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Abstract

Vertical farming is considered to be a key enabler for transforming agrifood

systems, especially in or nearby urbanized areas. Vertical farming systems (VFS)

are advanced indoor cropping systems that allow for highly intensified and

standardized plant production. The close control of environmental parameters

makes crop production stable and repeatable, ensuring year-round uniform

product quality and quantity irrespective of location. However, due to

continuous changes in plant physiology and development, as well as frequent

changes in electricity prices, the optimum conditions for crop production and its

associated costs can change within days or evenminutes. This makes it beneficial

to dynamically adjust setpoints for light (intensity, spectrum, pattern, and

daylength), CO2, temperature, humidity, air flow, and water and nutrient

availability. In this review, we highlight the beneficial effects that dynamic

growth conditions can have on key plant processes, including improvements in
photosynthetic gas exchange, transpiration, organ growth, development, light

Abbreviations: B, blue light (400–500 nm); DIF, difference between day and night temperature (°C); DLI,

daily light integral (mol photons m−2 d−1); EC, electrical conductivity (dS m−1); EOP, end of production; FR,

far-red light (700–800 nm); G, green light (500–600 nm); LED, light-emitting diode; LIDAR, light detection

and ranging; Pfr, far-red-absorbing (active) form of phytochrome; PPFD, photosynthetic photon flux density

(mmol photons m−2 s−1; 400–700 nm); Pr, red-absorbing (inactive) form of phytochrome; R, red light (600–

700 nm); ToF, time of flight; tD, time required to detect a change in plant process (min); VFS, vertical

farming system.
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interception, flowering, and product quality. Our novel findings based on

modeling and experimentation demonstrate that a dynamic daily light intensity

pattern that responds to frequent changes in electricity prices can save costs

without reducing biomass. Further, we argue that a smart, dynamic VFS climate

management requires feedback mechanisms: several mobile and immobile

sensors could work in combination to continuously monitor the crop,

generating data that feeds into crop growth models, which, in turn, generate

climate setpoints. In addition, we posit that breeding for the VFS environment is

at a very early stage and highlight traits for breeding for this specialized

environment. We envision a continuous feedback loop between dynamic crop

management, crop monitoring, and trait selection for genotypes that are

specialized for these conditions.
KEYWORDS

controlled environment agriculture, electricity costs, flowering, urban farming,
photosynthesis, plant breeding, product quality, sensors
Key points
• Vertical farming systems (VFS) offer innovative ways to
cultivate crops in controlled environments and may help
address challenges in local food security and sustainability.

• VFS are often operated using constant environmental
conditions, but diurnal and developmental changes in
plant physiology, as well as diurnal changes in electricity
prices, call for dynamic environmental control.

• VFS are sensitive to electricity prices, but electricity
consumption can be adjusted to save costs through
variable light intensity without compromising
plant growth.

• Several end-of-production treatments for crops grown in
VFS allow for optimizing product quality—including
extended shelf life and increased concentrations of health-
promoting metabolites—while avoiding growth penalty.

• The implementation of integrated plant monitoring and
modeling in cultivation systems is crucial for achieving
dynamic control of climate conditions.

• More focus should be given to breeding crops that are
specific to controlled environments, as this will help
address a bottleneck in a wider adoption of VFS.
Introduction

Vertical farming systems (VFS) are advanced indoor cropping

systems that allow for intensified and standardized production of

fresh and nutritious vegetables, herbs, microgreens, and fruits in

close proximity to customers (1, 2). Crop production in VFS relies

on controlled environments: light (intensity, spectrum, profile, and

daylength), carbon dioxide (CO2) concentration, temperature, air
02
humidity, air flow, plant density, and water and nutrient availability

are tightly regulated. Crop yields can be strongly increased through

this control; for example, in experiments and simulations, yields of

wheat (Triticum aestivum) and rice (Oryza sativa) were found to be

10–60 times greater per unit production area compared to world

average annual yields (3, 4). However, this increase in productivity

requires much greater inputs than other cropping systems,

especially in energy and electronics. This greater demand for

inputs is amplified by the ability to stack layers of production

area, which additionally multiplies VFS outputs per unit ground

area (3). Given that food production must increase 25−70% by the

year 2050 (5)—a problem exacerbated by global development of

mega-cities, growing climate uncertainty, and geopolitical

instability—VFS is seen to contribute to achieving local food

security. In addition, higher quality food can be grown in VFS,

potentially improving nutritional value and food safety and

reducing yield losses (6–8). In a more populated world,

production in VFS may be accomplished with less land, water,

and nutrient inputs and will benefit from a continued increase in

the share of renewable energy (9). However, realizing this vision is

currently difficult due to the high investment, electricity, and

operational costs of VFS, as well as a lack of knowledge of sets of

environmental conditions that optimize crop production and

product quality.

Maintaining a constant environment in VFS is often considered

an advantage over other cropping systems as it ensures year-round,

on-demand, and uniform product quality and quantity, regardless

of location or season. Also, it removes uncertainty over “Genotype ×

Environment” interactions that can slow down crop selection in

plant breeding. Environmental constancy means reproducibility,

and—at least theoretically—total control over every aspect of plant

production. Additionally, unlike in the open field, growing

conditions can be researched experimentally, and breeding for
frontiersin.org
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generally applicable, reproducible growing conditions can take

place in the same environment as production, speeding up

implementation and replication of growing conditions. However,

the genotype and the developmental stage strongly dictate VFS

demands for electricity, CO2, water, and nutrients and can also

change diurnally. Since electricity is traded in day-ahead markets,

prices tend to be driven by demand, and the lack of large-scale

storability increases volatility of electricity prices much more than

those of other commodities. In many electricity markets, prices

change within a quarter of an hour. Consequently, the dynamics in

electricity prices as well as in plant physiology and development

mean that the relevant timescales for VFS environmental changes

are in the range of several minutes to every few days.

Implementing more dynamic environmental control could

positively impact crop growth, crop yield, energy use efficiency,

and cost-effectiveness of VFS. In this review, we provide examples

that highlight how dynamic climate control strategies influence

plant growth and development that could be used to transform

VFS-wide energy use efficiency, energy costs, and product quality.

We then outline crucial developments for improved monitoring of

plant physiology and consider how the breeding of genotypes

specifically fit for VFS may enable next-generation crop

production in VFS.
Plant growth and physiology under a
dynamic environment

Optimizing photosynthesis and growth
through dynamic climate settings

Plants constantly exchange gases with their environment. They

take up CO2 and emit O2 when illuminated (photosynthesis), a

process which is reversed in darkness (mitochondrial respiration).

