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Abstract

Induced resistance (IR), which enables plants to increase their resilience against

insect pests and microbial pathogens by promoting their own immunity, has

been recognized for its value in crop protection schemes. Despite promising

applications, the use of IR in crop protection has remained marginal compared

with pesticides and single resistance genes. This review aims to shed light on this

disparity by examining the scientific milestones achieved over the past decades

for both internal (immunological) and external (ecological) IR strategies. The

multifaceted advantages of IR, particularly its ability to provide broad-spectrum

protection and enhance the nutritional and nutraceutical value of certain crops,

are also discussed. The various obstacles hindering the widespread adoption of

IR strategies are then revealed. After considering recent scientific discoveries and

insights, potential solutions are proposed, including leveraging epigenetic

approaches to understand the mechanisms involved in IR. By acknowledging

that the future sustainability of crop protection is irreconcilable with single-use

technologies, this review proposes taking advantage of the latest insights

regarding the adaptive nature of the plant immune system and its ecological

interactions to safely integrate IR into existing crop protection schemes. By

emphasizing the need for comprehensive and holistic approaches to basic and

translational research, this review sets the stage for leveraging IR alongside other

strategies to foster a resilient, environmentally friendly, and economically viable

future, thereby ensuring the health of crops.
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Key points

• Sustainable crop protection methods, such as induced
resistance (IR), are being harnessed as an alternative to
the excessive use of pesticides, which can lead to increased
pest resistance to pesticides and harm humans, animals,
and the environment.

• IR can offer long-lasting protection to help the
agricultural system mitigate the challenges posed by
climate change, the emergence of new diseases, and a
rapidly changing socioeconomic context.

• IR is not only active in plant defense but can also be
exploited to improve the nutritional quality and health
benefits of crop products.

• Maximizing the benefits of IR will require a better
understanding of plant biology interactions (including
the epigenetic regulation of plant defenses), IR stimuli,
and the environment.

• Legislative action is important to ensure the quality and
effectiveness of IR products and promote their wider
adoption by farmers.
Fro
Introduction

Throughout history, plant pests and diseases have had a

profound influence on human history, causing episodes of food

insecurity and human suffering that have scarred our shared past.

Devastating outbreaks, such as the Irish Potato Famine in the 19th

century, have caused widespread hunger, economic turmoil, and

mass migration with long-lasting historical consequences. Since the

“green revolution” in the second half of the 20th century, our high-

intensity food supply chain has become increasingly dependent on

crop monocultures that are critically reliant on the excessive use of

pesticides to protect against pests and diseases. However, this

reliance is no longer deemed sustainable. In addition to concerns

about non-target effects in the environment (1–4), the development

of resistant pests, and concerns about the human health impacts of

chemical residues in food products, the production and application

of pesticides also generate a significant carbon footprint (5).

Increasingly, such concerns have begun to influence agricultural

policies globally. For example, the European Commission has

proposed new policies with agricultural initiatives to reduce

pesticides, such as the “European Green Deal” and “Farm to Fork

Strategy” (6), which both propose a target of a 50% reduction in

agrochemicals by 2030. Similar policies are being pursued in Japan,

via the “Sustainable Food Systems Strategy MIDORI” (7), in the

United States (8), and globally under the umbrella of the United

Nations (9).

However, phasing out pesticides without replacing them with

reliable alternatives can expose the food supply chain to risks that

seriously affect regional food security and increase the volatility of the

global food economy (10–13). Hence, there is an urgent need to

identify and implement reliable alternatives to pesticides. One of the

currently emerging crop protection practices identified by the
ntiers in Science 02
European Commission is to harness strategies naturally employed

by plants to resist pests and diseases (6). A plant’s immunity can be

strengthened by stimulation with certain pathogens, pests, beneficial

microbes, chemical agents, physical wounding, or herbivory (14).

This phenomenon, known as induced resistance (IR), often provides

broad-spectrum protection against a variety of pests and diseases

(15, 16). IR allows plants to respond more quickly to biotic stressors

(16) and can be combined with other crop protection strategies (15).

IR is crucial for minimizing reliance on pesticides; moreover, in

conjunction with our increasing knowledge of internal (immunological)

and external (ecological) plant defense strategies (17), ample new

opportunities exist to expand our current toolkit to ensure the

sustainability of future plant health management. In turn, this

contributes to achieving global food security and ensuring a

sustainable food supply for a growing population.
How do plants defend themselves
against pests and diseases?

Plants, much like all higher organisms, rely on several strategies

to defend themselves against pests and pathogens (Figure 1). The first

line of self-defense is controlled by the plant’s innate immune system,

which operates according to a genetic blueprint that enables plants to

detect signals and activate their inducible defense mechanisms. The

innate immunity of plants has been studied extensively over recent

decades and conceptually involves two separate layers (18, 19). The

default layer, known as pattern-triggered immunity (PTI), responds

to microbial molecular patterns such as flagellin, elongating factors,

and danger signals and involves a variety of defense genes and

mechanisms. This innate immune response provides a wide range

of protection against different styles of attack. However, it has the

disadvantage of being relatively weak against specialized attacks that

involve PTI-suppressing virulence effectors (20). As an evolutionary

response, plants can defend themselves via effector-triggered

immunity (ETI), which is based on resistance (R) genes. R genes

encode intracellular receptors that can activate the hypersensitivity

immune response upon the direct or indirect recognition of immune-

suppressive virulence effectors and are critical for so-called gene-for-

gene, race-specific, or vertical resistance (21, 22). Despite the highly

effective response of ETI to biotrophic parasites, its range of

effectiveness is typically limited to a single species or even

subspecies levels, such as pathovars. Moreover, the ongoing co-

evolution by ETI-resistant attackers is selective for the emergence

of new virulence effectors that are no longer recognized by existing R

proteins, rendering ETI ineffective.

