such as NetworkAnalyst (25, 26) display how

proteins interact in complex ways with many so-called “hub

proteins” that in turn interact with tens to hundreds of other

elements. Critically, the immune system overlaps extensively with

other bodily systems such as the endocrine/hormonal, nervous,

circulatory, renal, digestive, reproductive, muscular, and respiratory

systems; thus, the immune system is integrated into the way the

body functions as a whole. Although immunology is often viewed

as a series of critical events involving specific elements, it is

ultimately a system with components that cannot be considered

in isolation (27), i.e., requiring a “systems biology” approach rather

than a reductionist approach.

Generally, the immune system is considered to involve two

arms: innate and adaptive immunity (28, 29). Innate immunity is

considered the body’s first line of defense, but it comprises elements

that function continuously during immune responses to foreign

agents/pathogens. Adaptive (acquired) immunity involves antigen-

specific responses. However, these distinctions are somewhat

blurred, and overlaps exist between these systems. For example,

innate immunity can involve some level of specificity (e.g., trained

immunity), while the effectors of adaptive immunity are often major

components involved in innate immunity. These overlaps highlight

the importance of applying systems approaches to provide

holistic insights.

Critically, sepsis is an immune dysfunction syndrome (30), so

understanding sepsis will necessarily involve understanding why

and how the immune system becomes dysfunctional. Like the

immune system, sepsis has always been considered complex,

perhaps underpinning the poor definition of this syndrome.
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Nevertheless, as described below, it is increasingly clear that the

complexity of sepsis in terms of causes, symptoms, disease

progression, and outcomes can be understood by using artificial

intelligence (AI) strategies to identify mechanistic endotypes

(disease subtypes with different pathophysiological mechanisms)

(31, 32, 34, 35). These AI strategies are enabling new insights, novel

diagnostics, and the prediction of new and personalized

therapeutics tailored to a patient’s specific type of sepsis.
Using systems immunology to
understand complex biology

Systems immunology is a branch of systems biology that

involves the computational/mathematical analysis and modeling

of immunology as a complex biological system (36). Many strategies

can be used to maximize the collection of information on immune

system components, allowing elucidation of how these parts

interrelate and ultimately determine the events triggered when the

immune system is disturbed. This is of fundamental importance for

understanding a complex, heterogeneous syndrome involving

immune dysfunction, such as sepsis. However, only recently have

the ever-evolving methods of systems biology begun to be properly

applied to deciphering sepsis.
Omics-based analysis in sepsis

Systems immunology analyzes genome-wide information by

utilizing advanced computational and statistical analyses of omics

data, including sophisticated AI and machine learning (ML)

methods, network biology, biomarker discovery, and imputing

function to create new hypotheses and ultimately learn more

about complex systems such as sepsis (Figure 1). It requires

aggregation of at least some (genome-wide) omics data, such as

an understanding of genetic variation between subjects (i.e.,

mutations associated with function defined through genome-wide

association studies; GWAS), altered transcriptome (mRNA)

and microRNA expression (transcriptome and microRNAome),

varied protein and/or lipid expression or modifications (proteome

and lipidome), modulated metabolites (metabolome), and

environmentally driven reversible changes to how the body reads

its DNA sequences (epigenome).

Each of these elements can be determined on a genomic scale,

although the depth of accurate coverage varies. Generally, the

transcriptome, acquired by high-throughput sequencing of

complementary DNA obtained by reverse transcription of expressed

messenger RNAs (a process termed RNA-Seq), provides the most

comprehensive and accurate “real-time” data.
Clustering

The key to systems biology and immunology is to utilize

these datasets to identify differences that occur according to a

treatment or disease condition (e.g., differential gene expression).
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Collectively, these differences determine emergent properties (i.e.,

those not immediately obvious individually but revealed through

the analysis of interacting components within a system) and inform

novel biology related to a particular treatment or disease condition.
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Systems analysis moves beyond the traditional analysis of a few

differentially abundant elements (e.g., known genes and their

expressed products) to collate elements with common features—a

process termed clustering. Thus, individual components have
FIGURE 1

Methods of systems biology and immunology. The first layer involves high-throughput techniques that collect information in a genome-wide
fashion. These data are then analyzed by various clustering methods that provide hypotheses for wet lab testing.
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varying, but generally limited, importance to a system, but how they

integrate and operate together is the critical, informative aspect for

finding new biology.

There are three types of clustering (Figure 1). Simple clustering

takes all elements analyzed and clusters them into groups with

known common features, maximizing similarities such as

hierarchical functional attributes (e.g., gene ontology terms;

https://geneontology.org/), pathways they belong to (e.g., https://

reactome.org/), or their common regulatory elements (e.g.,

TRANSFAC; http://gene-regulation.com/pub/databases.html).

This can be very useful, especially when combined with the other

methods outlined below. However, the redundancy of genes and

their products, which can act in many different functions and

pathways (particularly within the immune system), can limit the

value of this approach and the insights delivered. New concepts

have been largely based on the other two clustering approaches.

The second approach is ML (37, 38), a branch of AI. ML

involves computational analysis of large volumes of data, enabling

algorithms to learn and find patterns, classify data, and/or make

predictions. The two most commonly used ML strategies in

analyzing omics data are supervised and unsupervised

reinforcement learning. Supervised ML involves feeding the

computer with labelled datasets (e.g., with different properties

such as sepsis versus healthy) to train algorithms to classify data

and/or predict outcomes accurately; common methods are neural

networks, decision trees, linear regression, and support vector

machines. Unsupervised learning uses algorithms to analyze and

cluster unlabeled datasets, enabling the discovery of hidden patterns

or data groupings without predetermined labels, and subsequently

determines if one of the groups is enriched for a particular attribute

(e.g., which cluster has higher sepsis mortality rates). Common

methods are hierarchical clustering, hidden Markov models (also

useful for classification), k-means/k-medoids, and Gaussian

mixture models. The fundamental idea is to use these powerful

algorithms to classify and find patterns in data associated with a

clinical or biological variable of interest, and thus generate new,

non-obvious hypotheses for experimentation and validation.

A third widely used method is network biology analysis based on

protein:protein interaction (PPI) networks (25). PPIs may be physical

(e.g., proteins bind to one another), biochemical (e.g., consecutive

enzymes in a pathway), or regulatory (e.g., a transcription factor

regulating the expression of another protein). They are curated into

large databases as part of the International Molecular Exchange

(IMEx) Consortium, with the major immune database being

InnateDB (39). PPIs are functional interactions, even in the absence

of specific knowledge of a particular pathway involvement. Thus,

drawing networks based on PPIs, which is performed using twomajor

programs, NetworkAnalyst (25) (https://www.networkanalyst.ca/)

and Cytoscape (40) (https://cytoscape.org/), can help to define

how individual elements contribute to a system. This network

biology perspective can be applied to individual omics datasets or

even to multiple types of omics data to fully capture the interplay of

elements within the system. The multiomics approach involves

converting each omics data point to a corresponding gene/protein

product: GWAS to their corresponding gene/protein, transcripts to

expressed proteins, metabolites to the proteins involved in their
Frontiers in Science 05
production or degradation, and epigenetic markers to the adjacent

genes they affect. For example, to understand the developmental

trajectory of newborns, the transcriptome, proteome, and

metabolome identified in multiple omics datasets were integrated,

revealing a programmed pattern of changes that occur during

the first week of life, demonstrating that different omics methods

report on individual aspects of the same biological processes and

describe the underlying molecular events/pathways (26). In addition

to PPIs, one can also create metabolic, epigenetic, genetic

interaction, gene/transcriptional/regulatory, and cell signaling

networks, or networks that encompass any other set of properties

that can be assessed on a genome-wide scale. These different types of

omics studies have not yet been combined for sepsis, but this is now

possible using PPI network approaches, as well as multivariate

integrative feature selection ML methods such as DIABLO (Data

Integration Analysis for Biomarker discovery using Latent

cOmponents) (26). Integrating transcriptomics, genomics,

epigenomics, proteomics, metabolomics, lipidomics, and/or

microbiomics will almost certainly improve our understanding of

sepsis and has the potential to provide new targets for intervention

and new biomarkers to characterize the nature of a patient’s sepsis,

which could tangibly improve patient care and health outcomes.