Additionally, plants take up water and nutrients through their roots

and lose water vapor through their leaves (transpiration), during both

the day and night. Photosynthetic gas exchange is environment-

driven as it depends on light intensity, light spectrum, CO2

concentration, air humidity, temperature, and air movement,

among other factors. While growers manage to fine-tune

environmental parameters to optimize plant growth, gas exchange

can sometimes vary even under perfectly stable environmental

conditions. Across a number of species, photosynthesis declined by

10−40% in single leaves and whole plants when monitored during the

day under constant growth conditions (10–13). Under the same

conditions, stomatal conductance (which affects transpiration and

photosynthesis) was found to vary by 30-60% (10–13). Together,

these changes in plant physiology under stable climate conditions

result in strong diurnal changes in light and water use efficiencies. A

strategy for these changes would be to apply a higher light intensity in

the first half of the photoperiod, when photosynthesis shows a higher

light use efficiency. However, experimental evidence that such a

strategy would improve whole-plant light use efficiency throughout

the production cycle is lacking.

Plant growth is strongly affected by the total amount of light

received, a response that is visible across species and treatments
Frontiers in Science 03
(Figure 1). At the same time, timing and patterns of light intensity

during the photoperiod seem to have limited effects, as shown in

tomato (Solanum lycopersicum), lettuce (Lactuca sativa), and

chrysanthemum (Chrysanthemum morifolium): plants had similar

growth and time-integrated photosynthesis rates when illuminated

constantly during the photoperiod and when illuminated under

controlled fluctuations in light intensity (15–17), or even when

partly illuminated during random moments in the night (night

breaks) instead of only during the day (18). This flexibility in plant

response to light intensity patterns provides opportunities to

address the high electricity demands of VFS, where electricity use

represents 20−40% of production costs (19, 20) and artificial

lighting consumes 60−85% of electricity (19, 21–23). These high

electricity demands make growers vulnerable to electricity price

volatility. Fortunately, this volatility also presents opportunities to

profit from periods of low electricity prices (24). Usually, the price

of electricity is known one day in advance, changes frequently

throughout the day, and tends to be lower during the night

(Figure 2A). Wholesale electricity prices can sometimes be

negative (Figure 2B) due to an overload of the electricity grid,

and at these times growers can earn money by using electricity (26).

As the share of wind- and solar-derived electricity increases,

electricity prices will probably become more volatile, increasing

the relevance of dynamic VFS electricity consumption.

To optimize costs under variable electricity prices, one can aim

to maintain the same total carbon fixation per day despite varying

light intensity. We attempted to model this by predicting the leaf

photosynthesis rate under dynamically changing light intensity

using leaf-level gas exchange models (27–29). An optimization

algorithm (Supplementary Data Sheet 1) altered light intensity

every hour over a 17 h photoperiod to minimize daily electricity

costs while maintaining diurnal leaf carbon gain (Figure 3). An extra

hour of lighting was added to a standard 16 h photoperiod (31) to

give the algorithm more freedom to distribute light over the

photoperiod, while keeping the same daily light integral (DLI) as

the constant light treatment. Using this smart lighting strategy,

electricity costs for lighting were reduced by 12%, while calculated

daily carbon gain was maintained (Figure 3). However, diurnal

variations in light intensity are known to induce physiological and

morphological (acclimation) responses (12, 32) that are difficult to

predict and hence were not accounted for in the optimization

algorithm. Also, the effectiveness of such algorithms to save

electricity costs in VFS remains to be tested, especially at the

whole-canopy level.

Then, we aimed to determine how strongly the growth of

“typical” VFS leafy herbs and vegetables—namely basil (Ocimum

basilicum), pak choi (Brassica rapa subsp. chinensis), rucola

(Diplotaxis tenuifolia), and spinach (Spinacia oleracea)—would be

affected by hourly alterations in light intensity (Figure 4; for details

on experimental procedures see Supplementary Data Sheet 2). We

found that, compared to a constant light intensity, marketable fresh

weight was unaffected in all genotypes (P>0.05 in all cases;

Figures 4B, D, F, H) under either a regularly alternating high/low

light intensity pattern (400/50 mmol m−2 s−1) or an irregularly

changing light intensity pattern (range: 50−500 mmol m−2 s−1;

Figure 4A); all three had the same DLI (12.96 mol m−2 d−1) and
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photoperiod (16 h). The irregular light intensity regime was

designed to mimic changes in lamp output based on diurnally

changing electricity prices (Figure 2). Further, we observed that, in

pak choi (Figure 4E) and rucola (Figure 4G), specific leaf area was

significantly increased under both dynamic light intensity patterns

compared to constant light, suggesting that these genotypes formed

thinner leaves—thus using leaf biomass more efficiently to capture

light—when grown under dynamic light. Similar results were

observed in tomato (16, 17) and in a meta-analysis across several

other species (33); it may be that thinner leaves allow plants to use

frequently changing light intensities more efficiently. Altogether,

growth under a dynamic light intensity pattern such as is realistic in

a VFS did not result in reduced growth, and some genotypes seemed
Frontiers in Science 04
to form thinner leaves when growing under dynamic light.

However, it should be kept in mind that it is very likely that

many combinations of light intensities (e.g., very large amplitudes

and darkness) and frequencies (e.g., long exposure to very low

light or darkness) exist that will substantially reduce growth, so

caution should be exercised when applying a dynamic light

intensity pattern.

Similar to lighting, air flow rates can be used to optimize leaf

boundary conductance, which strongly affects stomatal responses

to vapor pressure deficit, with greater responses under a higher

air flow rate (34). Efficiently using frequent electricity price

changes by adjusting light output (and potentially temperature,

CO2 concentration, and air flow rates) therefore seems like a
FIGURE 1

Plant biomass as a function of daily light integral (DLI), obtained using a meta-phenomics approach. Meta-analysis, based on 145 herbaceous species
in 113 experiments, grown at various photosynthetic photon flux densities (PPFD). Each species in each experiment was grown at two or more light
intensities while keeping other conditions similar. For each of these conditions, the DLI was calculated, which is the integral of PPFD over the
photoperiod. Plant biomass per experiment and species was scaled to 8 mol m−2 d−1 (dashed blue line). Blue dots indicate median value for each
decile of observations, grouped by their DLI. The purple line is the dose-response curve, fitted through all data. The blue-shaded area indicates the
range between the 25th and 75th percentile of the scaled biomass value. The green lines indicate the 10th and 90th percentile. PI, Plasticity index, the
ratio between the fitted scaled value at a DLI of 50 and 1 mol m−2 d−1; CI, Consistency index, percentage of species x experiment combinations
where the biomass was higher for the treatment with the highest light intensity than for the treatment with the lowest light intensity. For more
details on methodology, see (14).
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FIGURE 2

Day-ahead electricity prices in the Netherlands during 2022. (A) Daily prices at 3:00 and 19:00, to exemplify that electricity prices tend to be lower
in the night (off-peak demand) than during the day (peak demand). (B) hourly prices, spanning from 871 € MWh−1 to –222.36 € MWh−1. Data were
obtained from an online repository at ENTSO-E (25).
Frontiers in Science frontiersin.org05
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FIGURE 3

Distributing light intensity based on electricity cost can reduce costs in vertical farming systems (VFS). (A) Electricity price; (B) photosynthetic photon
flux density (PPFD); (C) net photosynthesis rate (A); (D) quantum efficiency of CO2 assimilation (FCO2); (E) stomatal conductance (gs), and (F) relative
cost of electricity over a 24h period. The blue line represents a reference scenario using constant light intensity during a 16 h photoperiod. The
green line represents an optimal scenario, where the electricity cost over a 24h period was minimized (relative to the reference scenario) whilst
maintaining the same daily net photosynthesis rate at the leaf level during a 17 h photoperiod. The dynamic leaf stomatal conductance and
photosynthesis model used was derived from Lawson and Vialet-Chabrand (30).
Frontiers in Science frontiersin.org06
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true opportunity for VFS, but this will require sophisticated plant

monitoring and modeling approaches (see section on “Monitoring

and prediction of plant physiology”).