While PTI and ETI are important first layers of defense, plants

require additional strategies to survive in hostile environments. When

plants successfully repel initial assaults by pests or diseases they

develop acquired or induced resistance through the activation of

their own immunity. IR often involves a form of immunological

stress memory referred to as “defense priming”—a phenomenon that

conditions plants for enhanced stress resilience. Stress or defense

response pathways are initially only weakly activated upon exposure to

the priming agent but are then more strongly or rapidly induced when
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the plant is later challenged by an attacker (16, 23, 24). A classic

example of defense priming is systemic acquired resistance (SAR),

which occurs in response to localized pathogen attacks, triggering the

release of long-distance defense signals that prime distal plant parts for

the efficient activation of defenses upon later attacks, leading to

enhanced resistance in a phenomenon similar to vaccination in

humans (14). This phenomenon involves the finely tuned regulation

of phytohormone signaling, elevated levels of pattern recognition

receptors or dormant defense regulatory elements, and chromatin

modifications (16, 25, 26). The priming effect can be long-lasting; it

can even be transmitted to the next generations (27–32). There is

mounting evidence that the long-term maintenance of priming is

controlled by epigenetic changes, such as the reduced DNA

methylation of transposons and the trimethylation of lysine 4 of

histone subunit H3 (H3K4me3) at defense gene promoters, which

have also been implicated in “poised” genes (genes in a “ready to be
Frontiers in Science 03
active” state) in animals [Box 1, (26)]. However, much remains to be

discovered about the mechanisms through which stress-induced

epigenetic changes prime stress-specific defense genes, how these

epigenetic changes are maintained over cell division and sexual

reproduction, and, ultimately, how they are erased in the absence of

recurrent stress.

Plants also employ external ecological pathways to adapt to biotic

stress; this is known as “indirect induced defense” or “plants crying out

for help” (33). This mechanism allows plants to recruit other organisms

to combat attackers. For example, the herbivore-induced emission of

volatile organic compounds (VOCs) can attract predatory or parasitic

insects that attack the impeding herbivore (34). Recently, similar

interactions have been discovered above and below ground, where

stressed plants alter their root exudation and headspace VOC

chemistry to select and/or recruit a disease-suppressive microbiome.

This also activates an immune response in neighboring plants, which
FIGURE 1

Defense strategies of plants and their practical implementation. Plants rely on various defense strategies for their survival when exposed to
pathogens and/or pests. In the absence of an effective strategy, pesticides must be used to ensure plant survival.
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protects the plant via a range of direct and indirect mechanisms,

including induced systemic resistance (ISR) (35–37).

The current approach to crop protection still relies largely on

pesticides and selective breeding for R genes, whereas strategies such

as IR remain relatively underexploited. Unlike pesticides, IR is not

curative and rarely provides complete protection against pests or

microbial pathogens. Moreover, IR chemicals may have associated

allocation fitness costs (trade-offs), such as reduced plant growth and

yield or increased susceptibility to other stresses. These reasons may

contribute to IR remaining underexploited. However, when applied

in the correct context, IR offers numerous benefits. In addition to its

broad-spectrum effectiveness, IR can help reduce pathogen loads,
Frontiers in Science 04
synergize with other management methods, and protect single R gene

strategies from co-evolving pests and disease adaptations. This can

help to decrease our reliance on unsustainable pesticides (38).

In this review, we explore the potential applications of IR and

discuss how it can be integrated with the use of pesticides, other

crop protection methods, and breeding strategies. By examining the

costs and benefits of IR, we aim to establish a realistic framework for

the safe exploitation of IR within current crop protection schemes.
Significant milestones in research into
induced resistance

Reports on how IR combats plant pathogens date back to the 1930s

(Figure 2). Initially, these reports were descriptive, presenting instances

in which IR-like phenomena were observed [reviewed in Chester (39)].

In 1961, the term SAR was introduced by Frank Ross, who reported an

experiment showing that inoculating a tobacco leaf with tobacco

mosaic virus (TMV) led to resistance against the same virus in distal

non-inoculated leaves 1 week after the first inoculation. In the 1960s,

numerous studies on the biological induction of resistance were

conducted in various plant species in which resistance was triggered

by pathogens such as viruses, bacteria, and fungi (40).

A novel aspect of IR was described in a report by White (41): it

showed that infiltration of the leaves of tobacco plants with salicylic

acid (SA) led to SAR against TMV and induction of pathogenesis-

related (PR) proteins. This is consistent with the later-described effects

of endogenous SA during plant defense (42, 43). Ultimately, this

discovery allowed screening programs that identified the functional

analogs of SA as IR elicitors, which yielded products such as 2,6-

dichloroisonicotinic acid (INA) and acibenzolar-S-methyl (ASM; an

active ingredient of the commercial product Bion) (44, 45). As early as

1975, oryzimate was used as a resistance inducer in rice seedlings (46).

Transgenic plants, such as SA-degrading NahG plants, which cannot

accumulate SA (47), or the Nonexpressor of pathogenesis-related genes

1 (npr1) Arabidopsismutant (48, 49), have helped to provide a deeper

mechanistic understanding of IR signaling. Similarly, the discovery of

jasmonic acid (JA) as an endogenous wound-inducible IR signal

against insects and necrotrophic pathogens (50, 51) led to new

research into the biosynthesis and response pathways of this IR-

related hormone (52). Toward the end of the 2000s, researchers

independently reported long-distance signals mediating systemic IR

responses, such as methyl salicylate (53), azelaic acid (54), glycerol-3-

phosphate (55), dehydroabietinal (56), and N-hydroxy pipecolic acid

(57) for SAR, as well as electrical signals for the systemic IR response

to wounding (58).

At approximately the same time, it was discovered that

prolonged maintenance of IR-related defense priming involves

epigenetic control (26) (Box 1), offering a plausible mechanism

for the long-term (and sometimes transgenerational) durability of

IR. More recently, it was shown that IR-related priming can be

genetically engineered by fusing the NPR1 gene to a pathogen-

responsive untranslated open reading frame (59) or epigenetically

induced by the introgression of meiotically stable regions of reduced

DNA methylation (60).
BOX 1 Epigenetics

Regulation of the timing and amplitude of gene activation is crucial for the
energy-efficient and effective induction of defense upon attack. The
importance of epigenetics as a major regulator of plant defense gene
expression has only recently emerged. Epigenetics refers to changes in gene
expression that can influence the phenotype of an organism without causing
alterations in DNA sequence. Chromatin refers to the complex of nucleic acids
and proteins within the nucleus of eukaryotic cells. More specifically, DNA is
wrapped around an octameric complex of two sets of four histone cores to
form one nucleosome. Changes to the chromatin structure, DNA, or histones
are commonly considered to be “epigenetic modifications”.

