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Abstract

The reality of human-induced climate change is unequivocal and exerts an ever-

increasing global impact. Access to the latest scientific information on current

climate change and projection of future trends is important for planning adaptation

measures and for informing international efforts to reduce emissions of

greenhouse gases (GHGs). Identification of hazards and risks may be used to

assess vulnerability, determine limits to adaptation, and enhance resilience to

climate change. This article highlights how recent research programs are

continuing to elucidate current processes and advance projections across major

climate systems and identifies remaining knowledge gaps. Key findings include

projected future increases in monsoon rainfall, resulting from a changing balance

between the rainfall-reducing effect of aerosols and rainfall-increasing GHGs; a

strengthening of the storm track in the North Atlantic; an increase in the fraction of

precipitation that falls as rain at both poles; an increase in the frequency and
severity of El Niño Southern Oscillation (ENSO) events, along with changes in
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ENSO teleconnections to North America and Europe; and an increase in the

frequency of hazardous hot-humid extremes. These changes have the potential

to increase risks to both human and natural systems. Nevertheless, these risks

may be reduced via urgent, science-led adaptation and resilience measures and

by reductions in GHGs.
KEYWORDS

climate change, climate adaptation, greenhouse gas emissions, monsoon, ENSO,
storms, climate extremes, Shared Socioeconomic Pathways
Key points

• Monsoons are expected to increase in intensity in the
future, as aerosol emissions abate and greenhouse gas
forcing emerges, increasing the risks of floods, landslides,
and reduced agricultural yields in affected regions.

• Very high-resolution climate models have recently
highlighted a potential strengthening of the storm track
into northwestern Europe, risking an increase in land-
falling extreme storms likely to cause high winds,
flooding, and threats to infrastructure.

• An increasing fraction of precipitation will fall as rain
rather than snow over both poles in the future, potentially
destabilizing melting ice and amplifying sea level rise.

• El Niño Southern Oscillation (ENSO) events, which cause
floods, droughts, heatwaves, and wildfires around the
world, are expected to increase in frequency and severity
in as little as 20 years.

• Temperature extremes are increasing globally: impactful
events often combine high heat and humidity, thereby
significantly affecting sectors such as agriculture—
negatively impacting crop yields, reducing the ability to
work outdoors, and increasing mortality in
vulnerable populations.
Introduction

The human-induced forcing of climate change, principally due to

increases in atmospheric carbon dioxide (CO2) and other greenhouse

gas (GHG) emissions, is unequivocal, and the climate will continue to

warm until net zero emissions are achieved (1). Even if CO2

emissions ceased completely, global temperatures would remain

elevated for many decades and it would take centuries before

atmospheric GHG concentrations returned to pre-industrial levels

via natural uptake processes (2). Assessing the likelihood of different

levels of global warming over the coming decades is important to

inform efforts to avoid dangerous climate change. It is equally

important to understand regional aspects of climate change,

including extreme events such as heatwaves, to allow adaptation
02
planning and to monitor the effects of mitigation strategies. Here we

present new results concerning regional impacts of climate change

that we might expect to see this century. This article builds on recent

comprehensive Intergovernmental Panel on Climate Change (IPCC)

reports (3) and synthesizes recent studies from diverse geographic

areas, ranging from the equator to the poles. A complete synthesis of

all aspects of regional climate change is not possible given the

constraints on the length of this article; hence, we focus on a few

key areas where recent progress has been made.
Scenarios and global mean
temperature projections

Climate model projections usually employ scenarios of

different future GHGs and other forcing agents to make

projections, and modeling centers share model outputs from

coordinated experiments via the Coupled Model Intercomparison

Projects (CMIP5 and CMIP6) (4). They use a set of Shared

Socioeconomic Pathways (SSPs) to sample different possible

futures (5). SSPs offer five different pathways (SSP1–5) with

different assumptions about future levels of population, land use,

gross domestic product (GDP), and emissions of GHGs and other

pollutants, especially aerosols (Box 1). Within each SSP, further

assumptions lead to sub-SSP scenarios, e.g., SSP1–1.9 or SSP1–2.6,

providing more detailed qualitative and/or quantitative information

to support specific analyses. These are based on the Representative

Concentration Pathways (RCPs; Box 2). As climate projection

scientists, we combine information from models, observations,

and our understanding of how the climate system works to assess

likely changes under these scenarios.