In contrast to hourly changes in light intensity discussed above,

the theory that high-frequency light intensity fluctuations (pulsed

light whose intensity changes several times per second) may

increase photosynthetic light use efficiency (compared to constant

light of the same average intensity) has been debunked several times

(35–37). However, pulsing specific wavelengths for several seconds

at a time may have unique effects on plant morphology (see section

on “Vegetative growth and development”).

In addition to light, plants also have a remarkable ability to

acclimate to changes in temperature, enabling flexibility in VFS

climate control [within up to ±6°C of average temperature (38, 39)]

that may save energy (40). Fluctuations in temperature can lead to

asynchrony between carbon supply (source) by photosynthesis and

carbon demand (sink) by plant organs (41). Temporary storage and

remobilization of carbohydrates allow plants to buffer these changes

and act “as a battery” (39). A useful concept that integrates supply of

and demand for carbohydrates is the photothermal ratio, which is

the ratio between daily average light intensity and daily average

temperature (42). Dynamic changes in temperature had minimal to

no effects on biomass in tomato, probably due to dynamic

carbohydrate storage (39). When production exceeds demand,

such as when low temperature is combined with high light

intensity (i.e., a high photothermal ratio), non-structural

carbohydrates accumulate as starch and soluble sugars (43).

During periods of low carbon supply, such as during the night or

warm days with low light intensity (low photothermal ratio),

remobilization of carbohydrates can support metabolism (44).
FIGURE 4 (Continued)

Biomass is not reduced under dynamic light patterns compared to constant
intensity patterns. (B, D, F, H) Whole-shoot fresh weight in basil, pak choi, ru
area divided by g leaf dry weight. Plants were grown under the respective tr
details on experimental procedures, see Supplementary Data Sheet 2. Bars i
plants per repetition. Different lowercase letters indicate significant (P<0.05)
significant treatment effects.

Frontiers in Science 07
This storage and re-mobilization occurs across multiple

timescales: from one day, during which the photoperiod and

circadian clock affect carbohydrate concentrations (45), to several

days, when temperature and carbon status (source/sink balance)

both determine carbohydrate remobilization (46). Together, DLI

and temperature can be manipulated to use plants “as a battery”.
Vegetative growth and development

Plant growth in controlled environment agriculture is strongly

driven by the amount of light intercepted by the plant, which in turn

depends on projected leaf area. Therefore, optimizing vegetative

growth in VFS can be achieved by an efficient and rapid

establishment of leaf area, gradual increases in DLI over the

growing period (47), dynamic plant spacing (48, 49), or a

combination of these strategies. Especially when plants are young,

rapid development and expansion of leaves are desirable to

maximize light capture, photosynthesis, and growth, as light

interception drives whole-canopy photosynthesis (50).

A common model suggests that organ expansion is largely

controlled by the hydraulic status of the plant, where turgor

pressure drives expansion and cell wall strength confines it

(51, 52). Expansion may thus be maximized by dynamically

manipulating the hydraulic status of the plant through

environmental changes at either end of the rootzone-plant-

atmosphere continuum. Conversely to this increase in expansion,

a sudden increase in the electrical conductivity (EC) of the nutrient

solution decreases its water potential, in turn decreasing water

uptake (53), water potential in the elongation zone (54, 55), and
light in four vertical farming systems crop species. (A) Treatment light
cola, and spinach. (C, E, G, I) Specific leaf area, expressed in cm2 leaf
eatments for 30 (pak choi, rucola, spinach) and 40 days (basil). For more
n B-I depict average ± standard error of means, n=3, with 3−5 replicate
differences between treatments. Absence of letters indicates non-
FIGURE 4 (Continued)
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leaf elongation rates (56). By contrast, in rose (Rosa hybrida), a

sudden reduction in nutrient solution EC (1.0 to 0.1 dS m−1)

resulted in a transient ~30% increase in stem elongation rate (57).

Compared to a constant daily EC, a combination of low daytime

and high nighttime EC in tomato increased fruit yield and plant

biomass while reducing the incidence of blossom-end rot (58); see

also section on “Product quality”). The opposite day/night

combination caused negative effects (58), suggesting that high

nighttime and low daytime EC can be beneficial for growth and

yield. Altogether, a dynamic EC in the nutrient solution seems

effective in modulating rates of organ expansion, but contradictory

effects across studies and species suggest that this strategy requires

further investigation.

According to the hydraulic model, elongation could also be

regulated by changing the atmosphere around the plant: increasing

air humidity (leading to reduced transpiration rate) has been shown

to transiently increase elongation rate (59). Also, long-term

exposure to high air humidity can increase disease pressure (60)

and can cause stomata to be unresponsive to stimuli that usually

induce closure, causing rapid wilting after harvest (61).

Dynamically changing air humidity for several hours at a time

may induce transient increases in leaf elongation rate without these

negative side-effects, but whether this can improve yield over a

growing cycle is unknown. Controlling stomatal conductance may

be another method to modulate elongation: reducing blue light (B;

400−500 nm) intensity increases elongation rates—a response

partially attributed to stomatal closure and less negative water

potential in leaf expansion zones (62).

An unintended consequence of rapid leaf and canopy

development can sometimes be the formation of low-quality

leaves, which have a short shelf life after harvest or, in the case of

tipburn, may not be marketable at all. The development of high-

quality leaves, at least for leafy greens, is linked to slowly growing

small cells, reduced cell wall extensibility, and fewer stomata (63).

Modification of the lettuce cell wall, using transgenic lettuce with a

reduction in the cell-wall-loosening enzyme xyloglucan

endotransglucosylase/hydrolase (XTH), was associated with an

extended shelf life (64). Also, while more expanded leaves may

benefit light capture, excessively long stems may be undesirable in

VFS due to lodging.