Chromatin remodeling: The parts of the chromatin that are firmly packed
and genetically inactive are called “heterochromatin”; they are characterized
by high levels of DNA methylation (see below) and are typically inaccessible
to transcription factors and the transcriptional machinery. In contrast,
euchromatin refers to loosely packed chromatin and is characterized by genes
that are actively transcribed or responsive to induction. Chromatin remodeling
can shift the transcriptional status of protein-coding genes from being silenced
to being responsive and/or active and vice versa.

Histone modification: The N-terminal tails of histones can be post-
translationally modified by, for example, acetylation or methylation at lysine
(and sometimes arginine or other amino acid) residues. These modifications
have a strong influence on the potential activity of the associatedDNA sequence.
Histone acetylation is typically associated with active genes in euchromatin.
Other modifications, such as SUMOylation (involving small ubiquitin-related
modifier, SUMO), can also play a role in the stability and/or replacement of
histones with other variants.

DNA methylation: The fifth C in the base cytosine (C) can be methylated. In
plants, this can occur in CG, CHH, or CHG1 and is mediated by DOMAIN
REARRANGED METHYLTRANSFERASE (DRM2). The maintenance of
DNA methylation is controlled by three different proteins. CG methylation
is performed by DNA METHYLTRANSFERASE1 (MET1), CHG by
CHROMOMETHYLASE3 (CMT3), and CHH methylation maintenance is
controlled by DRM2 and CMT2. DNA demethylation in plants is mediated by
DNA glycosylases/lyases, such as REPRESSOR OF SILENCING1 (ROS1) in
Arabidopsis. Active DNA methylation and demethylation dynamically
regulate the global and/or locus-specific states of chromatin, which is
particularly important in transposon-rich regions that require tight
regulation of epigenetic control to prevent transposon re-activation or the
spreading of silencing into neighboring protein-coding genes.

Chromatin remodeling and DNA methylation occur in a plant-specific
process known as RNA-directed DNA methylation (RdDM), which is
influenced by non-coding RNAs, which mainly consist of 21- to 24-
nucleotide small interfering RNAs (siRNAs). RdDM accounts for 30% of all
DNA methylation in the model plant Arabidopsis thaliana and mainly
controls methylation in CHH.

1 Abbreviations: C, cytosine; G, guanine; H, adenosine, cytosine,
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In the early 1990s, it was shown that IR was developed upon

recovery from biotic stress, such as localized disease or herbivory, as

well as being triggered by the root colonization of beneficial plant

growth-promoting rhizobacteria (PGPR) (61–63).

ISR typically operates independently of SA but requires NPR1

and the intact jasmonate and ethylene (ET) signaling pathways

(64–66). Subsequently, IR induction by beneficial fungi such as

mycorrhizae (67) and even whole microbiota (68, 69) has been

amply documented (Box 2).

Indirect induced defense by plants was initially described for

plant–herbivore interactions, whereby the release of herbivore-
Frontiers in Science 05
induced plant volatiles (HIPVs) recruit natural enemies of the

herbivore, such as predatory spider mites or parasitic wasps

(94–96). The discovery of this “cry-for-help” led to follow-up

studies showing that insect-derived elicitors, such as glucose oxidase

and volicitin, boosted wound-induced volatiles (97) and that similar

tritrophic interactions could occur below ground, allowing the

recruitment of entomopathogenic nematodes (98). Based on

enhanced knowledge of the genetic control of HIPVs, subsequent

studies also provided proof of concept that the “cry-for-help”

mechanism could be exploited in genetic strategies to improve

crop protection (99, 100). In subsequent years, it became clear that
FIGURE 2

A not-to-scale timeline of the main events and discoveries in the field of induced resistance. The manifestation of resistance is either based on
events leading to changes in the plant itself (left side of the time axis) or in the plant’s environment (right side of the time axis).
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both volatile and non-volatile metabolites in root exudates could

recruit and/or select for disease-suppressive soil microbes (101–

103). This precipitated more recent studies that have shown that the

“cry-for-help” via root exudates conditions the soil for ISR-eliciting

microbial consortia (104, 105). As for the internal epigenetic

maintenance of IR (26), this “cry-for-help” in root exudates can

protect plants across generations by conditioning the soil

microbiome for disease-suppressive activity (17, 36), and it offers

a plausible explanation for earlier reports about the development of

disease-suppressive soils upon multiple cultivations with high

disease incidence (e.g., take-all decline) (106).

Knowledge about microbe-, herbivore-, and damage-associated

patterns triggering IR, such as cell wall components (e.g.,

oligogalacturonides from pectin; laminarin from algae; flagellin

from bacteria; and Reynoutria extract, chitin, and chitosan from

fungi and insects), as well as endogenous IR signals, such as
Frontiers in Science 06
b-aminobutyric acid (BABA), have allowed the development of

commercial products in which microbes themselves or derived

molecules constitute the active principle (Supplementary Table 1).

Further development of such commercial products is ongoing: for

example, there is a product based on the pheromone ascaroside 18

that is secreted by plant-parasitic nematodes (107, 108). Ascaroside

18 induces resistance in a variety of plant species to a broad spectrum

of pathogens by activating both the SA-mediated and JA-mediated

defense pathways, and its receptor has been identified recently (109).