Different scenarios produce different levels of future global

warming. However, climate models are not perfect representations

of how the real climate system might evolve, owing to

approximations and limitations in computing power. Moreover,

any ensemble of global mean climate projections does not

necessarily represent our best estimate of the likely level of future

global warming (7). Reports such as the IPCC commonly adjust the

model output to produce a more credible estimate of future change.

Judgments about how to produce credible estimates lead to
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uncertainty over when key policy-relevant thresholds will be realized,

such as when pre-industrial temperatures will be exceeded by 1.5°C

and 2°C (Figure 1). Regional aspects of climate change and extreme

events often scale well with global mean temperature. Adjusting these

projections is therefore useful and global mean temperature targets

are a major focus for climate policy.

In addition to the SSP scenarios, new experiments are exploring

the impacts of stabilization at the target global warming levels of 1.5
Frontiers in Science 03
and 2°C set out in the Paris Agreement (11). Fixed GHG

concentration experiments show ongoing warming beyond 2100,

as expected when concentrations are kept constant (Figure 2) (13).

Fixed concentrations of CO2 imply some continued emissions and

so are not equivalent to net zero emission experiments. Zero CO2

emission experiments allow GHG concentrations to evolve

interactively, leading to a decline in concentrations following a

cessation of emissions. Such experiments may more closely simulate
BOX 2 Assumptions underpinning the Representative Concentration Pathways (RCPs) used by the International Panel on Climate Change
(IPCC) to characterize different levels of future global warming and climate change as sub-pathways of the Shared Socioeconomic Pathways
(SSPs; see Box 1). Adapted from (5).
BOX 1 Assumptions underpinning the Shared Socioeconomic Pathways (SSPs) used to characterize different levels of future global warming and
climate change. Adapted from (5).
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FIGURE 1

(A) Global mean surface air temperature (GSAT) observations and projections. Figure plots Coupled Model Intercomparison Projects (CMIP)-5 model
simulations, CMIP5 ensemble mean, and discrepancy-adjusted mean projections for GSAT over time. (B) Probability (in %) of GSAT change
exceeding 2°C, showing relative frequencies from 37 CMIP5 simulations and 10,000 simulations from the posterior predictive distribution of the time
series model—all relative to the long-term means over the early industrial period of 1850–1900. Adapted from (8) based on a simple linear energy
balance model that can mimic the global mean temperature evolution of more complex climate models (9). The projections of mean warming are
almost 0.5°C cooler than those in the Intergovernmental Panel on Climate Change 5th Assessment Report, which ignores common discrepancies—
leading to a substantial reduction and a delay of several decades in the future probability of > 2°C warming (10). Other approaches to adjusting for
climate model discrepancies use other assumptions and hence produce quantitatively different projections.
FIGURE 2

Global mean surface air temperatures over time from climate model (UKESM1.0-LL) experiments in which all anthropogenic forcings were held
constant at the level they were at in the year of branching off (in 2020, 2025, and 2040) from the parent Shared Socioeconomic Pathway SSP3–7.0
scenario. This includes constant concentrations of greenhouse gases (GHG) and constant emissions of anthropogenic aerosols and their precursors.
Similar experiments branching off from SSP2–4.5 and SSP1–1.9 are not shown here. Data from (12).
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the effects of reaching net zero emissions in the real world, where we

expect that a cessation of GHG emissions would halt further

human-induced global warming (2, 3).