Light quality is a crucial parameter driving plant growth and

physiological responses. Plants detect specific wavelengths via an

elaborate set of photoreceptors: UV resistance locus 8 (UVR8),

cryptochromes, phototropins, and phytochromes. Phytochromes

primarily mediate plant responses to red (R) and far-red (FR; 700

−800 nm) light and undergo reversible photoconversion between

an inactive (Pr) and active (Pfr) state. The Pr state is primarily

converted to Pfr by R, in turn limiting elongation growth. In

contrast, Pfr is inactivated by FR, allowing elongation growth to

occur. Elongation growth under low R:FR allows plants to

outcompete neighboring vegetation for light when growing at

high density (65). Plant responses to blue (B) light are

predominately mediated by cryptochromes and phototropins

(66, 67), and, to a lesser extent, phytochromes (68). In the shade,

the fraction of B decreases (69, 70), and plants under such

conditions display similar shade avoidance responses to those
Frontiers in Science 09
under low R:FR (71, 72). The combination of low R:FR with low

B enhances petiole elongation more strongly than their combined

action (73), highlighting the potential of applying these conditions

in VFS to promote growth. Given that a low R:FR has been

associated with accelerated flowering in some species (74–76),

while low B has not (75, 77), it may be interesting to use a low R:

FR ratio for expansion when flowering is desired and a low B

fraction for expansion when flowering is unwanted.

Red LEDs have a higher efficacy than blue LEDs in µmol of

photons produced per unit of electrical energy used (78). However,

growing plants under monochromatic R results in excessive

elongation (79) and decreased photosynthetic performance (80)

due to a lack of activation of UV-A/blue-light-sensitive

cryptochromes (80). Once cryptochrome photoreceptors are

activated, deactivation in the absence of B can take several

minutes (81), depending on temperature (82). Hence, it may be

possible to maintain active cryptochrome photoreceptors when

monochromatic R is interspersed with pulses of B, removing the

red light syndrome while promoting plant growth at a reduced

energy input compared to a constant application of B.

Applying short FR illumination periods at the end of the

photoperiod can induce stem elongation and leaf expansion (83–

85). Although effects tend to be weaker than applying FR for the

entire photoperiod, the effectiveness per photon is higher at the

end of the photoperiod (86). In lettuce, end-of-day (EOD) FR was

more effective when applied alone rather than together with other

wavelengths (85). The effectiveness of EOD FR may be because Pfr

reverts slowly to Pr in darkness, and the slowly declining fraction

of Pfr continues to suppress elongation in the dark until it has

largely reverted to Pr. In contrast, an end-of-day FR treatment

quickly and fully reverts Pfr to Pr, resulting in maximal elongation

in the dark.

It may also be possible to apply fewer photons to achieve

equivalent photomorphological effects using appropriately timed

light pulses. In seedlings of turnip (B. rapa) and kale (B. napus),

applying 5 s of FR (100 µmol m−2 s−1), followed by 5 s of darkness

(repeatedly applied for 96 h) resulted in similar hypocotyl

elongation as 5 s of FR and 10 s of darkness, indicating the same

photomorphological effect while using 33% less light (87). In

Arabidopsis thaliana, this effect was extended to an FR/dark ratio

of 5/40 with no difference in hypocotyl length (87).

While the effect of FR on plant morphology through the

shade avoidance syndrome might be desirable in VFS (i.e.,

initial elongation growth or early flowering), FR was shown to

impair plant resistance toward pathogens (88–90). Understanding

how plants detect and process light signals is key to designing

dynamic light settings that promote growth while preserving

disease resistance.

Apart from nutrient solution EC, humidity, and light spectrum,

dynamic changes in temperature—especially the difference between

day and night temperatures (DIF)—have been shown to be highly

correlated with plant growth, with a positive DIF (higher day than

night temperature) resulting in taller plants (91). Among many

other species, striking responses were observed in Easter lily (Lilium

longiflorum), where the same DIF resulted in similar heights at

anthesis, even when average daily temperatures differed by up to
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15°C (92). While DIF can be used to achieve a specific

morphological response (taller plants with positive DIF and

shorter plants with negative DIF), it could also be used to

maintain uniformity across seasons. It is probably more cost-

effective to maintain a lower average daily temperature in winter

and a higher average daily temperature in summer. Also, as LED

lamps emit heat as well as light, a positive DIF is probably more

energetically favorable than a constant daily temperature. The

average daily temperature influences plant height, with higher

temperatures resulting in taller plants in some species (93), but,

more importantly, higher average daily temperature increases rates

of flower and leaf development (94, 95). To achieve a short

phenotype in conditions where it may be too expensive to

decrease the temperature for long periods of time, it may be

beneficial to provide low temperatures for only ~2 h at a specific

time of day (91, 95). This concept is called drop or dip, and while it is

often reported to be most effective at the end of the night or the

beginning of the photoperiod (91), results are inconsistent (96–98).

Stepwise increases in DLI [from 140 to 300 mmol m−2 s−1

photosynthetic photon flux density (PPFD)] every three days

resulted in a 12% higher lettuce dry weight compared to a

constant DLI when using equal total light sums during the crop

cycle. This effect was attributed to the fact that plants could use high

light intensity better at a high leaf area index (47). However, this

study also revealed that, while the incident light use efficiency was

highest for an increasing light intensity, intercepted light use

efficiency was highest for a decreasing regime (47). Variable

spacing may additionally maximize light use efficiency without

inducing negative trade-offs that arise due to competition between

plants (48, 49, 99, 100).

Given that the CO2 concentration for maximum plant growth is

1000-1200 ppm (101), which is substantially above the current

atmospheric CO2 concentration [~420 ppm (102)], CO2 is typically

enriched in VFS. In most cases, VFS rely on compressed gas for CO2

enrichment, although cooperation with neighboring CO2-

producing industries is a possibility (103). Use of compressed gas

should make it feasible and possibly more cost-effective to

dynamically regulate CO2 concentration diurnally and throughout

development, but this option is under-researched (103). What has

been established is that nocturnal CO2 enrichment does not benefit

growth, while CO2 enrichment during the photoperiod does (104).

Also, fast changes in CO2 concentration (several changes per 10 min

periods) resulted in greater biomass reductions compared to

constant CO2 of the same average concentration (105, 106).

However, whether slower changes in CO2 during the photoperiod

or the crop cycle could benefit growth, cost savings, or product

quality is unknown.
Flowering and fruiting

Leafy vegetables are the primary crops grown in VFS and are

not grown to flower and fruit, as flowering decreases their value.

However, the production of fruiting crops, edible flowers, and seeds

(including speed breeding, a method to rapidly generate seeds for

breeders) is now becoming increasingly relevant in VFS (107, 108).
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Hence flower induction, pollination, and fruit development must

also be considered in the scope of dynamic VFS. For maximum

yield in a fruiting crop, dynamic environmental control needs to

strike a balance between vegetative growth on the one hand and

optimum flowering and fruit development on the other.

Strawberries (Fragaria × ananassa) are of the perpetual or the

seasonal flowering type, with perpetual types developing flowers and

fruits under any daylength and seasonal flowering types developing

flowers in long nights (short days). Young plants of either type are

typically propagated via runners from mother plants and are initially

grown under long-day conditions (typically a ≥16 h photoperiod).

During subsequent development, interactions between daylength and

temperature can influence vegetative growth and flower appearance.

In seasonal flowering strawberries, maintaining long days or

providing night-break lighting in short days can extend the

vegetative period (109, 110), thereby ensuring sufficient vegetative

growth to support fruit production. Under natural winter/spring

daylengths in a greenhouse, night-break lighting with a high FR

fraction stimulated leaf growth, boosting source strength for

subsequent fruit growth (111).