Ascaroside 18 is expected to be placed on the market in 2026

(D. Klessig, Boyce Thompson Institute, personal communication2).
BOX 2 Microbe-elicited induced resistance

Microbial induction of induced resistance (IR) in plants resembles human immunization, i.e., inoculation with vaccines containing live attenuated or killed microbial
pathogens. However, the potential risks of using pathogens as triggers or IR in agriculture (uncontrolled multiplication and/or virulence increase) have increased scientists’
interest in non-pathogenic microbes. In and around the root system (the rhizosphere), various non-pathogenic microbes, including bacteria, protozoa, and fungi, thrive
and interact with the root and other microbes. The ability of soil microorganisms to directly control plant pathogens through antibiosis and competition for niches and
nutrients has been known for several decades. However, their effect on stimulating plant immunity has been overlooked. In 1991, three independent groups reported
microbe IR in cucumber, bean, and carnation (62, 63, 70). The spatial separation of beneficial bacteria (inoculated in the root), the pathogens (on the leaf or separated root),
and the confirmation of non-translocation from the root to the leaf of the beneficial bacteria allowed them to confirm that the reduction in disease severity was plant-
mediated, providing evidence for the involvement of plant immunity. Many beneficial microbes, including plant growth-promoting rhizobacteria and fungi and
mycorrhizal fungi, have been shown to trigger IR under controlled laboratory conditions and in the field (71–76). There is a growing interest in the use of microbial
inoculants to stimulate plant resistance to diverse stresses. Many microbial products are already on the market; they usually include spore-forming bacteria (a microbial
resting form) such as bacilli (Bacillus spp. and Paenibacillus spp. group) or spore-forming fungi (Trichoderma, Piriformospora, and arbuscular mycorrhizal fungi)
(Supplementary Table 1). Accordingly, their successful application in greenhouses and fields has evidenced their potential to protect crops against a broad spectrum of
plant pathogens, resulting in marketable yield increases while reducing the need for agrochemicals (synthetic fertilizers and pesticides) and improving food safety and
quality (77, 78). Thus, these IR-inducing microbes can be used as probiotics in agriculture to positively modulate plant immunity, which is similar to the reported positive
effects of probiotic consumption on human immunity (79, 80).

The mechanisms by which microorganisms trigger IR are diverse; they are mostly common to those triggered by inert elicitors, but beneficial microbes usually act by
priming jasmonate-dependent defense responses (66). However, there are specific advantages and limitations associated with the use of microbial inoculants for IR
elicitation, as summarized below.

Advantages of microbe IR:

• Microbes can act as biofactories of IR-eliciting molecules (81). If they successfully colonize the target niche, there is no need for reapplication, unlike the repeated
application recommended for most abiotic IR elicitors.

• Beneficial microbes can provide benefits to plants beyond IR, such as enhanced abiotic stress tolerance, nutrient acquisition, and increased nutritional/
nutraceutical value of the edible parts of the plant (82–86).
Challenges of microbe IR:

• As microbes are living organisms, their shelf-life is limited compared with that of agrochemicals.
• There are more complex requirements for the formulation and large-scale production of microbe-based products than for agrochemical bioactive compounds.
• Niche competence is required as the introduced microbes need to integrate/coexist with the native microbiota.
• High context dependency: microbe survival, replication, and interaction with the plant and its indigenous microbes are highly dependent on abiotic and biotic

contexts (87).
• Regulations governing microbial inoculants should be updated to fully recognize the key features of their true biological and living nature, as the current

regulations equating them to chemicals hampers their optimal development and implementation (88).
Knowledge gaps and research directions:

• Identify microbial IR determinants. Multiple microbial-derived compounds have been shown to stimulate IR. Microbes can secrete phytohormones such as auxin,
cytokinin, ethylene, jasmonic acid, and salicylic acid and antimicrobial compounds such as phenazine, 2,4-diacylphloroglucinal, and lipopeptides that also
modulate immune signaling (89). Components of fungal and bacterial cell walls, including chitin, chitosan, glucans, lipopolysaccharides (LPS), and peptidoglycans,
can also elicit IR (90, 91). Recently, microbial volatile compounds, such as 2,3-butanediol and acetoin, have been shown to activate IR against bacterial and fungal
pathogens (92, 93). However, there is limited knowledge regarding the regulation of their production and elicitation potential under different conditions (93).

• Identify major drivers of microbe IR context dependency. This would be essential for tailoring crop management for improved IR efficiency and stability.
• Improve inoculants’ functionality and context stability by designing microbial consortia and synthetic communities with complementary and/or redundant

functions and different requirements.
• Engineer soil microbiota to maximize the stimulation of plant immunity. Understanding of the regulation of microbial community assembly and function is

required for such management strategies.
frontiersin.org

https://doi.org/10.3389/fsci.2024.1407410
https://www.frontiersin.org/journals/science
https://www.frontiersin.org


Flors et al. 10.3389/fsci.2024.1407410
Opportunities for induced resistance

Over six decades of research support IR as a potentially highly

promising strategy to protect crops. IR is effective in protecting

plants against a broad range of pathogens and pests. Although it

may not provide 100% protection under high disease-pressure

conditions, it offers an alternative to ETI-based strategies when

the R gene repertoire is limited or unavailable, such as against

necrotrophic pathogens and chewing herbivore pests (110, 111). Its

multigenic (horizontal) character allows it to overcome resistance

breakdown, and it can thus be used when resistance breakdown to

pesticides or gene-for-gene strategies occurs (112). In the case of

emerging diseases and pests, IR can provide faster solutions than

traditional breeding. IR also offers an alternative in pathosystems

for which no effective pesticides are available or where their use has

been (or will be) banned and no gene-for-gene strategies are

available. Because of its wide spectrum of effectiveness, IR can

provide immediate protection against these challenges (Figure 3).

Although the protection provided by IR may not necessarily be

complete, it could still offer substantial benefits for farmers and

protection against the devastating consequences of newly emerging

pests and diseases.

Interestingly, the induction of plant defenses implies that

plant secondary metabolism has been activated, which involves
Frontiers in Science 07
the biosynthesis of multiple bioactive compounds with health-

promoting activities, such as polyphenols, carotenoids, flavonoids,

phytoestrogens, and the activity of several antioxidant enzymes.

Thus, the elicitation of IR, while stimulating plant defenses,

frequently results in higher levels of these bioactive phytochemical

compounds in fruits, vegetables, and herbs. Most of these metabolites

have been investigated to assess their potential role in specific

organoleptic properties of foods and show protective effects in

human cells. Indeed, the application of biotic and abiotic elicitors

and defense-related phytohormones during plant growth or the

postharvest period has been used to enhance the production of

secondary metabolites and produce high-quality and healthy fresh

foods (113, 114). Beneficial plant symbionts triggering IR, such as

mycorrhizal fungi and PGPR, can also improve the nutritional and

nutraceutical value of fruits, as shown by the increased content of

lycopene and beta carotene in tomato fruits, stronger anti-estrogenic

activity (115–117) and higher concentrations of iridoids (oleuropein

and secologanin) and flavonols in olive oil (118), and higher

phenolics and anthocyanin content in berries (119).