The results reported here use a range of different approaches to

assess the signal of climate change. Some compare changes in

different SSP scenarios, while others compare changes at different

warming levels or simply assess the largest global warming scenario

to maximize the signal-to-noise ratio, i.e., the climate change signal

against the background of natural internal climate variability. In

general, we do not assign likelihoods to different warming levels or

scenarios but rather seek to assess confidence in signals based on

our understanding of how the climate system works.
Other climate forcers

Tropospheric aerosol emissions and concentrations are

particularly relevant to regional climate change over the next two

decades. Projected emissions of anthropogenic aerosols (such as

black carbon) and their precursors (such as sulfur dioxide; SO2)

span a range of pathways, from rapid reductions to close to

preindustrial levels by 2050 in SSP1 to continued increases to

2050 followed by moderate decreases in SSP3. SSP2 and SSP5

both include similar steady declines throughout the 21st century,

with carbonaceous aerosol emissions reaching pre-industrial levels

by 2100, and SO2 emissions returning to ~1900 levels. GHG

emissions are projected to decrease in SSPs 1 and 2. In SSP3 and

SSP5 they continue to increase until ~2050 and ~2070, respectively,

before declining. Generally, aerosol reductions will cause a climate

response of the same sign as GHG increases. While their influence

on global temperature projections is small, they are expected to play

a larger role in regional climate changes.
Assessing regional climate change
and extremes

Models and observations both show robust signals of climate

change. For example, models indicate greater warming over land

than over the ocean, tropospheric warming and stratospheric

cooling, Arctic amplification of warming, and enhanced warming

of tropical upper tropospheric temperatures—all features that have

relatively well-understood physical mechanisms (3, 10).

Nevertheless, the amplitude and precise spatial patterns of these

features require further study because of feedback in the climate

system (14). These thermodynamic features of climate change led to

dynamic changes in the atmosphere and ocean that are responsible

for changes in regional rainfall and weather systems. Models are

known not to provide perfect “digital twins” of the real climate

system: persistent and stubborn errors in models still hamper

progress in assessing regional and dynamical changes. Many of

the examples below aim to take model imperfections into account

using different approaches. This is a major focus of adaptation-

related climate science.

This article examines recently described changes in monsoons,

storm tracks and storms, and polar phenomena together with
Frontiers in Science 05
evidence regarding changes in the teleconnection patterns that

link remote geographical regions. Finally, we look at changes in

extreme phenomena, such as heatwaves. The final section outlines

how we move from assessing the physical climate hazard to

evaluating how such hazards impact nature and people—to better

inform critical mitigation and adaptation actions.
Monsoons and tropical rainfall

Monsoons

The term monsoon was traditionally used to describe the

seasonally reversing winds that occur in various tropical and

subtropical regions in summer. However, we now use the term to

mean both changes in atmospheric circulation and the

accompanying abundant rainfall that is important for agriculture,

for example. We either talk of individual monsoons or a collection

of monsoon systems averaged over multiple regions.

Changes in tropical precipitation associated with monsoons

directly affect billions of people, with 60% of the world’s

population living in the Northern Hemisphere monsoon regions

where the summer monsoon can bring 80% of the total annual

rainfall (15). Averaged over all the major Northern Hemisphere

monsoon systems, precipitation decreased from the 1950s to the

1980s. This was largely in response to increases in anthropogenic

aerosol emissions (16–18), which reduce hemispheric temperature

contrasts, cause the Inter-Tropical Convergence Zone (ITCZ) to

shift southwards, and decrease moisture flux into monsoon regions.

A range of regional trends exist within the Northern Hemisphere

monsoon region. For example, the severe Sahel drought in the

1980s has been largely attributed to aerosol increases (19, 20), while

drying trends over South Asia lie within the range of internal

variability (21, 22).