We suggest that multiomics methods should be increasingly

deployed in sepsis research to further characterize this complex

disease since, in our experience, they strongly reinforce models

derived from single omics data. Exploring the methodologies,

algorithms, and frameworks employed to integrate and interpret

such vast amounts of data will undoubtedly contribute to the

overall understanding of how these recent innovations can be

translated into tangible benefits for patient care and improved

health outcomes.
Limitations

Recently, major attempts have been made to understand critical

illness with deep heterogeneity such as sepsis and to derive

treatments from a mechanistic perspective using systems

immunology methods (41–43). These attempts are transforming

our thinking from clinical symptom-based approaches to diagnostics

and treatments based on underlying mechanisms and evidence. As

we discuss below, these methods are starting to yield host-based

molecular diagnostics that can assess the risk that a patient will

progress to sepsis and (multi)-organ failure or further deteriorate,

differentiate between bacterial and viral infections as the triggering

agent, define groupings (endotypes) of sepsis patients with different

underlying immune processes, and clarify post-sepsis syndrome.

However, given the massive complexity of critical illness and sepsis,

they provide guideposts rather than definitive approaches, and the

current review aims to clarify the types of insights provided by

systems immunology and the potential for transformation of

therapeutic approaches.

It is worthwhile to describe the limitations of such approaches.

First and foremost, as mentioned above, these methods do not deliver

definitive mechanisms or “truths” but rather are powerful hypothesis-

generating mechanisms that require experimental validation. This is
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especially relevant in the context of sepsis, since model systems

(animals and organoids) for sepsis substantially lack precision and

do not fully capture the mechanisms involved in human sepsis.

Second, most omics data are based on bulk analyses (e.g., blood, tissue,

or organ transcriptomes and proteomes) and can be influenced by cell

type composition, although cellular deconvolution algorithms such as

CIBERSORTx (44) can tease out the influence of cell type proportions

on omics data. Although this can be overcome to some extent, such as

by using single-cell RNA-Seq transcriptomics (45), such methods

sacrifice resolution for specificity, delivering only a fraction of

differentially expressed transcripts (especially those with high

abundance and larger changes in expression), which skews the

dataset and can limit the accuracy or ability to discern patterns.

Third, there are several factors influencing sepsis presentation and

severity, including the individual infectious agents, sex, age,

endotypes, disease progression stage and trajectory, pre-existing

medical conditions, and treatment effects, as well as many other

currently unknown factors (18–20) (Figure 2). Another limitation

lies in how such data will be translated into clinical gains. We have

described diagnostic approaches that are indeed playing out in real

time. However, these do not provide yes/no answers but rather must

be couched in terms of probability. For example, an early sepsis

diagnostic that can accurately identify >90% of patients who will go

on to sepsis, in combination with conventional measurements, will

provide valuable input to attending physicians to make decisions

about that patient’s future clinical care.

All of these factors can drive the extreme heterogeneity now

evident in sepsis. Fortunately, the perturbations that occur during

sepsis are very substantial, creating signals that can be analyzed

productively using computational approaches, as described below.

A key barrier to systems immunology research to date has been

that it is expensive and resource-intensive. These approaches

require highly trained, collaborative teams with a range of

expertise. Consequently, the majority of studies have been limited

to a few high-income countries, especially the United States, with

relatively few in lower-income regions where the major burden of

sepsis exists, and there have been no global research initiatives on

sepsis, except for Sepsis-3 (1).

Another barrier is the limited volume of systems immunology

data, resulting from small study sizes, especially for single-cell

approaches. Systems approaches work better with large sample

sizes for discovery and validation; otherwise, there are high risks

of both type 1 and 2 errors, and results suffer from variations in the

demographics and etiology of the sampled populations, clinical

metadata collected, and analytical methodologies.

Finally, other research barriers include the paucity of informative

diagnostics, a lack of legitimate animal models of sepsis for testing

investigational drugs, and, crucially, a lack of endotype-specific models.
Using systems immunology to
facilitate early sepsis diagnosis

The high mortality rate of sepsis can likely be attributed to two

factors: difficult and often delayed diagnosis and the lack of sepsis-
Frontiers in Science 06
specific treatments. The difficulty of sepsis diagnosis, especially

early in disease, can result in delayed treatment with antibiotics

(or monoclonal antibodies and antivirals in the case of COVID-19).

This delay has been documented to drastically increase mortality

rates: for every hour that appropriate antibiotic therapy is delayed,

the in-hospital mortality rate can increase very significantly (46),

with numbers often cited of up to 7.6% in septic shock (22).
Challenges in sepsis diagnosis

The first symptoms of sepsis are non-specific (e.g., altered

temperature, blood pressure, respiratory rate, and heart rate),

making early diagnosis difficult (47). Based on the most recent

Sepsis-3 criteria (1), sepsis is diagnosed if there is documented or

suspected infection along with an indication of organ dysfunction,

represented by an increase of two or more points in the Sequential

Organ Failure Assessment (SOFA) score (1). The SOFA score

assesses the organ function of six systems, namely the

cardiovascular, respiratory, hepatic, renal, neurological, and

coagulation systems, using appropriate clinical measures (48).

Sepsis has been historically described as “severe sepsis” when

such acute organ dysfunction occurs (49). Unfortunately, the

surrogate early-SOFA score, termed qSOFA, is quite inaccurate in

diagnosing progression to sepsis, with a sensitivity of 46% in a

recent meta-analysis (50), meaning that over half of sepsis patients

can be missed. For infection detection, the gold standard is bacterial

identification in a blood or tissue culture (47). However, in a large

meta-analysis, around half of sepsis cases were culture-negative (51),

and even the suites of new rapid identification methods using mass

spectrometry or multiplex polymerase chain reaction (PCR)

assays (52) still fail to identify a causative pathogen in most cases.

This could be because the progression of sepsis probably does not

require the continued presence of the live pathogen that triggered the

initial immune dysfunction, or it could reflect sepsis caused by non-

culturable bacterial pathogens, fungi, or viruses—e.g., in the case of

COVID-19 sepsis (4, 5). Moreover, even culture positivity may not

necessarily be associated with “true” sepsis, reflecting our inability to

distinguish colonization from infection, particularly in patients with

significant comorbidities that affect the SOFA score (such as acute

myocardial infarction) or non-sepsis physiological disturbances

(such as asymptomatic bacteriuria).
Systems immunology-based diagnosis

To address the difficulty of pathogen detection and the

imprecision of qSOFA, many have attempted to leverage changes

in the host response as a proxy for infection, especially since this

appears to be the definitive cause of the associated organ failure and

mortality. A variety of blood biomarkers, mainly reflective of

inflammation, have been developed to diagnose sepsis with

varying accuracies. C-reactive protein and procalcitonin are

considered to have the greatest potential, but others include

interleukin (IL)-6, a soluble triggering receptor expressed on

myeloid cells-1 (TREM-1), presepsin (soluble cleaved CD14),
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and calprotectin (53). Generally speaking, these tests do not work

well in early sepsis and are not very specific or predictive (54).