Finally, therefore, IR in combination with low doses of chemical

pesticides reduces the evolutionary pressure for pests and diseases to

develop resistance against agrochemicals and may also complement

R gene strategies by protecting available R genes against co-evolving

pathogens (120–123). Under low- to moderate-pressure stress, IR is
FIGURE 3

Opportunities arising from induced resistance (IR). IR offers a broad spectrum of protection against pests and pathogens and can act synergistically
with other crop protection methods. IR can also offer protection where a pesticide cannot; therefore, it is an ideal strategy to use during outbreaks
in which a novel pest is involved. The benefits of IR also extend beyond crop protection to higher levels of bioactive compounds in fruits, vegetables,
and herbs as a result of the IR from stimulating plant defenses.
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sufficient when stronger solutions are lacking or may function in

complement or synergy with other plant protection methods. The

current and emerging agri-tech solutions offer new opportunities

to facilitate the incorporation of IR in common agricultural

programs. In the next section, the limitations of IR, their

potential solutions, and the application of IR in modern

agriculture (Table 1) are discussed.
Factors limiting the adoption of
induced resistance
Growth penalty caused by allocation
fitness costs (trade-off)

Limitation
The activation of defense mechanisms requires energy and

resources. Hence, the strong induction of IR can lead to a growth

penalty, referred to as the allocation fitness cost. For example,

negative effects on growth and development are typically more

pronounced when plants are exposed to high concentrations of

hormones or hormone-mimicking compounds as IR stimuli. These

include methyl jasmonate (MeJA), SA, and SA-analogs such as

benzothiadiazole (BTH) (124), BABA (125), acibenzolar-S-methyl

(ASM) (126, 127), and INA (128, 129). This is unsurprising because

an increase in defense hormone levels will result in the direct

activation of defense pathways but cause a decrease in the

effectiveness of defense priming, which is the more energy-

efficient pillar of IR (16, 24). Moreover, defense hormones may

perform antagonistic crosstalk with other developmental and

environmental pathways and may even render plants more

susceptible to other environmental stresses. For example, a recent

study showed that treatment of Arabidopsis seedlings with JA
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results in long-lasting IR against herbivory but is associated with

increased susceptibility to both necrotrophic and biotrophic

pathogens (130). Therefore, caution is recommended when using

hormone-mimicking compounds as IR agents, and the possibility of

costs arising from reduced growth or increased susceptibility to

other stresses must be considered. Overall, higher yield penalties are

expected during IR compared with R gene strategies and pesticides

(125). However, high pesticide doses may also lead to phytotoxic

effects and have a negative impact on yield (131). Therefore, the

adequate choice of IR stimuli, doses, and careful evaluation in the

field may be essential before large-scale application. The innate

plant immunity system comes with endogenous limitations.

Internal feedback mechanisms and the interactions between

primary and secondary metabolism engage to balance energy

consumption. Consequently, only moderate levels of protection,

typically ranging between 20% and 85% (132) and averaging around

40–60% (currently under study), can be achieved with IR. For

farmers, the major goal of agriculture is economic benefit from

yield. Therefore, yield reduction due to IR treatment can have a

critical impact on agriculture, and farmers must consider the

balance of cost and benefit when using IR to protect their crops.
Solution
A precise scientific assessment of fitness costs arising from the

plants’ attempts to compensate for the growth penalty following IR

must be established. Even if a growth penalty occurs, IR treatments

can be adapted to avoid the reduction in benefit from economic loss

caused by plant pathogens. However, should a growth penalty be

expected in certain crops due to treatment with a specific elicitor, it

could be countered and minimized by the concomitant application

of other microbes or chemicals that promote crop growth.

Indeed, the induction of IR by well-selected bioactive

compounds may also yield positive effects by increasing the
TABLE 1 Limitations and knowledge gaps relating to induced resistance (IR) and proposed solutions. IR is a promising strategy for crop protection;
however, there are identified limitations and research gaps that should be addressed to allow the full potential of IR to be reached. Below, we present
the solutions, which will require collaboration from different stakeholders.

Limitations Knowledge gaps Solutions

Partial resistance and off-target effects Mode of action - Detailed molecular and epigenetic studies
- Improving spectrum and longevity of IR

Trade-off effects Mobile signals and memory acquisition - Adapted treatment scheme, e.g., optimize dose, timing, and
mode of application
- Use of well-selected bioactive compounds or microorganisms
- Combination of IR stimuli with diverse modes of action at
lower doses

Variability of IR efficacy in different contexts Factors affecting context-dependency:
plant species/genotype and age, dose of IR
treatment, inoculum quality, soil
nutrients, climate

- Full integration of IR into IPM to buffer limitations caused by
environmental factors
- Field studies to unravel the impact of the abiotic context on IR

Slow adoption of IR-based technologies Socioeconomic factors - Detailed socioeconomic studies to identify drivers for adoption
of IR in agronomy
- Implementation of harmonized legislative framework
concerning the definition, quality, and efficacy of IR
across countries
Abbreviations: IPM, integrated pest management; IR, induced resistance.
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photosynthesis and nutritional status of plants. For example, IR by

natural compounds such as dehydroascorbic acid (DHA) and

piperonylic acid (PA) positively affect plant growth and yield

when applied in rice fields (133). Carboxylic acids have also been

reported to induce resistance against fungal pathogens (134), and

they also stimulate plant metabolism and photosynthesis (135) and

promote the recruitment of beneficial microbiota (136). Similarly,

the induction of IR by beneficial microbes is usually not associated

with yield penalties, as microbes confer other benefits to the plant,

such as improved nutrient acquisition and enhanced stress

tolerance (Box 2). Indeed, numerous commercially available

products categorized as biostimulants and biofertilizers, including

diverse plant growth-promoting microorganisms, can trigger IR

(Supplementary Table 1; Box 2).