Flowering and flower bud development of cannabis (Cannabis

sativa), another short-day VFS crop, require photoperiods

of <12−14 h (112), which limits its potential production rate due

to a reduced DLI. Cannabis is typically grown under long-day

conditions for several weeks before transitioning to short-day

conditions that induce flowering. Chrysanthemum, another short-

day plant, flowered when short days were extended to long days by

pure B, as long as growth light contained no FR (113, 114), but

whether this works in cannabis is unknown.

Following floral induction, dynamic environmental manipulation

may improve pollination and fruit development. High air humidity

can reduce fruit set in tomato and sweet pepper (Capsicum

annuum), as it limits pollen release from the anthers (115, 116).

On the other hand, high humidity promotes pollen adhesion to the

stigmatic area and, thus, pollen germination (117). Because anthers

generally open 2−4 h after sunrise, fruit set may be improved by first

maintaining a low air humidity during the early morning and then

increasing air humidity to promote pollen germination and

fertilization during the day. Applying the opposite regime might

prevent fruit set and could thus be used to reduce seasonal

variations in fruit set.

High temperature increases the rate of bolting in lettuce (118),

and FR accelerates flowering in several crops (119). However, high

temperature also decreases fruit set (120). Therefore, it may be

beneficial to initially apply high temperature to accelerate flowering

and then to reduce it to ensure pollination and fruit set. In tomato,

the heat-sensitive period for pollen production occurs during pollen

mother cell meiosis, typically 1−2 weeks before flowering (121). In

sweet pepper, the susceptible period for fruit abortion ranged from a

few days before anthesis to two weeks after anthesis (122). During

these sensitive periods, temperature must remain within a narrow

range to safeguard yield (123).

During fruit growth, the addition of FR increases fruit sink

strength in tomato, resulting in a larger fraction of dry mass

partitioned to fruits and increased yield (124). Furthermore, FR

applications during this phase increase foraging by bumblebees
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and, thus, pollination (125). However, these yield improvements

from FR are achieved by reducing the partitioning of

carbohydrates to the leaves, which may restrict source strength

and plant growth. Also, in sweet pepper plants grown in a VFS-

like environment, FR caused fruit abortion (126). FR can thus

enhance fruit production, but its application should be

approached cautiously due to its effects on the sink-source

balance and its different effects in different crops.
Product quality

Quality is determined by a range of physiological and

biochemical characteristics, including visual appearance, texture,

taste, aroma, shelf life, nutritional compounds, and compounds

attributed to physiological disorders. Often, environmental

treatments aimed at improving quality tend to hinder yield: for

example, in red lettuce, a large fraction of B enhanced anthocyanin

concentrations and reduced fresh weight by 10−20% (127). As

antioxidants, anthocyanins are often considered healthy (128), but

they are also non-photosynthetic pigments that diminish the light

available to photosynthesis, thereby potentially reducing growth.

Such growth-quality trade-offs call for a dynamic strategy that first

maximizes plant growth and development while optimizing

product quality shortly before harvest through the use of “end-

of-production” (EOP) treatments (129, 130). For instance, for

leafy greens capable of anthocyanin production, reducing B

initially and increasing its fraction toward the end of the

production cycle may ensure sufficient yield and anthocyanin

formation at harvest.

Several physiological disorders—tipburn in cabbage

(B. oleracea) and lettuce leaves, calyx burn in strawberry fruit,

blackheart in celery (Apium graveolens), and blossom-end rot in

tomato and pepper fruits—are caused by a local deficiency of

calcium (131, 132). These disorders are characterized as (typically

dark) necrotic cells in developing organs. Calcium deficiencies

result from inadequate uptake, transport, and/or local supply of

calcium below concentrations required by a developing

organ (133, 134) and typically occur when growth rates of that

organ are high (135). Unlike other nutrients, calcium cannot be

redistributed between organs through transport in the phloem,

and its long-distance transport is restricted to the xylem. Low

organ transpiration rate means low xylem flow and low calcium

flux to the organ (131, 136). For example, tipburn typically occurs

in the small immature leaves within a head of lettuce, which

transpire less than mature leaves, due to the high humidity around

young leaves. High rates of air flow close to young leaves can

increase transpiration and reduce tipburn (137, 138), but high air

flow can stunt growth (138, 139). Optimal timing of high air flow,

to minimize tipburn without yield penalty, should be investigated.

Another method to reduce tipburn is to concomitantly increase

relative air humidity (> 95%) and decrease rootzone EC at

night (140–142). Root pressure is caused by an accumulation of

ions in the root xylem, inducing a more negative osmotic potential

and high influx of water into the xylem, subsequently driving water
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upward (143). Moreover, calcium transport to the fruit and leaves

are inversely related (133). To fulfill fruit calcium requirements, it

is important to prevent high rates of whole-plant transpiration

when fruits are developing. Leaf calcium-deficiency-related

disorders tend to appear at specific moments in the production

cycle, thus high temperature and high DLI could be provided

initially for rapid growth and be decreased before symptoms begin

to appear. It should also be noted that great genotypic variation

exists, such as tipburn severity in lettuce (144, 145), so breeding is

an additional instrument to minimize the symptoms caused by

calcium-deficiency-related disorders.

The sensory and nutritional quality of plant products is greatly

determined by the presence and concentrations of specific

metabolites. Targeted short-term stresses can increase metabolite

concentrations, since plants produce specialized metabolites to

defend themselves against (a-)biotic stress. For example, high

light intensity applied at EOP increased the concentrations of

phenolic compounds and ascorbic acid in lettuce and basil (129,

130, 146). Contents of desired metabolites, such as cannabinoids in

cannabis (147) or zeaxanthin, can be elevated by changing the light

spectrum or by regular application of high light intensity flashes

(148). Specific climate conditions can also be applied diurnally to

maximize the synthesis of specialized compounds: for example, the

composition of essential oils and other metabolites changed with

the time of day in basil and thyme (Thymus vulgaris) (149–151). In

addition to dynamic lighting strategies, controlled deficit irrigation

increased concentrations of total soluble solids in tomato,

enhancing flavor while marginally affecting yield (152).

In leafy vegetables that are grown under low light intensities,

accumulation of nitrate can occur (153, 154), which is a human

health risk (155). This problem may be tackled by applying light at

EOP: an intensity of 35 mmol m−2 s−1 PPFD for one night was

sufficient to reduce leaf nitrate concentrations in spinach by ~60%

(156). Another possibility may be to reduce nitrate concentration in

the nutrient solution shortly before harvest.