Conversely, gene expression signatures are gaining popularity

in sepsis diagnosis and prognosis, with a variety proposed based on

whole-blood transcriptomics (55–61). These signatures are specific

groups of genes, the expression of which is correlated with a specific

clinical feature (in this case, sepsis). Using the systems immunology

methods described above, signatures are often identified from an

initial population of genes that are differentially expressed in sepsis

compared with a control group (e.g., healthy patients) and can be

further refined through ML/clustering methods to identify the top

genes with discriminatory value (35). Table 1 describes a range of

signatures and their performance using a common set of seven

studies encompassing 1661 patients by comparing gene expression

levels to two housekeeping genes (that do not change in sepsis);
Frontiers in Science 07
these signatures varied in their stated purpose, their accuracy/area

under the curve (AUC), and the number of patients investigated. In

many cases they were calculated from gene expression data

obtained when patients already had sepsis. Nevertheless, the best

tests are able to accurately classify 68–84% of patients while largely

or completely failing to classify patients with different degrees of

severity for cancer, cardiac disease, and inflammatory bowel disease.

Many signatures are based on ML algorithms and scored

similarly to the “inflammatory” signature (60–74% AUC) derived

from genes active in a non-specific inflammatory response. However,

two signatures stand out: the cellular reprogramming (CR; or

endotoxin tolerance) signature and its condensed version, SepsetER.

The CR signature, generated through systems immunology methods,

was developed based on a hypothesis regarding the nature of the early

immune dysfunction in sepsis (55) and has been shown to predict
FIGURE 2

The host response in sepsis can be influenced by multiple factors, resulting in a highly heterogeneous disease.
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progression to severe sepsis and organ failure with relative accuracy

(35, 55). CR refers to the process by which innate immune cells such

as monocytes or macrophages lose their ability to respond

appropriately to pathogens after two or more challenges with

bacterial lipopolysaccharide (LPS) or other agonists of Toll-like

receptors (55, 70, 71) (Figure 3). CR starts as early as the first

clinical presentation of sepsis, and CR monocytes are observed in

sepsis (72) with impaired antigen presentation, dysregulated cytokine

production (55, 70, 71), and the ability to suppress T-cell function

(73). It was hypothesized that an initial pre-clinical infectious

challenge represents an initial stimulation (74), and a later infection

or the systemic spread of the initial infection acts to subsequently

induce CR, allowing it to be detected early in sepsis (55) and thus

making it an effective early signature. Considering the innate immune

system’s role as the first layer of protection against pathogens and as

the initiator of adaptive immune responses, it is not surprising that

CR monocytes also affect T-cell functionality (73). In CR monocytes,

production of cytokines such as transforming growth factor (TGF-b)
and IL-10, decreased antigen presentation, and decreased expression

of costimulatory molecules result in decreased T-cell proliferation

and interferon (IFN)-g production. Thus, in sepsis, CR may

potentially bridge interactions between an overactive innate

immune response and a suppressed adaptive response. Intriguingly,

a recent single-cell transcriptome sequencing study to classify the

effects of dexamethasone on patients revealed five out of six markers
Frontiers in Science 08
of the CR signature were upregulated in the monocytes of patients

who died despite treatment, while at least three were relatively

suppressed in patients who survived (75). This suggests that the CR

signature might be useful to monitor therapeutic success.

Notably, studies with a large number of adults, some of whom

went on to develop sepsis, have indicated that transcriptional

changes might occur prior to symptom onset (60). This suggests

it might be possible to predict the onset of sepsis very early in

disease. We have made similar observations in neonates (76).
Implications for early intervention

Since sepsis is an immune dysfunction disease, the early use

of immune-corrective therapies could perhaps boost the patient’s

immunity and promote the efficacy of front-line treatments such

as antibiotics. Although sepsis was originally considered to be

a hyperinflammatory disease, more than 100 failed clinical trials

using anti-inflammatory therapies (77) have led to a paradigm

shift in understanding immune dysfunction in sepsis, with it

now understood to involve immunosuppression. Proposed in

1996 by Dr. Roger Bone, this model represented a major

breakthrough in our understanding that sepsis is not just

inflammation (78) but instead involves what was termed a

“compensatory anti-inflammatory response syndrome” (CARS;
TABLE 1 Comparative performance of sepsis-related signatures. The “sepsis” column shows the predictive value of the signature (higher is better)
while the “other severe diseases” column shows the specificity for sepsis (closer to 50% is better). Signatures were generally derived from machine
learning approaches to obtain diagnostic signatures using the authors' own and/or public data (55–62). Seven published datasets of differentially
expressed genes (32, 34, 63–67) from 1661 patients at various stages of hospital entry, from the emergency room to early intensive care unit, were
analyzed for this review using known signatures of varying sizes (except for the inflammation comparison set, which was from a subset of human
volunteers injected with bacterial endotoxin), using a common pair of housekeeping genes as a reference. As a control, the ability of the signature to
predict severe versus mild disease states in a combined 3407 patients with severe inflammatory bowel disease (68), stage 3–4 cancer (https://
www.cancer.gov/tcga), cardiogenic shock (GSE93101 dataset), and coronary artery disease (69) was tested. Area under the receiver operator curve
(AUC) was assessed courtesy of Dr. Peter Zhang (University of British Columbia, Vancouver, BC, Canada), as a measure of accuracy; for example, when
AUC = 0.83 (83%), a model based on the signature has an 83% chance of predicting a higher risk of sepsis for a random high-severity sample
compared with a random low-severity sample. Note: these data are not a comment on the performance of any specific commercial test or signature
since the methods for detection and standardization will vary from those used here to perform a comparative assessment.

Sepsis signature No. of genes Comparison

Performance AUC (%)

Sepsis (n=1661)
Other severe

diseases
(n=3407)

CR (55) 31 Cellular reprogramming assessing sepsis by SOFA 84 54

Sepset 6 Top six genes of cellular reprogramming signature 83 52

IMX-BVN3 (56) 29 Bacterial vs. viral infections 81 58

SMS (57) 11 Sepsis vs. non-infectious inflammation 74 50

Inflammatory (55) 93 Inflammatory signature 74 52

Lukaszewski (60) 7 Infection vs. SIRS negative 74 49

Sweeney (59) 2 FAIM3:PLAC8 ratio in sepsis patients 70 57

MS1 (58) 8 Bacterial sepsis vs. none, single-cell RNA-Seq 68 48

DETecT2 (62) 10 Cytokine profiles in sepsis vs. healthy individuals 65 52

SeptiCyte Rapid (61) 2 Infectious vs. non-infectious inflammation 63 52
AUC, area under the receiver operator curve;CR, cellular reprogramming;DETecT2, Direct Electrochemical Technique Targeting Sepsis 2.0; FAIM3:PLAC8, ratio of Fas apoptotic inhibitory molecule
3 to placenta-specific 8; IMX-BVN3, Inflammatix Bacterial Viral Non-infected version 2; MS1, monocyte state 1; RNA-Seq, transcriptome sequencing; SIRS, systemic inflammatory response
syndrome; SMS, Sepsis MetaScore; SOFA, Sequential Organ Failure Assessment.
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although the term “compensatory response”may not be correct per