Another strategy to improve overall efficacy and reduce the

trade-off might be to combine multiple IR stimuli using different

modes of action at subtoxic doses (137). Indeed, a combination of

half-dose ASM and BABA exerted an additive effect, controlling

Plasmopara viticola in grapevine (138). Similarly, a combination of

MeJA and Trichoderma harzianum was more effective in

controlling spot blotch than either treatment alone in bread

wheat (139), and a combination of T. harzianum and ASM

provided complete protection against gray mold in fava bean

(140). Although these are examples of the use of multiple stimuli

with additive or synergistic effects, careful selection of the

compounds and doses is required to avoid growth penalties. For

example, the drench application of BTH successfully protected

pepper plants against Xanthomonas axonopodis pv. vesicatoria

and cucumber mosaic virus but led to severe growth retardation

and yield decrease. However, IR triggered by a combination of BTH

and the PGPR strain Bacillus pumilus increased pepper IR capacity

against both pathogens more effectively than individual treatments

under field conditions and without any growth penalty (124).

Generating detailed insights into the mode of action of

candidate IR stimuli is essential to support agricultural

implementation and the design of adequate control strategies.

Timing, dose, mode of application, and durability of the IR effect

should be evaluated in laboratory experiments to allow adequate

experimental design for field trials.
Inconsistency in induced resistance efficacy:
external biotic/abiotic factors reduce
induced resistance capacity

Limitation
The context-dependency of IR, namely the variability in IR

efficacy relating to environmental and agronomic conditions, and

phenological plant stages are limitations of IR that require

further research.

Arguably, the most confounding factor in IR implementation in

agronomy is the fact that environmental conditions can affect the

general outcome of IR, leading to limited reproducibility of the

resistance level achieved. For example, Walters et al. (141) showed
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that the efficacy of saccharin IR against Rhynchosporium secalis in

barley depends on various parameters, including disease pressure.

In addition, differences in effectiveness against different pathogen

isolates have been reported (142), although the underlying reasons

are not well understood.

IR is also dependent on the plant genotype. Several reports have

shown that diverse cultivars of the same plant species can respond

differently to IR stimuli. For example, the effects of induction

treatment with INA or BTH differed among cucumber and

soybean genotypes (143, 144). The efficiency of a combination of

ASM, BABA, and cis-jasmonate in eliciting IR also varied among

cultivars in barley against powdery mildew (Blumeria graminis) and

leaf scald (Rhynchosporium secalis) in both controlled and field trials

(145) and in tomato against Phytophthora (142). Similarly, some

genotypes are more responsive to elicitation by beneficial microbes

than others. Indeed, ISR has been shown to depend on the cultivar

under laboratory and field conditions (146). Mycorrhiza-induced

resistance (MIR) is also genotype-dependent and graft-transmissible,

as reported for common bean and tomato (147), even though the

mechanisms may differ depending on the plant genotype. For

example, IR against powdery mildew was associated with

epicuticular wax deposition and the overexpression of PR genes or

with the accumulation of hormones and antimicrobial compounds in

different grapevine cultivars (148).

The age of the treated plant also influences the efficacy of IR. As

the growth season continues and the crop ages, plant defense

mechanisms are expected to be induced by various natural stress

factors to which the crop is inevitably exposed. This was contradicted

by a study in potato showing that only approximately 30% of the field

samples from Swedish wild and cultivated Solanum spp. expressed

PR proteins (149). Indeed, the constitutive activation of plant defense

is very energy-demanding for a plant and may reduce potential

interactions with beneficial microbes. Nevertheless, young plants

might benefit more from IR, as they lack age-related basal

resistance. There is also evidence that the treatment of seedlings

with IR agents can result in long-lasting IR, which is transmitted into

newly formed leaves via epigenetic pathways (130, 150). Moreover,

recent evidence has shown that the consistency and effect size of

intergenerational acquired resistance (IAR) in Arabidopsis is higher

upon induction treatment of young seedlings (151). Hence, the

treatment of young plants under field conditions can be exploited

as a preventive and durable method to enhance disease protection

before pathogens can suppress immunity.

Biotic and abiotic contexts also contribute to the context

dependency of IR under field conditions. Complex crosstalk

occurs between abiotic and biotic stress signaling pathways in

plants (152). For example, in Arabidopsis, elevated temperatures

promote the expression of MYC2, a master positive regulator of JA

signaling but a negative moderator of SA signaling (153). Thus,

temperature is expected to modulate IR efficiency. Drought stress

induces abscisic acid accumulation in multiple plants and is known

to cause susceptibility to some pathogens (154, 155) but increase

resistance to other pathogens (156). A thorough evaluation of how

combined stresses affect plant immunity signaling and how defense
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signaling pathways interact and/or prioritize under realistic multi-

stress conditions is needed, particularly in the current context of

climate change (157).

Multiple lines of evidence indicate the effect of mineral nutrition

on IR induction. Nutrient availability has been shown to affect

plant susceptibility to pathogens, pests, and IR. For example, the

enhanced resistance induced by mycorrhizal fungi in tomato against

a fungal pathogen and a herbivorous insect was correlated with

primed activation of defense genes, but this primed induction was

dependent on the availability of nitrogen (158, 159) and phosphorus

(160). Similarly, iron availability is also a key factor for IR (161). De

Kesel et al. (32) demonstrated that diproline-induced IR is

dependent on the iron supply in rice. Similar metabolites appear

to accumulate in both IR and in the iron-deficient roots of dicots and

monocots, and IR activation by soil-beneficial microbes requires

some of the regulatory elements of iron-starvation responses [see

(161) and the references therein, and (32)]. Similarly, BABA

application and root colonization by some rhizosphere microbes

not only led to broad-spectrum IR but also induced physiological

and morphological root responses resembling those induced by iron

deficiency [see (161) and references therein, and (162, 163)]. This

apparent conserved convergence between nutrient deficiency

responses and IR deserves further investigation; moreover, the

information generated may provide the basis for fertilization

recommendations to optimize MIR.

Solution
We propose combining immunological and ecological defense

strategies by consolidating them within integrated pest management

(IPM) programs. IPM has emerged in recent decades as an efficient

and sustainable alternative to protect crops while minimizing

environmental costs (164), and the IPM-framed combination of

multiple methods can buffer the limitations imposed by the

changing environmental conditions for IR (165).