Northern Hemisphere monsoon precipitation is now increasing,

although the drivers remain unclear (21). Increased monsoon

precipitation is consistent with increases in GHG emissions, which

strengthen the hemispheric and land–sea temperature and moisture

contrasts, shifting the monsoon northwards (23–25), and increase

tropospheric humidity, which can lead to increased moisture fluxes

and precipitation (26, 27). Aerosol reductions also cause the ITCZ to

shift northwards, contributing to an increase in monsoon

precipitation (28). Nevertheless, the inter-model uncertainty in

changes in hemispheric temperatures and precipitation is large (29)

and is mediated by changes in ocean circulation (30). Modes of Sea

Surface temperature variability, such as the Atlantic Meridional

Variability, can also be affected by changes in aerosol emissions

and impact monsoon precipitation (31–34).

At regional scales, uncertainties in attributing monsoon trends

arise because of large natural internal variability, nonlinearities in

the response to forcing, and model biases (35). Attribution studies

often rely on historical simulations where only one forcing agent,

such as GHGs, varies with time. If a climate response depends

linearly on forcing, the linear sum of single forcing experiments

should reproduce the historical simulation. However, this is not the
frontiersin.org
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case for regional monsoon precipitation (17, 36). While the main

driver of the trend can be identified, quantitative attribution is

a challenge.

Rapid reductions in aerosol emissions in SSP1–2.6 result in

larger increases in Asian summer monsoon precipitation in the

near future (to 2050) in this scenario than in SSP2–4.5, SSP3–7.0,

and SSP5–8.5 (here Asia encompasses the South, Southeast, and

East Asian monsoons). This is despite the GHG decreases in

SSP1–2.6 and continued GHG increases in SSP3–7.0 and SSP5–

8.5, indicating that the scenario of aerosol emissions is most

important in the near term (37). Regional variations in aerosol

emissions are also important: SSP2–4.5 and SSP5–8.5 include

continued increases in SO2 emissions over South Asia alongside

decreases over East Asia. This dipole in Asian emission trends

appears to further suppress future monsoon precipitation

increases over South Asia relative to both SSP1–2.5, where

emissions decrease in South and East Asia, and SSP3–7.0, where

emissions increase in South and East Asia (37). This is due to

interactions between the atmospheric response to the East and

South Asian precipitation changes, which act to amplify the South

Asian precipitation response (36).

Aerosol-driven trends in historical South Asian monsoon

precipitation are more likely to emerge than GHG-driven trends

(17). Nevertheless, natural internal variability is large and can

obscure the forced signal for several decades (22). The differences

in near-future precipitation between SSP3–7.0 and SSP1–2.6 are

therefore still small relative to internal variability (Figure 3). Both

scenarios result in warming throughout the tropics, which is larger

in SSP3–7.0 everywhere except South and Northeast Asia. Both

scenarios also show similar patterns of precipitation change, with

increases in the African and Asian summer monsoon regions and

the Pacific ITCZ being larger in SSP3–7.0, while the Asian and

Pacific changes are largest in SSP1–2.6, hinting at a larger aerosol

contribution to the near-future trends here.

Despite progress in understanding the signal of monsoon

changes against the background of natural internal climate

variability, knowledge gaps remain. Climate models have long-

standing biases in simulating mean monsoon precipitation and

typically underestimate monsoon intensity and extent (17, 37, 38).

These biases can prevent attribution of monsoon changes: even if

models capture the observed mechanism underlying a

precipitation change, they may not reproduce the precipitation

change itself (35). As the relative position of regional forcing and

regional circulation features is important for the circulation

response to forcing, such biases may also limit our mechanistic

understanding of precipitation trends. Large inter-model

differences in monsoon climatology also contribute to

differences in monsoon projections (39), although such a link

over West Africa is unclear (40, 41). As for many climate

projections, reduction in model biases is a priority.