Shelf life is crucial for products derived from VFS, as it allows

for retention of quality on products displayed in shops and kept in

consumers’ homes. Shelf life is determined by physiological

processes that ultimately lead to deterioration of quality features,

including phytonutrient concentrations (157, 158). Compared to

outdoor production, VFS probably reduce the number of microbes

associated with spoilage on the surface of plant products, leading to

reduced spoilage and potentially longer shelf life (159). Shelf life can

be further improved by optimizing cultivation conditions, such that

product quality takes longer to drop to unacceptable levels at the

post-harvest stage. For example, increasing light intensity at EOP

resulted in an extended shelf life of lettuce, probably due to higher

carbohydrate and ascorbic acid contents (130): ascorbic acid

diminishes the brown edges at the cut site of fresh-cut

lettuce (130), while carbohydrates are substrates for respiration

and can function as precursors for several antioxidants (160).

Clarkson et al. (161) showed that harvesting at the end of the

photoperiod, when concentrations of carbohydrates are maximal,

can extend shelf life, a technique that can be easily applied in VFS.

Generally, there is great potential for VFS to achieve desired
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product quality while maintaining high yields through dynamic

growth conditions, but much remains to be understood to attain

this goal.
Future developments

Monitoring and prediction of
plant physiology

Because interactions between plants and their environments

are highly complex, treating VFS as a dynamic system will work

much more reliably if there is a deep understanding of how a

given genotype responds to its environment, for example through

assisted automated feedback. VFS offer unprecedented possibilities

to monitor and manipulate the environment, but—like other

growing systems (162)—they lack sensors that reliably and

continuously monitor a representative fraction of the crop and

provide actionable knowledge. Hence, while growers can monitor

and change the environmental conditions continuously, they

rely on their experience to judge the effects that those conditions

have on their crop. Even so, the most experienced grower has a

temporally and spatially limited overview of the crop: the grower

can only see long-term changes (over several days), and local

differences between plants may be difficult to discern.

Furthermore, given that crop behavior can change diurnally [e.g.,

gas exchange (163) and leaf angle (164)] and throughout

development (e.g., leaf morphology), climate variables need to be

continuously adjusted to balance plant needs and VFS energy

expenditures. Also, intelligently adjusting environmental

conditions based on electricity prices (24) [see section on

“Optimizing photosynthesis and growth through dynamic climate

settings”] requires crop monitoring. Similarly, automated methods

of early stress detection—and differentiation between stresses—are

at an early stage of development. Scale of measurement and rate at

which data can be converted into actionable knowledge are

important considerations for the choice of sensors.

While many commercial systems provide insights into various

aspects of plant physiology, these are typically too expensive to use on

a large scale. Also, they often lack straightforward interpretations of

plant environmental responses and hence are not often used for crop

monitoring. The solution to crop monitoring will not come from a

single sensor but rather a combination of sensors that inform on key

physiological processes (and key environmental factors) that together

provide a comprehensive picture and context of plant status. Given

that there is a large suite of sensors that can provide signals on plant

status, we constructed an overview of sensors that we deem suitable to

provide actionable knowledge on relevant plant biological properties

in a dynamic VFS context, and ranked them by throughput (Table 1).

From this overview, several conclusions can be drawn: i) sensors use a

wide variety of signals, including optical, audible, olfactory, and

electrical signals; ii) while some sensors measure small areas and

must be attached to single plants to function, others cover large areas

and/or can be mobile, thereby greatly enhancing their throughput

(number of plants measured per hour per sensor); and iii) sensors
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provide information across a large range of processes pertaining to

plant growth (e.g., from photosynthetic electron transport rate to

whole-plant growth), and these processes differ widely in how quickly

they show a measurable change in the measured property or process

(quantified as tD in Table 1).

The largest group of sensors in Table 1 uses optical signals in the

short- and longwave range (RGB, hyperspectral, chlorophyll

fluorescence, and thermal imaging); therefore, they can be used as

cameras, allowing for mobile, quick, and remote data acquisition.

These sensors allow for a high degree of automation and are already

in use in high-throughput plant phenotyping platforms (183).

Another sensor approach (CO2 sensors, H2O sensors, and flow

meters) assumes that a VFS can be used as a large cuvette, which

exchanges CO2 and water vapor with its environment. Assuming

that the crop is enclosed in a box, all inputs and outputs to the

system (CO2 dosing, fertigation, and removal of water vapor from

the air) are potentially quantifiable through the sensors that monitor

aerial CO2 concentration and humidity, as well as whole-system

irrigation input. This may enable the monitoring of long-term trends

in whole-system photosynthesis and transpiration (184). While this

approach has been shown to work in research greenhouses

(171, 172), it might be challenging to use in crop production due

to lack of proper air mixing (leading to inaccurate sampling), leaks,

and standardization when plants are added or removed. To solve the

last problem and update knowledge on biomass and leaf area, light

detection and ranging (LIDAR), time-of-flight (ToF), stereo

imaging, and structured light can be used to acquire 3D point

clouds. If time series of various physiological and architectural

parameters can be monitored, patterns of plant growth and

development can, in principle, be derived. Such data sets, together

with key environmental data, enable the development of highly

mechanistic models of plant growth, which can be used to develop

digital twins and decision support tools for VFS. Such combined

datasets could be used to feed artificial intelligence models to enable

control of microenvironments inside VFS.

Electronic noses and ultrasound microphones can sample part of

the system, as they can measure signals that are emitted when plants

are stressed. Electronic noses measure volatile organic compounds,

and ultrasound microphones detect sounds emitted due to xylem

embolisms that occur under drought stress (176, 177). The remaining

five sensors in Table 1 (leaf displacement sensor, linear variable

displacement transducer, lysimeter, sap flow meter, and electrodes)

are all immobile, which strongly limits their throughput but does

enable long-term monitoring on individual plants. Also, it should be

noted that several researchers have recently reported on “plant

wearable sensors”, which show some promise in plant monitoring

(185). However, these are not included here, since they are often

cumbersome to attach to plants (i.e., expensive to operate) and

generate data that are often difficult to interpret.

The rate at which actionable knowledge can be generated will

depend on both sensor throughput and time it takes to detect a

change in a measured property or process (tD). Plotting throughput
vs. tD for all sensor types (Figure 5) revealed that sensors disperse

widely along both axes, suggesting that all combinations exist: low-

throughput sensors that measure slow changes in plant status (e.g.,
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TABLE 1 Sensors for crop monitoring in vertical farming systems (VFS), ranked by throughput. Important considerations for use of a given sensor include the spatial scale of measurement, sensor mobility,
number of plants that can be measured per hour (throughput), plant properties or processes that the sensor provides information on, and the time that it takes to detect a change in a measured property or

−1 multiplied by the duration of measurement (required time per
resented in this table are based on referenced literature as well as

ext.