se but instead reflects a distinct phase of immune dysfunction). The

important concept was that a later immunosuppressive phase

dominates the immune response, predisposing patients to

nosocomial secondary infections and eventual death. This was

supported by findings of apoptosis of CD4+ and CD8+ T-cells, B-

cells, and dendritic cells (79); expansion of immunosuppressive cells

such as regulatory T-cells (79, 80) and myeloid-derived suppressor

cells (81); impaired neutrophil function (82); and cellular

reprogramming of antigen-presenting cells such as monocytes

(55, 72). These general themes have been recently supported by

systems immunology investigations (83). For example, single-cell
Frontiers in Science 09
studies demonstrated a unique monocyte phenotype in sepsis (58)

and that patients with severe COVID-19 infections (i.e., viral sepsis)

have a dysregulated myeloid compartment (84). Similarly, a recent

single-cell transcriptome study (75) on the use of dexamethasone in

more severely afflicted COVID-19 patients revealed a monocyte

subset that was responsive to dexamethasone and provided a

dexamethasone-responsive gene expression signature and a

signature (possibly the CR signature, see above) for therapeutic

success. Despite these themes, heterogeneity in sepsis is a major

issue in this regard and it is noted in the dexamethasone study that

up to 30% of patients treated with this immune-modulatory agent

died in the RECOVERY trial (85).
FIGURE 3

Genesis of cellular reprogramming and other immune suppression and their relationship to sepsis. Cellular reprogramming (also termed endotoxin
tolerance) is initiated by two successive treatments with bacterial signature molecules such as lipopolysaccharide. The first treatment stimulates
inflammation as an antimicrobial defense mechanism. The second (or perhaps prolonged treatment with the bacterial signature molecule) results in
monocytes and macrophages being unable to respond to further bacterial stimuli, an amnesic state termed cellular reprogramming (monocytes and
macrophages become a special class of M2 cells). Subsequently, T-cell deficiencies, including immunosuppression and T-cell exhaustion, occur.
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Deriving systems-based endotypes:
towards precision sepsis care

Previous clinical research has inferred that sepsis is too difficult to

characterize comprehensively and mechanistically due to inter-

individual variability in symptoms, infectious triggers, time course

of disease, pre-existing medical issues/co-morbidities, and patient

genetics, age, and demographics (17, 19). This variability is likely

responsible for the diverse spectrum of disease manifestation, ranging

from relatively mild, transient disease to severe symptoms requiring

ventilation that result in organ dysfunction, septic shock, and death.

Thus, attempts to identify a one-size-fits-all treatment (i.e., using

antimicrobials and supportive care) have seemed doomed to fail,

notwithstanding that the diagnostic signatures described in the

previous section indicate that there are some common elements to

most cases of severe sepsis.

Systems immunology approaches and unsupervised ML

methods (e.g., clustering) now allow sepsis patients to be

categorized (31, 32, 34, 35) into “endotypes” based on unique

immune dysfunction mechanisms corresponding to varying
Frontiers in Science 10
severity and mortality rates (Figure 4). Defined as subtypes of a

disease with different pathophysiological mechanisms, endotypes

have been substantially described in asthma and other allergic

diseases (83). Excitingly, they offer the potential to triage patients

to enable different immune-supportive therapies.
Using ML methods, patients can be divided into endotypes based

on their common differential expression of an exclusive set of genes not

found in any other patient endotype. A variety of sepsis endotypes have

been proposed to stratify patients at ICU admission, including sepsis

response signatures (SRS) 1/2 (32), Molecular Diagnosis and Risk

Stratification of Sepsis (MARS) 1–4 (33, 34), and inflammopathic/

adaptive/coagulopathic (86). Recently, using RNA-Seq transcriptomic

data, five endotypes were identified in patients in the emergency

department, well before any formal diagnosis (35), indicating that

they are actionable and could be used to guide therapy. Each was

distinguished by ~200 differentially expressed genes unique to the

particular endotypes. The two most severe endotypes, termed

Neutrophilic-Suppressive (NPS) and Inflammatory (INF), are almost

diametrically opposed in terms of their mechanistic basis, the first

reflecting immune suppression and the second hyperinflammatory

immune stimulation. The remaining three were less severe endotypes
FIGURE 4

Endotypes uncover novel mechanisms and have clinical implications on prognosis and treatment of sepsis. Endotypes, which are subtypes of a
disease with distinct mechanisms, can be identified using systems immunology approaches such as clustering. Gene signatures can then be derived
for classification of patients into endotypes, which can aid prognostication and triaging. In (35), five endotypes were discovered and named after
their predominant mechanisms: Neutrophilic-Suppressive (NPS) and Inflammatory (INF) had patients with poor prognosis; Interferon (IFN), Adaptive
(ADA), and Innate Host Defense (IHD) had fair prognosis. As these endotypes also have distinct mechanisms, targeted therapies can be developed to
provide personalized treatments rather than a “one-size-fits-all” approach, which has not been historically successful in treating heterogeneous
diseases such as sepsis.
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FIGURE 5 (Continued)
Frontiers in Science frontiersin.org11

https://doi.org/10.3389/fsci.2024.1469417
https://www.frontiersin.org/journals/science
https://www.frontiersin.org


FIGURE 5 (Continued)

Repurposed drug predictions from transcriptomic data. This is illustrated for the set of genes uniquely expressed in patients of the NPS endotype
but, as shown on the upper part, this endotype is especially relevant to patients in the Critical phase of sepsis [phases are abbreviated as Mild (m),
Moderate (M), Severe (S), Critical (C), Recovery (R), and Discharge (D)]. A minimally connected protein—protein interaction network (top right) is
drawn from the differentially expressed (red nodes) genes including close interactors that are not themselves differentially expressed (blue nodes).
To obtain candidate targets, highly connected hubs (larger nodes with connections to the maximum number of other nodes) are deleted within
NetworkAnalyst, and nodes that become less connected are considered to be the most important for the interaction network for the particular hub
(shown for CEBPB top right). Known drugs (candidates for repurposing) targeting the hubs are extracted from a variety of candidate databases.
Conversely, DSigDB comprising enriched drug—gene signatures are extracted from the Drug Signatures Database and examined for enrichment in
the gene expression protein—protein interaction network. Any candidate drugs obtained will be known to be safe for human use but will need to be
specifically tested in the context of sepsis to justify use in sepsis patients. The general effectiveness of this method is revealed by the fact that it
predicts drugs with known efficacy in at least a subset of sepsis patients and/or in animal models.