Despite enormous research efforts into IPM, most approaches

rely on the use of natural enemies to control pests; few studies have

focused on the use of fungal or bacterial strains that inhibit parasites

or compete for resources to control phytopathogenic microbes

(166). The exploitation of plant immunity as a complementary

strategy to be integrated with IPM remains unexplored. Moreover,

IR can complement other biocontrol methods; for example, there

are microbes that can directly antagonize pathogens, as in the case

of the mycoparasitic fungi Trichoderma spp. and antibiotic-

producing bacteria. In addition, these microbes can trigger IR,

increasing the versatility and context stability of biocontrol

inoculants (71). Recent studies suggest that plant immunity has

the potential to strengthen IPM strategies in crops such as tomato

(167, 168). The lack of research into the combination of IPM and IR

is, in part, due to the complexity of studies analyzing the interplay

between three or more interacting biological systems, i.e., the plant,

the beneficial microorganism, and the pests (169). Research into

dynamic multiway interactions revealed that plant immune

responses are not fully conserved when interacting simultaneously

with several organisms. Hence, studies in which IR is set in a

multiway interaction context require a careful multifactorial design,
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which complicates the analysis and comprehension of the molecular

mechanisms regulating plant immune responses.

Upon perceiving a herbivore attack, plants can release specific

odors that attract natural enemies, helping them to get rid of the pest, a

response referred to as a “cry-for-help” (170, 171). This is part of the

immune response, known as indirect IR. Hence, a combination of

evolutionarily acquired indirect resistance and the common release of

natural enemies may exert synergistic benefits for the crop. Some

recent studies have highlighted the potential of improving pest control

using a combination of beneficial microbes and natural enemies. The

inoculation of plants with beneficial fungi that trigger IR results in an

enhanced attraction for natural enemies (172, 173). These results

support the synergistic benefits of IR and IPM. Other studies illustrate

even higher complexity, pointing to these interactions as additional

valuable tools that contribute to crop protection. Groups of

hemipteran insect families, such as Miridae and mites from the

Phtyoseiidae family, can attack their prey as well as the host plant

[zoophytophagous (173, 174)]. After the plant has been stimulated, it

generates new waves of odors that complete additional layers of

immunity, and the plant becomes more repellent. For example,

plants with wounds induced by zoophytophagous mites are

repellent to white fly pests (175), which is known as antixenosis.

Our understanding of how environmental factors negatively

impact IR is substantially limited by a lack of research. The precise

monitoring of the abiotic context and studies on their impact on IR

can provide data to support mathematical modeling of the potential

efficacy of IR in a given context.
Side effects and off-target effects of
induced resistance

Limitation
Although the activation of IR can lead to broad-spectrum pest

and disease resistance (176–178), increased susceptibility to IR has

been observed in some studies. Walters et al. (145) reported that

combinations of BTH, BABA, and cis-jasmone showed efficacy in

the field for the control of barley infection by powdery mildew and

leaf scald but enhanced barley susceptibility to Ramularia leaf spot.

Similarly, although BTH induces resistance against Pseudomonas

syringae in tomato, this was associated with increased susceptibility

to Spodoptera exigua (179). In fields with multiple stress factors, this

is an issue of concern.

Solution
The exploration of genetic variation may allow the selection of

crop varieties expressing higher IR levels with minimal side effects

on growth, interactions with beneficial organisms, and/or resistance

to other biotic and abiotic stresses. They can be selected for

conventional and genetic modification breeding schemes. The

identification of key regulatory genes in model species allows

their exploitation as breeding targets. For example, the discovery

of the BABA receptor (IBI1) (150, 180, 181) and transporter

(LHT1) (182) revealed that BABA-induced IR can be genetically

uncoupled from the undesirable stress response to BABA, which
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relies on the protein kinase GCN2. As the IBI1, LHT1, and GCN2

genes are all highly conserved across taxonomically unrelated plant

species, these genes can be used as breeding targets in crops to select

varieties that require lower concentrations of BABA to reach

economically satisfactory levels of disease protection with

minimal side effects.
Unlocking the potential of induced
resistance using epigenetics

The long-lasting effect of IR and its potential to be transmitted to

subsequent generations is attributed to epigenetic reprogramming

(Box 1). The role of epigenetic regulation in the plant response to

pathogens is an emerging area recently used to elucidate plant

immunity mechanisms (26). One of the most remarkable pieces of

evidence linking epigenetic mechanisms with plant immunity can be

demonstrated through the priming of the SA-dependent defense in

Arabidopsis, where transcription-promoting modifications of the

histone H3 tail in the promoters of SA-inducible defense genes are
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found (183, 184). These modifications facilitate the formation of open

chromatin to allow for faster and/or stronger induction of defense

genes (185). Dynamic and transient changes in genome-wide DNA

methylation have also been observed upon the elicitation of IR in

plants. DNA hypomethylation appears to be an early hallmark of

plant defense activation during the onset of IR.

The descendants of IR-elicited plants exhibit IAR, in which

plants remain less susceptible to pathogens (30, 32, 186). However,

the mediators, target regions, and physiological consequences of the

intergenerational maintenance of IR remain largely unknown.

Although the exposure of epigenetically heritable IR phenomena

to stress tends to be variable with relatively low effect sizes (31, 151),

epigenetic modifications at the level of DNA methylation can

provide almost complete disease protection that is metastable

over multiple generations. The proof of concept for this approach

comes from recent studies of epigenetic inbred lines (epiRILs) of

Arabidopsis expressing disease resistance against virulent

pathogens (60, 187). These epiRILs are genetically identical but

vary in DNA methylation at transposable elements (188, 189).