)

Time per
measurement (s)

Throughput
(plants sensor−1 h−1)

tD (min) Reference

5 1 54,000 180 (165)

5 1 54,000 4,320 (166)

5 2 27,000 2 (167, 168)

5 2 27,000 2 (169, 170)

0 900 40,000 10 (171, 172)

1 300 12 4320 (173)

0 300 120 10 (174, 175)

1 60 60 10 (176, 177)

0 1 30 30 (178)

1 2 1 10 (179, 180)

1 1 1 30 (181)

1 1 1 1 (182)

1 1 1 1,440 (164)
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process (tD). For mobile sensors, throughput was calculated as the number of plants that can be captured per measurement (plants sensor ),
measurement); for immobile sensors that are attached to one plant, throughput was set to 1 plant sensor−1 h−1. Values for throughput and tD
own user experience and should be interpreted as rough estimates only. Sensors are color-coded according to how they are grouped in the t

Sensor Signal Plant properties Scale Mobile? No. of plants
per sensor
(plants sensor−

RGB camera Visible light Color, morphology, biomass,
leaf area, leaf movement

One to several plants Yes 1

Hyperspectral camera A Hyperspectral reflectance Chemical composition of
plant material

One to several plants Yes 1

Fluorometer B Chlorophyll fluorescence Photosynthesis,
photoprotection,
photoinhibition

One to several plants Yes 1

Thermal camera C Long-wave
infrared reflectance

Organ temperature,
transpiration,
stomatal conductance

One to several plants Yes 1

CO2 sensors, H2O sensors,
flow meter

Atmospheric [CO2] and
[H2O] flow

Whole-system photosynthesis,
respiration, transpiration

Entire
growing compartment

No 1000

LIDAR, ToF, stereo imaging,
structured light

3D point cloud Morphology, biomass, leaf area Single plants Yes

Electronic nose D Volatile organic
compound concentration

Biotic and abiotic stress,
stomatal conductance

One to several plants Yes 1

Ultrasound microphone E Sound emissions Rate of xylem cavitations, water
stress, transpiration rate

Stems of single plants Yes

Lysimeter Weight Transpiration of one or
several plants

One to several plants No 3

Sap flow meter Heat transduction
along stem

Whole-plant transpiration Stems of single plants No

Linear variable displacement
transducer (LVDT)

Stem diameter Whole-plant transpiration,
stem growth

Stems of single plants No

Electrodes F Plant electrical potential NA Stems of single plants No

Leaf displacement sensor G Leaf movement Stress, growth rate Single plants No

ASensor is prohibitively expensive and generates vast amounts of data.
BMost approaches require saturating flashes that are difficult to apply in a growing environment; method is difficult to interpret without knowledge of intercepted light intensity.
CMethod is difficult to interpret without knowledge of intercepted light intensity; usually requires reference materials for data interpretation.
DVolatile organic compounds are emitted in extremely small amounts.
ESounds are emitted upon stress and need to be differentiated from background noise, so sensor is placed closely to plant.
FMethod is invasive.
GMethod is very sensitive to air movement.
Abbreviations: EC, electrical conductivity of nutrient solution; LIDAR, light detection and ranging; NA, not available/known; RGB, red, green, blue; ToF, time of flight.
p
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leaf displacement sensors), high-throughput sensors that measure

rapid changes (e.g., thermal cameras and fluorometers), and several

others in between. Depending on the application, combining fast,

mobile sensors with slow, immobile sensors seems a promising

strategy for achieving well-informed and automated decision-

making inside dynamically regulated VFS. However, to provide

actionable information, data generated by sensors need to be

curated, analyzed, and interpreted correctly, which remains a

bottleneck, as does the lack of affordable sensors.

Mathematical models, including physiological and machine

learning-based models, will play a crucial role in the integration of

information from different sensors. Models can guide decision-

making to optimize on-the-fly growth environment optimization.

Among different models developed at various spatial and temporal

scales, dynamic systems models of canopy photosynthesis can

integrate data of canopy architecture and physiological parameters

from different layers of a canopy (186). Predicted canopy-wide

photosynthesis can be used to determine light intensity setpoints
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for maximal productivity or photosynthetic light use efficiency, for

example in the context of changing electricity prices (Figures 2, 3).

Such sensor-model systems can also help avoid extreme setpoints,

such that when the model suggests setpoints under extremely low or

high electricity prices, it does so within boundaries that are defined by

prior knowledge and sensor data. Furthermore, with the development

of models simulating the dynamic acclimation of the photosynthetic

apparatus to light intensity and quality (187), light intensity can be

optimized to maximize whole-canopy photosynthesis for several

days, with a full consideration of canopy formation and, hence,

light interception history of different leaves.
Breeding for the VFS environment

Controlled environments are often used to develop new

germplasm—but what about breeding for production in VFS (188)?

A breeder’s goal is to coalesce a set of desirable traits that express
FIGURE 5

Sensors for crop monitoring in vertical farming systems. Sensors are plotted by throughput vs. time required to detect a change in crop property
that a given sensor measures (tD; log-log plot). Numbers presented in this figure are best estimates, based on referenced literature (Table 1) as well
as user experience, and should be interpreted as rough estimates only.
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appropriately in a specific environment, and a crop bred for the field

may not grow at its maximum genetic potential in an artificial

environment. Plant genetic improvement for the field must consider

an ever-changing environment, replete with biotic and abiotic stresses

and potentially wild extremes. Breeders of open field crops thus need

to develop genotypes that produce marketable products regardless of

environmental fluctuations. A VFS is a far departure from sun, soil,

and outdoor stresses, even with controlled changes in the VFS

environment, as discussed in this review. The lack of variety

designed for highly controlled environments can therefore be

considered a bottleneck. Also, over the last century, plant genetic

improvement has focused on production traits: improvements in size,

disease resistance, yield, and post-harvest storage life have sacrificed

quality traits like flavor, texture, color, and aroma (189). In VFS, on

the other hand, due to favorable environmental conditions and fewer

disease threats, breeders can select for performance under a discrete

set of conditions that focus on consumer-centered qualities and high

growth rates under a relatively constant climate with comparably low

light intensity, elevated [CO2], and otherwise benign conditions (188).

Apart from the development of a highly compact, early-yielding

tomato variety with high harvest index (190), few published examples

of plants bred specifically for VFS exist. The paucity may be because

proprietary lines comprise the best examples, and information about

those is not disclosed. Some unpublished examples do exist and, as

always, necessity was the mother of invention: cannabis growers were

the pioneers in this space, as controlled environment agriculture

offered discreet, secret production. The use of indoor locations led

cannabis growers to desire compact plants. Cannabis sativa grows tall

compared to C. indica, which produces compact plants with short

internodes. Other favorable traits include flowering on long days and

an evenly spread leaf area to optimize light interception. Breeders

have selected for flower buds to be produced close to a compact stem

or buds to be produced in clusters on different branches. The

downside of compact, dense plants is the incidence of fungal

diseases. Cannabis breeders also have selected for cannabinoids, as

well as for traits that facilitate growth in controlled environments:

heat tolerance, disease resistance, and resistance to insects

and arachnids.