Abbreviations: ABL1, ABL proto-oncogene 1, non-receptor tyrosine kinase; AFF4, ALF transcription elongation factor 4; AGER, advanced
glycosylation end-product specific receptor; AKR1B1, aldo-keto reductase family 1 member B; ALB, albumin; ALOX5, arachidonate 5-lipoxygenase;
ALOX5AP, arachidonate 5-lipoxygenase activating protein; ALPK3, alpha kinase 3; AMPH, amphiphysin; APP, amyloid beta precursor protein;
AR, androgen receptor; AREG, amphiregulin; ARRB2, arrestin beta 2; ASPH, aspartate beta-hydroxylase; ASZ1, ankyrin repeat, SAM and basic leucine
zipper domain-containing 1; ATF2, activating transcription factor 2; ATXN1, ataxin 1; BAG6, BAG cochaperone 6; BASP1, brain-abundant
membrane-attached signal protein 1; BCL2A1, BCL2-related protein A1; BCL3, BCL3 transcription coactivator; BMX, BMX non-receptor tyrosine
kinase; CALM3, calmodulin 3; CASP3, caspase 3; CASP8, caspase 8; CCM2, CCM2 scaffold protein; CD44, CD44 molecule (IN blood group); CD82,
CD82 molecule; CDK9, cyclin dependent kinase 9; CEBPA, CCAAT enhancer binding protein alpha; CEBPB, CCAAT enhancer binding protein beta;
CEBPD, CCAAT enhancer binding protein delta; CEBPE, CCAAT enhancer binding protein epsilon; CLEC3B, C-type lectin domain family 3
member B; CLTC, clathrin heavy chain; CLU, clusterin; COMMD1, copper metabolism domain-containing 1; COPS5, COP9 signalosome subunit 5;
CREB1, cAMP-responsive element-binding protein 1; CREBBP, CREB-binding protein; CUL2, cullin 2; CUL3, cullin 3; CXCL10, C-X-C motif
chemokine ligand 10; CXXC1, CXXC finger protein 1; CYP19A1, cytochrome P450 family 19 subfamily A member 1; DACH1, dachshund family
transcription factor 1; DLC1, DLC1 Rho GTPase-activating protein; DOK4, docking protein 4; DYSF, dysferlin; EEF1G, eukaryotic translation
elongation factor 1 gamma; EFNA1, ephrin A1; EGFR, epidermal growth factor receptor; EGR1, early growth response 1; ELANE, elastase, neutrophil
expressed; ELAVL1, ELAV-like RNA binding protein 1; EP300, E1A-binding protein p300; EPB41L4B, erythrocyte membrane protein band 4.1-like
4B; ERBB2, erb-b2 receptor tyrosine kinase 2; ERG, ETS transcription factor ERG; ETS2, ETS proto-oncogene 2, transcription factor; FASLG, Fas
ligand; FBF1, Fas binding factor 1; FDXR, ferredoxin reductase; FGF13, fibroblast growth factor 13; FKBP5, FKBP prolyl isomerase 5; FLOT1, flotillin 1;
FLOT2, flotillin 2; FN1, fibronectin 1; FOS, Fos proto-oncogene, AP-1 transcription factor subunit; GADD45A, growth arrest and DNA damage-
inducible alpha; GADD45G, growth arrest and DNA damage-inducible gamma; GDNF, glial cell-derived neurotrophic factor; GRB10, growth factor
receptor-bound protein 10; GRB2, growth factor receptor-bound protein 2; GSVA, gene set variation analysis; HDAC1, histone deacetylase 1;
HDAC4, histone deacetylase 4; HGF, hepatocyte growth factor; HNF4A, hepatocyte nuclear factor 4 alpha; HNRNPU, heterogeneous nuclear
ribonucleoprotein U; HP, haptoglobin; HSP90AB1, heat shock protein 90 alpha family class B member 1; HSPA1A, heat shock protein family A
(Hsp70) member 1A; IER3, immediate early response 3; IL18R1, interleukin 18 receptor 1; IL18RAP, interleukin 18 receptor accessory protein;
IL1B, interleukin 1 beta; IL1R1, interleukin 1 receptor type 1; IL1R2, interleukin 1 receptor type 2; IL1RAP, interleukin 1 receptor accessory protein;
IL1RN, interleukin 1 receptor antagonist; IL4R, interleukin 4 receptor; IL6, interleukin 6; IQCB1, IQ motif-containing B1; IRAK1, interleukin 1
receptor-associated kinase 1; IRAK3, interleukin 1 receptor-associated kinase 3; IRF1, interferon regulatory factor 1; JAK2, Janus kinase 2; JUN, Jun
proto-oncogene, AP-1 transcription factor subunit; KAT5, lysine acetyltransferase 5; MAK, male germ cell-associated kinase; MAP3K7, mitogen-
activated protein kinase kinase kinase 7; MAPK1, mitogen-activated protein kinase 1; MAPK3, mitogen-activated protein kinase 3; MED26, mediator
complex subunit 26; MKNK1, MAPK interacting serine/threonine kinase 1; MLLT1, MLLT1 super elongation complex subunit; MMP9, matrix
metallopeptidase 9; MYBPC2, myosin-binding protein C2; NAIP, NLR family apoptosis inhibitory protein; NCOA3, nuclear receptor coactivator 3;
NEDD4, NEDD4 E3 ubiquitin protein ligase; NFKBIA, NFKB inhibitor alpha; NFKBIB, NFKB inhibitor beta; NLRC4, NLR family CARD domain-
containing 4; NPS, Neutrophilic-Suppressive; ONECUT1, one cut homeobox 1; ORM1, orosomucoid 1; OSM, oncostatin M; PCLAF, PCNA clamp-
associated factor; PFKFB3, 6-phosphofructo-2-kinase/fructose-2,6-biphosphatase 3; PGD, phosphogluconate dehydrogenase; PIK3R1,
phosphoinositide-3-kinase regulatory subunit 1; PITX3, paired-like homeodomain 3; PLK3, polo-like kinase 3; POT1, protection of telomeres 1;
PPARG, peroxisome proliferator activated receptor gamma; PRNP, prion protein (Kanno blood group); PSEN1, presenilin 1; RAC1, Rac family small
GTPase 1; REL, REL proto-oncogene, NF-kB subunit; RELA, RELA proto-oncogene, NF-kB subunit; RFX2, regulatory factor X2; RNASE1,
ribonuclease A family member 1, pancreatic; S100A9, S100 calcium-binding protein A9; S100P, S100 calcium-binding protein P; SAMSN1, SAM
domain, SH3 domain and nuclear localization signals 1; SLPI, secretory leukocyte peptidase inhibitor; SMAD3, SMAD family member 3;
SOCS3, suppressor of cytokine signaling 3; SOS1, SOS Ras/Rac guanine nucleotide exchange factor 1; SP1, Sp1 transcription factor; SPP1, secreted
phosphoprotein 1; STAT3, signal transducer and activator of transcription 3; SUMO2, small ubiquitin-like modifier 2; TDRD9, tudor domain-
containing 9; TGM2, transglutaminase 2; TLR5, toll-like receptor 5; TP53, tumor protein p53; TP63, tumor protein p63; TUBB, tubulin beta class I;
TUBB2A, tubulin beta 2A class IIa; UBE2D1, ubiquitin-conjugating enzyme E2 D1; USF2, upstream transcription factor 2, c-fos interacting;
XRCC6, X-ray repair cross complementing 6; YWHAQ, tyrosine 3-monooxygenase/tryptophan 5-monooxygenase activation protein theta.
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termed Interferon (IFN), Adaptive (ADA), and Innate Host Defense

(IHD) (35). Generally, these endotypes were also identified in early

ICU patients, patients with severe COVID-19 disease, and large sepsis

datasets from other studies (35, 63). The extent to which these

endotypes are stable throughout the course of sepsis has not been

studied. However, a recent study has linked neutrophils to immune

suppression and disease (87), consistent with the observation that the

NPS endotype has very high mortality.

The specific gene sets identified in other studies (32, 34, 35, 86)

as discriminating between sets of endotypes vary, likely reflecting

(in part) the patient inclusion criteria and methods used. However,

these different endotype classification systems share trends, in that
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endotypes that capture processes related to higher levels of

inflammation and/or lower adaptive immune function are

associated with worse prognoses.