Moreover, the epigenetic quantitative trait loci mediating stably

inherited resistance to downy mildew have been shown to act
FIGURE 4

Major events during the history of agriculture. Throughout the history of agriculture, several events have had a huge impact on yield. The first major
change was the domestication of wild species, followed by the application of fertilizers and the improvement of water management. Using modern
techniques, transgenic crops with improved genetic characteristics were developed. Subsequently, the search for more sustainable techniques, such
as integrated pest management, and less invasive techniques based on gene editing has begun. In this review, we propose the management of
induced resistance as one of the major events that will impact agriculture.
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through the priming of pathogen-inducible defense genes without

concomitant reductions in plant growth (60). Hence, the

introduction of epigenetic variation into genetically identical crop

inbred lines would facilitate the selection of meiotically stable IR

phenotypes. Intriguingly, the loss of function of decrease in DNA

methylation 1 (DDM1), a chromatin remodeler responsible for gene

body methylation, was recently shown to lead to enhanced

responsiveness to suboptimal doses of BABA (190). To advance

the selection of epigenetically primed plant varieties, more precise

and adjustable methods are required to introduce epigenetic

variation into plant genomes. For example, the recent

development of “reverse epigenetics” methods, such as the

clustered regularly interspaced short palindromic repeats

(CRISPR)-based multimodal targeting of chromatin remodelers,

allows the precise modulation of IR-regulating epi-loci (191).

Recently, an artificial zinc-finger fusion construct of various

proteins involved in epigenetic regulation was demonstrated to

direct gene silencing of specific target genes in Arabidopsis (22).

Although translation to crop plants is still required, this could be of

great value for the crop protection and breeding industry. This

could also act as a valuable research tool to explore the complex

mechanisms by which epigenetically altered genomes prime defense

genes and mediate IR. Therefore, more detailed mechanistic studies

are needed, not only to decipher the pathways by which plants

acquire and maintain their epigenetic stress memory of IAR but also

to understand how they erase these stressful memories. Insight into

these epigenetic regulatory mechanisms will help improve the

spectrum, effect size, and heritability of IR.
Concluding remarks

A series of hallmark events has accompanied the development

of agriculture, from its infancy 12,000 years ago with continuous

selection and breeding, through the improvement in yield using

fertilizer and irrigation during the green revolution, the generation

of crops with new attributes through transgenesis (GMOs), and the

emergence of integrated pest management and crop improvements

based on CRISPR-associated protein (CRISPR-Cas) technology, to

utilizing IR to pathogens and pests, as presented in this review

(Figure 4). IR offers a remarkable opportunity to support our

agricultural system in an environment exposed to rapidly

expanding challenges—not only those relating to climate change

that favor the rapid spread of pests and emergence of new diseases

but also in response to the rapidly changing socioeconomic

environment. As scientists, we can investigate the mechanisms

underlying IR, as outlined above, propose research, development,

and technological advancements, and strive to obtain feedback from

extension workers and farmers who are willing to try and

implement IR technology.

Efforts should also be invested at the legislative level. Clear

guidelines concerning the quality control and efficacy of marketed

IR products must be established and harmonized across countries

and continents. Implementing quality standards, for example, in
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terms of stability, inoculum quality in the case of microbes, efficacy,

and shelf-life, is of utmost importance.

In the report, The future of crop protection in Europe (192), the

European Union proposes IR as one of the options to support the

sustainability of European farmers to work sustainably while

securing food production, preserving biodiversity and the

environment, and supporting farmers’ incomes. According to this

report, the potential impacts of IR will be seen in crop yield, food

security, and the competitiveness of EU farming. Similar initiatives

are taking place in Asia and the United States (193).

Recently, it has also become apparent that there is a substantial

added value for the application of IR technologies for improving the

nutraceutical value of foods, which can confer medical or health

benefits, for example, in obesity, metabolic syndrome, inflammation,

diabetes, hypertension, cardiovascular diseases, and cancer, by

increasing the levels of bioactive compounds in induced plants

(115, 119, 194).

In summary, the elicitation of plant defenses can lead to the

production of safe and high-quality food, which is an important

societal issue facing high demand by both consumers and producers

and, at the same time, reduce the possible negative effects of current

agricultural practices on the environment.
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35. Papantoniou D, Chang D, Martıńez-Medina A, van Dam NM, Weinhold A.
Root symbionts alter herbivore-induced indirect defenses of tomato plants by
enhancing predator attraction. Front Physiol (2022) 13:1003746. doi: 10.3389/
fphys.2022.1003746

36. Rolfe SA, Griffiths J, Ton J. Crying out for help with root exudates: adaptive
mechanisms by which stressed plants assemble health-promoting soil microbiomes.
Curr Opin Microbiol (2019) 49:73–82. doi: 10.1016/j.mib.2019.10.003

37. Song GC, Jeon JS, Sim HJ, Lee S, Jung J, Kim SG, et al. Dual functionality of
natural mixtures of bacterial volatile compounds on plant growth. J Exp Bot (2022) 73
(2):571–83. doi: 10.1093/jxb/erab466

38. Reglinski T, Havis N, Rees HJ, de Jong H. The practical role of induced resistance
for crop protection. Phytopathology (2023) 113(4):719–31. doi: 10.1094/PHYTO-10-
22-0400-IA

39. Chester KS. The problem of acquired physiological immunity in plants. Q Rev
Biol (1933) 8(3):275–324. doi: 10.1086/394440

40. Hammerschmidt R, Yang-Cashman P. Induced resistance in Cucurbits. In:
Hammerschmidt R, Kuć J, editors. Induced resistance to disease in plants. Dordrecht:
Springer Netherlands (1995) 63–85.

41. White RF. Acetylsalicylic acid (aspirin) induces resistance to tobacco mosaic
virus in tobacco. Virology (1979) 99(2):410–2. doi: 10.1016/0042-6822(79)90019-9
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186. Kuźnicki D, Meller B, Arasimowicz-Jelonek M, Braszewska-Zalewska A,
Drozda A, Floryszak-Wieczorek J. BABA-induced DNA methylome adjustment to
intergenerational defense priming in potato to Phytophthora infestans. Front Plant Sci
(2019) 10:650. doi: 10.3389/fpls.2019.00650

187. Liégard B, Baillet V, Etcheverry M, Joseph E, Lariagon C, Lemoine J, et al.
Quantitative resistance to clubroot infection mediated by transgenerational
epigenetic variation in Arabidopsis. New Phytol (2019) 222(1):468–79.
doi: 10.1111/nph.15579

188. Johannes F, Porcher E, Teixeira FK, Saliba-Colombani V, Simon M, Agier N,
et al. Assessing the impact of transgenerational epigenetic variation on complex traits.
PloS Genet (2009) 5(6):e1000530. doi: 10.1371/journal.pgen.1000530
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