Contrasting changes are expected in other monsoon regions,

with increases in rainfall projected in some and decreases projected

in others (42). In addition, changes in intraseasonal variability such

as active-break cycles are possible. Monsoon systems have large

impacts on societies, for example through floods, landslides, and

agricultural production (43). Changing monsoons will change the
Frontiers in Science 06
risks of such hazards, with the potential to lead to reduced resilience

and high vulnerability if adaptation actions are not taken.
Other tropical rainfall changes

Rainfall is crucial in the tropics to sustain Earth’s largest rainforest

systems, thereby supporting biodiversity and global carbon uptake.

One of the major processes driving changes in rainfall in these regions

is the plant physiological effect, whereby enhanced CO2 causes

stomata to open less, reducing evapotranspiration and the enhanced

land versus ocean warming (44). These processes interact with the

climatological circulation in different ways in different rainforest

regions. Over New Guinea, for example, land-surface warming

amplifies moisture convergence from the ocean and increases

rainfall. In the Congo, no clear rainfall changes emerge as the land-

surface warming effect is offset by migrations of rainfall. In Amazonia,

the interaction of land-surface warming with the climatological

circulation pattern leads to a precipitation-change dipole, with

reduced rainfall in central and eastern Amazonia and increased

rainfall in the west (45).

Single-model initial-condition large ensembles (SMILES) can be

employed to better quantify the roles of forced and internal variability

and to elucidate the impact of structural differences between models.

They can be used to better quantify inter-ensemble spread (17) or to

isolate the role of different forcing factors, such as aerosols (46). In

addition to such ensembles, atmosphere-only model simulations can

isolate forcings, such as the direct effect of CO2 or the impact of

warming sea surface temperatures on monsoons (47, 48). Such

changes may be decomposed into components that evolve on

different time scales (6). These recent studies have revealed

competing factors influencing dynamic atmospheric features that

drive opposing trends in monsoon rainfall (e.g., in North Africa in the

cited articles). Future changes in monsoon patterns are therefore

uncertain, the net signal resulting from a balance of these

opposing trends.
Midlatitude climate change

Storm tracks and jet streams

Seasonal storm tracks are a major part of the global atmospheric

circulation and are associated with most of the climate variability in

the midlatitudes via the storms or cyclones that they comprise.

These weather systems are climate hazards that can bring loss of life

and property damage through high winds, intense precipitation, or

both. Most risks associated with midlatitude storms occur when the

associated extreme weather features interact with areas of high

population and/or infrastructure density. Damage is often worse

when storm systems are associated with multiple (or compound)

hazards, such as extreme wind and rain (49).

Models can represent most of the large-scale features of storm

tracks and are improving through increases in spatial resolution,

with models with spatial resolutions of 25–50 km being able to

capture the most intense events (50–54). Nevertheless, persistent
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FIGURE 3

Near-surface June–September air temperature difference between present day conditions (1979–1999), (A) Shared Socioeconomic Pathway SSP1–
2.6 (2035–2060), and (B) SSP3–7.0 (2035–2060). (C) is the difference between the responses in the two scenarios. (D–F) show the same for
precipitation. Stippling (black dots) shows where the magnitude of the anomaly is greater than at least twice the internal variability for each grid
point, based on the standard deviation of a 25-year running mean from the pre-industrial control simulations, which represent only natural internal
climate variability. Red contours in (D–F) indicate the present day average June–September precipitation.
Frontiers in Science frontiersin.org07
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biases remain in terms of the strength of winds in different cyclone

airstreams and the strength of the large-scale upper-level jet.

How storm tracks respond to climate change is uncertain. The

IPCC 5th Assessment Report (10) concluded that a poleward shift

of storm tracks is likely in the Southern Hemisphere; this is also

observed to a greater extent in CMIP6 models with larger end-of-

century warming (55). However, regional changes in the Northern

Hemisphere are more uncertain (56). Storm-related precipitation is

expected to increase, but future changes in wind strength are less

clear (57), partly owing to methodological differences between

studies. CMIP6 models of the most intense storms show robust

increases in wind intensity under future climatic forcing using

various metrics (55). This signal of increased intensity for the

most damaging storms is also found using models with cloud-

permitting resolutions (58). It is hypothesized that diabatic

processes—which stimulate higher intensity cyclones—are

resolved more realistically in high-resolution models than in

coarser resolution ones (59, 60).