Embracing the concept of sepsis endotypes will warrant a

rethinking of patient triage and treatment by the healthcare

community; to facilitate this mindset change, researchers are now

developing endotype-specific diagnostics. Regarding treatment, a

computational approach (Figure 5) was recently used to predict

drugs that are effective for subsets of endotype-specific differentially

expressed genes (63). This comprises mapping these genes to PPI

networks, identifying the hubs (genes with the largest numbers of

interconnections in the network and thus considered to have
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maximal involvement in the biological processes described by the

network), and then identifying existing approved (potentially

repurposed) drugs that target these genes (see below). Another

method is to use the Drug Signatures Database (DSigDB) (88), a

repository of medications approved by the United States Food and

Drugs Administration (FDA) and their experimentally validated

interactions (e.g., antagonism) with genes/proteins. This can be

used to assess the enrichment of particular drug signatures among

endotype-specific differentially expressed genes. These methods

enabled identification, for example, of dexamethasone as a

potential drug for treating the NPS endotype (63). Indeed,

dexamethasone has shown efficacy in assisting some patients with

early severe sepsis (85, 89) and yet is somewhat counterintuitive,

especially since it is considered anti-inflammatory and many other

anti-inflammatory regimens have failed in sepsis (77). This provides

an excellent example of how omics might realign patients with their

appropriate therapy. Intriguingly, recent studies indicated that, in

COVID-19 sepsis, dexamethasone triggers a defined subset of

monocytes and reverses aberrant monocyte regulation (75); taken

together with the observation that dexamethasone only works in a

subset of patients (85), this might indicate that this monocyte subset

is favored in the NPS endotype.

Why sepsis patients separate into different endotypes is not well

understood. Potential causes could be individual factors such as

host genetics, microbiome, age, co-morbidities, infecting pathogen,

and treatments received (17, 19). It could also reflect the disease

stage, since not all patients present to hospital at the same stage (19)

(as explored below). Regardless, the presence of endotypes

highlights the potential for and importance of personalized

treatments for sepsis and is one of the areas of highest potential

for future sepsis studies. We see a future where personalized

treatments will replace the current inflexible “one-size-fits-all”

approach of sepsis bundles and years of failed clinical trials (77).
Deciphering sepsis progression using
systems immunology

The European Group on Immunology of Sepsis has identified “the

dynamics of sepsis-associated immunological alterations” (90) as one

of the major gaps in sepsis research. Indeed, time after illness onset is

important in interpreting the underlying genomic response (91).

Sepsis immune dysfunction is highly complex and varies

substantially over time (8, 91, 92), which can further contribute to

already-existing heterogeneity. Since patients arrive at hospital at

varying stages in their disease progression, analyzing a single

timepoint (e.g., at hospital or ICU admission) is valuable for

determining predictive biomarkers/diagnostics and endotypes for

potential early immune-modulatory drug treatments but cannot

address this heterogeneity over time. Instead, analyzing trends is

likely to be more informative (8, 64, 93). Sampling at multiple

timepoints during and after hospitalization is necessary to elucidate

disease trajectories, i.e., analyzing how gene expression changes within

individual patients due to disease progression enables a mechanistic

understanding of why some die while others do not. Analysis of

within-patient temporal trends also helps to overcome the obstacle of
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inter-individual heterogeneity, since patients act as their own baseline

and comparator at different timepoints, thereby accounting for

inherent genetic, infectious trigger, microbiome, co-morbidity, and

demographic differences. In addition, understanding the dynamics of

the immune response in sepsis, which likely evolves over time, can also

inform future personalized treatment with different medications

required for targeting different time-dependent responses associated

with progression, lethality, and post-sepsis complications (64).

Eight early systems-level transcriptomic (microarray) studies

were summarized previously (91). Identified trends during sepsis

progression included increased suppression of adaptive immune

genes, disrupted cell cycle control, increased neutrophil-specific

proteases, and increases in selected inflammatory cytokines. An

examination of the findings from endotype studies (31, 32, 34, 35)

have implicated particular endotypes as having more dominant

individual characterist ics than others . More detai led

transcriptomic studies have examined the progression of COVID-

19-induced sepsis but generally have had small sample sizes (<15

patients) and variable classification of disease phases (94–96). These

showed consistent elevations of inflammatory mediators,

dysregulated coagulation, and decreases in adaptive immunity

during the most severe stages of COVID-19, followed by reversal

of these pathological processes during recovery stages.

A recent longitudinal investigation (8) of 42 ICU patients with

sepsis (20 with and 22 without COVID-19) characterized blood

transcriptomes by RNA-Seq at ICU admission and approximately 1

week later. All patients demonstrated common underlying immune

dysfunction, with upregulation of immune processes such as IL-1

signaling and interleukin-6/Janus kinase (JAK)/signal transducer

and activator of transcription-3 (STAT3) signaling throughout the

disease course. Interestingly, at ICU admission, COVID-19 patients

had 1,215 differentially expressed genes compared with non-

COVID-19 sepsis patients, primarily supportive of a robust

antiviral response (8). However, after a week in the ICU, the

number of differentially expressed genes dropped to just nine,

even after correcting for cellular proportions, making these two

disease groups transcriptionally almost indistinguishable. Only

through such a longitudinal systems immunology approach could

this convergence be observed, supporting the idea that severe

COVID-19 is a form of sepsis and that immune dysregulation,

and not the pathogen, is the main issue (Figure 6A).

A subsequent analysis of these patients observed major

differences in temporal patterns of gene expression in patients

who died as opposed to those who survived (64). Non-survivors

had many more “persistently altered” genes (i.e., 4,289 genes that

remained up- or downregulated at both timepoints) when

compared with survivors (1,186 genes); this was also observed

using two publicly available datasets of COVID-19 and sepsis

patients. Persistently downregulated genes included those

involved in T-cell signaling, whereas persistent upregulation

occurred in selected innate immune and metabolic pathways.

This strongly suggests that immune dysfunction was resolved in

survivors but not in patients who died (Figure 6B), i.e., persistent

immune dysfunction predicts mortality. This was generally

consistent with the concept of a 10-gene differential expression

signature that was correlated with eventual mortality (AUC 75% in
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all-cause sepsis and 86% in COVID-19 sepsis) (35, 63). Using

systems biology methods, a broad variety of immunomodulatory

drug candidates, e.g., corticosteroids, were predicted that could

potentially target this persistent immune dysfunction (64).

Disease progression was also investigated in a larger cohort of

128 hospitalized COVID-19 patients (300 blood samples subjected

to RNA-Seq analysis) (97). Assessing severity according to the

SOFA score, ICU admission, and general trajectories of severity

(e.g., downward trend in SOFA score), six disease phases were

proposed for COVID-19 patients. Each phase was distinct in both

enriched differentially expressed pathways and a variety of clinical
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metadata, suggesting that the phases capture distinct stages of

COVID-19 illness. Overall, many genes were differentially

expressed between the successive Mild, Moderate, Severe, Critical,

Recovery, and Discharge phases, with each phase characterized by

particular pathways (Figure 6C).

Substantial further research is necessary to elucidate the

complexities of sepsis progression (especially all-cause sepsis).

However, the exceptional remodeling of immune functions over

time was very prominent in the aforementioned study. Notably, a

variety of immune pathways were highly dysregulated, including

adaptive immune pathways being highly enriched in downregulated
FIGURE 6

Longitudinal systems immunology analyses highlight mechanistic temporal changes in sepsis and COVID-19. (A) Schematic representing findings
uncovered by systems immunology approaches that COVID-19 patients initially had a strong antiviral response at Day 1 of intensive care unit (ICU)
admission but became transcriptionally similar to non-COVID-19 sepsis patients at Day 7 in the ICU. (B) Eventual mortality of sepsis patients in the
ICU was associated with persistent immune dysfunction in terms of both uncontrolled inflammation and adaptive immunity suppression (orange
line). (C) Distinct pathways are activated at six different disease phases of COVID-19. Line graphs representing trends of pathway enrichment with
Mild, Moderate, Severe, Critical, Recovery, and Discharge phases. Points are the median log2 fold change of the set of differentially expressed genes
of each pathway. Red points denote significant enrichment of pathway at that phase.
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genes from the Moderate to Recovery phases. Other adaptive

immune pathways were also downregulated, starting at the

Critical phase. Traditionally, innate immune pathways, including

IL-1 signaling and IL-4/13 signaling, were often enriched only in the

most severe disease phases. Conversely, genes associated with

neutrophil degranulation were significantly upregulated at all

phases, suggesting underlying processes that were activated

throughout the entire disease timeline as well as discharge.