Inside VFS, there is great potential to breed for improved

photosynthetic properties. First, light intensity is generally lower

than in the field, which makes it possible to breed for crops with

higher photosynthetic rate under low light, a feature that has so far

received little attention. In rice, photosynthesis under low light

intensity differed ~2.8× between cultivars (191). It is expected that

this trait can be used as a breeding target in any species. Furthermore,

although VFS can supply a stable light environment, light intensity

inside a leaf is highly spatially and temporally heterogeneous. Due to

optical scattering and focusing effects inside the leaf, light intensity

hitting a particular chloroplast may be up to 15 times higher than the

incident light on the leaf (192). Due to tiny changes in leaf position

caused by high air flow or intrinsically triggered leaf movement,

strong changes in incident light intensity can occur (192), as can lamp

output that responds to changes in electricity prices (see section on

“Photosynthesis and transpiration”). Breeding for VFS crops with an

enhanced capacity to respond to fluctuating light intensity thus seems
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useful, and the potential for improving these properties has been

demonstrated in the lab and field (193–196).

An attractive breeding priority might be cultivars that possess great

environmental plasticity and thus produce different traits in response to

varying environmental conditions (197). This contrasts with what is

expected of field plants, where phenotypic consistency is desired in a

changing environment. Classical breeding techniques for field crops

emphasized production traits such as disease resistance, shipping

quality, and shelf life. This led to the selection of mass-produced

fruits and vegetables that were lacking in sensory quality (189).

Selection for controlled environment agriculture allows a shift to

improved flavors and aromas, due to the short distance between VFS

and end consumers. For instance, FR increases the aroma, perception

of sweetness, and improved texture of tomatoes more than R or B

against a background of solar light (198, 199). Enhancement of FR

sensing circuits, perhaps by breeding genotypes that are hypersensitive

to the activation of phytochromes, may result in better tasting fruits.

Also, depending on whether flowering is desired or unwanted, varieties

that feature an insensitivity or hypersensitivity of floral initiation to

specific wavebands may be bred.

An important prerequisite for agricultural production is the

ease of harvest (200). Controlled environments are much more

amenable to robotic harvest than the field because of their

standardized conditions. Robots can work in conditions that are

perilous for humans, such as on tall buildings or under high-

intensity UV light (201). In some crops, the efficiency and

feasibility of automated harvest is strongly affected by plant

architecture, as this is guided by machine vision to detect ripe

fruits (202). Breeding for uniformity in fruit size, ripening, color,

and distribution may thus aid in automatic harvest. For example,

the JOINTLESS gene in tomatoes controls the detachment force

(203); selective breeding to alter fruit abscission may benefit robotic

harvest, as whole trusses of ripe fruit could be harvested together.

Similarly, peppers that produce widely spaced fruits rather than

fruit clusters are more amenable to robotic harvest (204). Control of

peduncle growth is critical to mechanical harvesting in cucumber

(Cucumis sativus) (205). In these cases, the genetics that underlie

these traits are at least partially understood.

Finally, while many examples in this section emphasize the

opportunities that lie in breeding for a constant environment in

VFS, the next step can be imagined easily: breeding for a dynamic

yet well-controlled environment with clearly defined boundaries per

environmental variable. Such an environment will still be far

removed from nature (due to the general constancy, repeatability,

and controllability in VFS) and therefore should in theory be much

easier to breed for than the field. Marker-assisted breeding may be

used to speed up the development of lines for VFS, and gene editing

may help instill traits across species.
Conclusions and outlook

In this review, we present many examples that show the

benefits of managing the growth environment in VFS in a

dynamic manner (Figure 6A). We also explain how—and how
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quickly—changes in the environment affect various processes in

plants. Changes in VFS environments are broadly motivated by

two factors, namely the physiology and development of the crop

on the one hand (changing the “demand function” for specific
Frontiers in Science 16
inputs within the system) and changes in electricity prices on the

other (changing the “supply function” of a major input to the

system), which can be used to change the cost-effectiveness of

VFS. A large suite of processes in the plant is affected by the
FIGURE 6 (Continued)
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FIGURE 6 (Continued)

Future vision of a dynamic vertical farming system (VFS). (A) Examples of dynamic changes in the growth environment during different phases of the
production cycle, as well as during any day during the vegetative phase. Depending on the product, the production cycle may end with the
vegetative phase [when an end-of-production treatment (EOP) can be applied] or with seed/fruit formation after a transition to the vegetative phase
(EOP may be applied to ripening fruits). Symbol size depicts relative intensity or concentration. Question marks signify unknown or contradictory
effects for dynamic changes of given factors. All changes are depicted as examples only and are neither exact nor exhaustive; for details, see text
(sections on “Photosynthesis and transpiration”, “Flowering and fruiting”, and “Product quality”). (B) An intelligent dynamic VFS should be integrated
with crop monitoring and modeling, as well as with breeding that is specialized for this environment, in a continuous feedback loop between these
domains that aims to optimize resource use efficiency, product quality, and energy costs.

Kaiser et al. 10.3389/fsci.2024.1411259
environment, from short-term changes (e.g., photosynthesis

rate) to longer-term processes that drive development (e.g.,

flower initiation; Figure 6A); therefore, it is not surprising that

variations in the environment will affect these processes as well.

Plants integrate and respond to all environmental stimuli at

once, which can make it difficult to predict how plants will

respond to any single stimulus (206). Therefore, we consider it

crucial to implement dynamic climate control in VFS together

with sensors that monitor relevant plant processes, at a high

enough spatial and temporal resolution to make informed

decisions, and models that use the information provided by

the sensors to provide setpoints (Figure 6B). Given rapid
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developments in nanoscale sensor technology (207), as well as

data integration and modeling approaches [including machine

learning (208)], we foresee massive improvements in how

dynamic climate setpoint optimization and plant monitoring

could work together in future growing systems (162).

It should be stressed that vertical farming, and the research

thereof, is a relatively recent foray for the agricultural industry.

Furthermore, much of VFS research to date has focused on

cultivation in constant climate conditions. With the ever-

increasing capacity to fine-tune and apply dynamic conditions

in VFS, this review highlights some insights and approaches that

we believe contribute to the advent of a truly dynamic VFS
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industry. Additionally, specific processes highlighted in this

review have been tested at low spatial and temporal levels:

these are often results of lab experiments tested on specific

organs over short periods of time, not at canopy-scale or over

longer time spans that include different phases of growth and

development. Such experimentation should take place before

implementing any proposed solution in VFS, as responses at a

lower integration level often do not scale up to higher integration

levels as expected (209). Several potential applications of

dynamic VFS thus await experimental verification at the

relevant spatial and temporal scales.

In the long term, fine-tuning of dynamic environmental

conditions, monitoring, and breeding for growth under these

conditions should go hand in hand (Figure 6B), in a continuous

feedback loop between crop management, crop monitoring, and trait

selection, to optimize cost-effectiveness, resource use efficiency, or

product quality. Boundaries to dynamic environmental conditions

will be defined clearly and will be based on knowledge of the plant’s

biology, a constant stream of monitoring data and its interpretation

using process-based and machine learning-based models, prices of

inputs, and market demands. Finally, the current energy crisis, as well

as questions about the environmental sustainability of VFS compared

to other growing systems (22, 210, 211), may force us to rethink

cultivation approaches and the proposed future role of VFS in

agriculture. Making environmental conditions in VFS more

dynamic is an important step toward making crop cultivation in

VFS more sustainable and cost-effective.
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