As model resolution increases, a recent study suggests the

potential for a greater sensitivity of the storm tracks to warming

(61). Complementing a high atmospheric resolution with a very

high resolution 1/12°, “eddy-rich” ocean can provide a clearer signal

of climate change in midlatitude storminess and precipitation. Such

coupled high-resolution models project significantly greater future

increases in east Atlantic storminess (62) and European

precipitation than do simulations with a lower-resolution (¼°)

ocean (63). This is due to the better representation of features

associated with oceanic western boundary currents, such as the

separation of the Gulf Stream from the eastern coast of the United

States. Only in the eddy-rich resolutions has the Gulf Stream been

found to separate correctly at Cape Hatteras (Figure 4). This

separated Gulf Stream moves toward the coast under climate

change, bringing the warm Gulf Stream waters closer to the cold

continental air that appears critical for increasing future storminess

and precipitation associated with Atlantic midlatitude storms.

Changes in emissions of atmospheric aerosols have been found to

influence storm tracks as well as monsoons. The Eurasian subtropical

westerly jet (ESWJ) is a major feature of the summertime

atmospheric circulation in the Northern Hemisphere. CMIP6

simulations suggest that the observed weakening of the ESWJ over

the past four decades is likely driven by changes in aerosol forcing.

Warming over mid-high latitudes due to aerosol reductions in

Europe, and cooling in the tropics and subtropics due to aerosol

increases over South and East Asia, reduced the meridional

temperature gradient at the surface and in the lower and middle

troposphere, leading to reduced vertical shear of the zonal wind and a

weaker ESWJ in the upper troposphere. If Asian anthropogenic

aerosol precursor emissions decline in the future there may be a

renewed strengthening of the summer ESWJ (64).
Blocking anticyclones and
summer heatwaves

Anticyclones, i.e., regions of high atmospheric pressure, are also

a feature of midlatitude weather and often form blocking situations
Frontiers in Science 08
that can persist for many days (65) and cause prolonged heatwaves,

especially in summer. While global warming over land is the main

cause of shifting temperature distributions and increases in the

frequency and intensity of heatwaves in the future, climate models

can also be used to detect changes in blocking frequency and in the

relationship between blocking intensity and heatwaves. Over

Europe, for example, models show a small decrease in blocking

frequency, implying a small decrease in blocking-related heatwaves.

However, the relationship between blocking and heatwaves

strengthens, offsetting this decrease. Models indicate that blocking

frequency generally decreases over the main Atlantic and Pacific

midlatitude storm track regions but increases over the Arctic Ocean

and Greenland. However, these signals are generally small and can

be hard to detect against the noise of natural variability (66).

Improving the ability of models to simulate blocking events is still

an active area of research.
Low-frequency climate variability

Low-frequency variability, i.e., anomalies that persist for more

than one season, in atmospheric circulation in the Atlantic sector

appears to be underrepresented even in the latest climate models

(67–71). Similarly, signals of decadal change in and around the

Atlantic sector appear to be underestimated in current climate

predictions (72, 73). This means that uncertainty in multidecadal

climate change around the Atlantic basin is also likely to be

underestimated (74, 75) and multidecadal variations, for example

in winter storminess, could be greater than estimated by

current models.