These observed gene expression differences allowed the

identification of disease stage-specific repurposed drugs (following

the method illustrated in Figure 5 for the NPS endotype, which is

prominent in the Critical phase of sepsis), which could differentially

target particular disease stages, potentially facilitating time-

dependent sepsis treatment (97). In the initial stages of sepsis, the

highest hit was the antihistamine cyproheptadine, which is

currently being investigated in COVID-19 (clinicaltrials.gov

NCT04820751) due to its function as an anti-serotonergic,

with the possibility of improving organ dysfunction. At the

Critical stage of sepsis, the top hit was metformin, which

influences energy metabolism; observational studies have linked

metformin use to decreased COVID-19 severity (98).
Understanding post-sepsis syndrome
and long COVID

In addition to its high case-fatality rate, sepsis often has major

downstream consequences for its survivors (10). In the post-

discharge period, sepsis patients are frequently readmitted to

hospital for other recurrent infections, such as pneumonia or

urinary tract infections (99), consistent with an impaired immune

system that predisposes survivors to infections. Post-sepsis immune

dysfunction is likely a continuation or sequelae of the dysregulated

immune response during the septic event (30). Indeed, at least half

of all survivors have long-term consequences, and one-third die

within 1 year after discharge (100). These dire prognoses are a result

of “post-sepsis syndrome”, which has not been adequately

researched (10, 100) as most studies and clinical trials focus on

acute sepsis outcomes such as organ failure and in-hospital

mortality. However, these long-term consequences gained

renewed interest in the COVID-19 pandemic due to the

emergence of the highly related syndrome “long COVID”, which

affects up to 50–70% of COVID-19 patients (101).
Post-sepsis syndrome and long COVID

Post-sepsis syndrome is characterized by frequent hospital

readmissions and increased mortality due to persistent immune

dysfunction, cardiovascular disease, functional disability, psychiatric

changes, and cognitive impairment, causing poor quality of life and

increasing the burden on healthcare systems (10, 99, 100). Prior sepsis

is the most common reason for 30-day unplanned rehospitalization,

with staggering healthcare costs (>US$10,000 per patient) exceeding

diseases such as acute myocardial infarction, chronic obstructive
Frontiers in Science 15
pulmonary disease, heart failure, and pneumonia; the indirect costs

are estimated at billions of dollars annually (14, 102). Sepsis survivors

have higher mortality rates than non-septic critical illness survivors

(10). Furthermore, long-term sequelae cannot be attributed solely to

poor health status prior to sepsis in >20% of sepsis survivors (99,

100). Post-sepsis issues are poorly understood and need to be

investigated (30); encouragingly, the upsurge of long COVID has

increased research dramatically. Intriguingly, latent class analysis

identified clinical subphenotypes of sepsis at ICU discharge with

distinct clinical biomarker profiles, suggesting persistent dysfunction

of specific biological pathways (103).

Certain analyses of gene expression have been performed to

compare patients with or without persistent post-COVID

symptoms. A profiled cohort of 69 patients demonstrated evidence

of persistent transcriptomic dysregulation up to 24 weeks post

discharge in patients with persistent symptoms but unfortunately

did not profile patients while hospitalized (104). A larger cohort of 165

patients was used to assess differences in samples collected in-hospital

between patients who did or did not acquire long COVID symptoms

at a median of 1 year after discharge (105). They observed a

relationship between specific symptoms, immunoglobulin-related

genes, and plasma cells in hospital but did not investigate gene

expression at follow-up for comparison. The most comprehensive

analysis to date has been a single-cell RNA-Seq cohort profiling

peripheral blood mononuclear cells of 209 patients at clinical

diagnosis, acute disease, and 2–3 months post disease onset (45).

This study found four endotypes related to T-cell and monocyte gene

expression patterns, highlighting the impact of heterogeneity in long

COVID. Pathway analysis of the four patient endotypes revealed

coordinated expression patterns across innate and adaptive immune

cell types, with polarization reminiscent of the canonical type 1 and

type 2 immune responses. Thus, the type 1 group was enriched in

Th1-like signatures in CD4+ T-cells, M1-like pro-inflammatory

signatures in monocytes, cytotoxic effector signatures in CD8+ T-

cells and natural killer (NK) cells, andmemory signatures in B cells. In

contrast, the type 2 group was enriched in Th2-like CD4+ T-cell

signatures, M2-like (anti-inflammatory) monocyte signatures, and a

plasma B cell signature. The “intermediate” group exhibited a

transitional immune status between types 1 and 2. The “naïve”

group exhibited naive-like T and B cell signatures and resting NK

cell signatures. Thus, major differences in single-cell immune

responses that were associated with divergent acute severity and

post-acute sequelae of COVID-19 (long COVID) were evident (45).

A bulk RNA-Seq whole-blood study (106) compared 10 patients

with long COVID to 14 asymptomatic patients, examining both

hospital and follow-up samples by RNA-Seq, to determine

underlying differences between patients who developed long

COVID and those without persistent post-COVID symptoms.

Trajectory analysis (from hospital to follow up) was performed to

account for individual factors, including genetics, demographics, diet,

microbiome, and age. This analysis showed that massive temporal

gene expression changes occurred in patients without post-COVID

symptoms that did not occur in those who had symptoms.

Specifically, these temporally differentially expressed genes (from

hospital to follow up) reflected a decrease over time in clotting

pathways and inflammation and an increase over time in activity of
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adaptive immunity pathways. Patients were separated into three

endotypes with different mechanisms. The “Resolved” endotype

(lowest rate of post-COVID symptoms) had strong inflammatory

and hemostatic responses in hospital that resolved after discharge.

Conversely, in the “Suppressive” and “Unresolved” endotypes, which

had higher rates of patients with post-COVID symptoms, the

inflammatory/hemostatic responses were persistently dampened

and activated, respectively, reflecting deficient modulation of these

perturbations. Endotypes could be accurately defined by specific gene

expression signatures (involving six to seven genes) in the blood.
Epigenetic mechanisms in post-sepsis
syndrome and long COVID

These observed gene expressions captured by transcriptomic

studies after sepsis may be a consequence of long-term changes

induced by epigenetics. Epigenetic modifications are often persistent

regulatory mechanisms that control gene expression but are not

related to changes in DNA sequence and include processes such as

DNA methylation and histone modifications. Epigenetic

modifications are not genetically determined per se but are thought

to be environmentally induced in response to nutrients, pollution,

toxicants, disease progression, aging, and inflammation. The long

duration of sepsis in its first manifestation in many patients, as well as

the longer-term persistence of its consequences, have led researchers

to hypothesize that sepsis patients undergo epigenetic processes that

influence post-sepsis events. Binnie et al. (107) recently reviewed

many studies confirming this and revealing that epigenetic

mechanisms are probably central to the pathogenesis of sepsis,

influencing the early inflammatory response, sepsis-associated

immune suppression, and lung injury. Epigenetic changes often

influence transcription of the genes with which they are associated,

enabling the possibility of mapping such changes on to protein

interaction networks. Using this approach (64), 34 genes were

recently shown to overlap between persistent genes in non-

survivors, differentially methylated genes of sepsis patients

identified in a previous study (108), and those of COVID-19

patients (109). These overlapping genes were mostly immune-

related genes, including CD177, CD3D, and S100P. This finding

suggests that epigenetic switches, known to be involved in sepsis

(110), might be responsible for persistent dysregulation of genes. In

other recent studies, epigenetic alterations in TMPRSS2, interferon-

related genes, FURIN, and ADAM17 genes were important

determinants of COVID-19 severity (111).

Such studies should be extended to post-sepsis/long COVID

syndromes to identify potential epigenetic modification regulating

the enduring immune dysfunction that appears to accompany these

syndromes. Critically, a deeper understanding of epigenetic regulation

has the potential to generate biomarkers for the aforementioned stages

of sepsis and new or repurposed therapeutic options. Intriguing

mouse studies have demonstrated that the DNA methyltransferase

inhibitors azacitidine (112) and decitabine (112, 113), as well as the

histone deacetylase inhibitors trichostatin A and sodium butyrate

(114), can reverse some of the genotypic and phenotypic features of

sepsis, indicating that epigenetic therapies may have potential in the
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treatment of sepsis, its associated organ failures, and possibly its

downstream sequelae.
Sepsis caused most pandemic deaths
and requires continued research

Early in the COVID-19 pandemic, it was recognized that most

patients hospitalized for severe COVID-19 disease, and especially those

who required respiratory support or died, had viral sepsis. This has

been supported by studies of patients’ clinical records and systems

immunology showing converging immune mechanisms over time

between COVID-19 sepsis and non-COVID-19 (e.g., bacterial)

sepsis (8). Consistent with this, both sepsis types are associated with

signatures of cellular reprogramming, organ dysfunction, mortality,

and endotypes (63). Thus, it could be argued that although efforts to

identify the SARS-CoV-2 virus were critical to developing prophylactic

measures (e.g., vaccines), the most severe manifestations of this disease

were due to sepsis. Indeed, while the SARS-CoV-2 virus caused nearly

700 million infections, it was the 6.9 million deaths, primarily due to

sepsis, that drove the strong public health responses, including

isolation measures, and the consequent reduction in commerce.

Early suggestions that patients were acquiring secondary

bacterial infections that were driving sepsis did not hold up to

scrutiny (115). Rather, the virus itself seems to drive sepsis in a

subset of individuals. We do not know the mechanisms behind

virally driven sepsis. However, since conventional culture methods

only identify bacteria as the cause of ~50% of sepsis cases at

most (51), viral sepsis could be much more prevalent than

previously supposed, as implied by metagenomic sequencing

(116). Notably, the IFN endotype of sepsis was more strongly

associated with COVID-19 sepsis than all-cause sepsis (63).

It is worth asking, then, how common sepsis is as a driver in

pandemics generally? Influenza A virus caused three pandemics in

the 20th century due to the Spanish flu (H1N1; 1918–20), Asian flu

(H2N2; 1957–9), and Hong Kong flu (H3N2; 1968–9), killing many

millions of people. It has been suggested that severe sepsis occurred in

the more critically ill patients and was caused either directly by the

influenza viruses or indirectly by secondary bacterial infections

induced by weakened defenses due to influenza (117, 118). Indeed,

influenza, an endemic disease that is a substantial cause of mortality,

is associated with acute respiratory distress syndrome (ARDS), a

manifestation that often accompanies sepsis (119), while post-acute

complications of influenza resemble post-sepsis syndrome and long

COVID (120). Further back in time, the bubonic plague killed 12–15

million people from 1855 to 1960 and even more during the Middle

Ages. The septicemic form of this disease (typified by systemic

infection caused by bacteremia) as well as its pneumonic form have

a case-fatality ratio of 30–100% if left untreated. Thus, there is a

strong likelihood that bubonic plague mortality is again due to sepsis.

Overall, we conclude that, regardless of the causative agent, sepsis

has been a major factor in past and recent pandemics and will likely be

a strong factor in the most severe forms of disease in future pandemics.

Thus, novel diagnostic tools and drugs are urgently needed, not only to

reduce the current, enormous global burden of sepsis, but also to avoid

the medical calamity seen in the COVID-19 pandemic.
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Such “pathogen-agnostic” measures could efficiently treat severe

disease outcomes even before a pandemic pathogen has been identified

and pathogen-specific diagnostics and therapies have been developed.

This transformational concept should be at the heart of plans to

mitigate against future pandemics; it should be a priority for the

research community, healthcare systems, and ultimately governments

when providing funding support. In addition to these insights,

collaborations between scientists, physicians, and other healthcare

providers, and most importantly patients and their families, should

be initiated in order to deliver stakeholder-focused solutions. Pandemic

preparedness is at the heart of many broad plans, including from the

European Union (121), World Bank (122), and WHO (123), but

concerningly none of these mention sepsis. Given the current

limitations involved in studying sepsis (heterogeneity and the

consequent requirement for precision approaches, lack of suitable

animal models, and modest investment), it is specifically

recommended that relevant stakeholders should come together

(possibly under the banner of organizations such as the Surviving

Sepsis campaign or the Global Sepsis Alliance) to establish an aggressive

and fundable program to address these deficiencies. Recently, the 2030

Global Agenda for Sepsis (124) was launched as a multistakeholder

strategic vision aimed at alleviating the significant human, societal,

healthcare, and economic burden of sepsis. This multi-year strategic

vision aims to reduce the global incidence of sepsis by at least 25%,

improve survival rates by over 20%, and reduce the median costs per

sepsis patient by 20% from 2017–2020 baselines. Its five strategic pillars

include research and innovation specifically mentioning precision

medicine to address heterogeneity, together with political leadership

and multilateral cooperation, health system readiness, a “whole-of-

society response”, and sepsis in pandemics and other emergencies.

Given the unique and data-driven insights offered by systems

immunology, the approaches described here should form the

foundation for research and innovation.
Conclusion

Sepsis is defined as a dysregulated, life-threatening response to

infection that leads to (multi)organ dysfunction and failure. It has

been poorly understood but causes 19.7% of all deaths and, more

recently, caused almost all deaths during the COVID-19 pandemic.

Systems immunology studies involving bioinformatic analysis (AI,

network biology, clustering, etc.) of gene expression and other omics

datasets derived from patients’ cells are starting to deliver new early

diagnostics, clarify this complex disease as a series of mechanistically

distinct endotypes, and provide a more profound understanding of the

dynamics of sepsis both during and after hospitalization (i.e., post-sepsis

syndrome and long COVID). New biomarkers and targeted treatments

for sepsis are not only vital to reduce the current global toll of sepsis but

also to better protect our populations against future pandemics.

A recent evaluation of an ML model of treatment outcomes in

another complex disorder, schizophrenia, concluded that clinical

prediction models in this setting are highly context-dependent and

may have limited generalizability beyond the datasets on which they

are based (125). This is likely also true for sepsis, and we propose here

that these issues can be overcome in sepsis research by (i) capturing
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important heterogeneity through phenotyping, (ii) identifying trial/

study-level characteristics that relate to patient outcomes (addressable

using ML or Bayesian approaches), and (iii) utilizing longitudinal

validation methods that reduce challenges related to heterogeneity

and context while identifying temporal trends. Importantly, the

aforementioned schizophrenia study (125) was limited in that it did

not consider multiomics approaches. We submit that evidence of the

robust performance of sepsis models developed using multiple omics

and systems immunology methods strongly supports their

generalizability and potential to drive substantial and urgent

improvements in the care of this globally concerning condition.
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