Related to this is the question “how robust are current

projections of ocean circulation changes and their impacts on

midlatitude storms to an increase in model resolution?” Early

experiments with higher resolution ocean models suggest the

potential for greater decadal variability (76) and greater levels of

climate change and climate variability (61, 63, 75) than found in

lower resolution models. Atmospheric resolution may also play a

role, as transient eddy feedback—crucial for maintaining storm

tracks and amplifying changes—may increase at higher resolutions

(77), further exacerbating trends beyond current predictions by

lower resolution models.
Polar changes

Although geographically remote from major centers of human

population, the polar regions are key centers of action for major

aspects of the global climate system. The seas around Antarctica are

a major regulator of global atmospheric concentrations of heat and

CO2 (78), and changes in the seasonal ice cover and ocean density

structure would have important effects on the climate worldwide.

The Arctic is the most rapidly warming region of the planet

(a phenomenon called Arctic amplification), and sea ice loss has

been suggested to affect midlatitude weather systems and climatic

conditions (79). Loss of polar ice sheets is the main source of

uncertainty in estimates of future global sea level change.
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Sea ice changes

The IPCC AR6 report concluded that the Arctic is likely to be

practically free of sea ice in September at least once before 2050 under

the five RCP scenarios considered, with more frequent occurrences
Frontiers in Science 09
for higher warming levels (3). Such changes are among the major

feedbacks in the climate system that amplify polar warming and will

lead to large impacts on both land and marine ecosystems. Arctic sea

ice loss could also influence the weather in middle latitudes (see

section “Connections from the polar regions to midlatitudes”).
FIGURE 4

(A) Shows the modeled historical (1951–2014) and projected (2015–2050) Gulf Stream separation, measured by the distance of the maximum winter
sea surface temperature from the United States coast at 37°N, according to 1/4° and 1/12° (eddy-rich) ocean resolutions. A 7-year running mean has
been applied. The climate model is HadGEM3 3.1. Lower panels show projected change (2031–2050 minus 1950–1969) in December–February
surface storminess in (B) eddy-rich projection and (C) eddy-permitting resolution [updated from (61)].
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However, the same report assigns low confidence to projections

of Antarctic sea ice owing to uncertainties in the representation of

key processes and our poor understanding of recent trends, which

have shown large variability in sea ice extent. Nevertheless, CMIP6

models largely project loss of Antarctic sea ice by the end of the 21st

century, with the forcing scenario playing a key role in this

timescale. Antarctic sea ice loss is significantly reduced in strong

mitigation scenarios such as SSP1–2.6 (80).

Relationships between historical Antarctic sea ice area (SIA)

and future loss provide opportunities to reduce uncertainty in the

future trajectory of the latter (81, 82). More detailed analysis

techniques, such as deriving sea ice concentration budgets, can

further segregate models based on the underlying physical

processes as well as their projected ice cover. Some models in

CMIP5 were able to capture the relative contributions of

dynamics and thermodynamics to the development of the

Antarctic sea ice winter maximum (83), improving confidence

in model projections.

Shared process biases in all climate models, such as

parameterized ocean processes due to low resolution (84) or lack

of dynamic freshwater flux from the Antarctic Ice Sheet (85), may

imply that all CMIP models exaggerate centennial-scale Antarctic

sea ice loss. Comprehensive multi-model comparisons are required

to determine the model and parameter sensitivities of the results.

Better evidence on future sea ice changes at smaller spatial scales is

crucial to elucidating the local and wider impacts, e.g., on ice

shelves, ice sheets, and Antarctic ecosystems.
Precipitation in polar regions

CMIP6 models project a faster increase in Arct ic

precipitation throughout the century than earlier models (86).

CMIP6 models also project that more of the precipitation will fall

as rain rather than snow, with Arctic-wide reductions in snow

and increases in rain occurring (especially in autumn) by the end

of the century. This transition to a rainfall-dominated

precipitation in the Arctic is therefore expected decades earlier

than previously anticipated, driven by amplified Arctic warming

and more open water and atmospheric moisture transport. Parts

of the central Arctic are expected to transition one or two decades

earlier than in CMIP5 models, even accounting for CMIP6

models with high equilibrium climate sensitivity (87). A

transition to a rainfall-dominated Arctic would be less likely if

global warming were limited to 1.5°C than 3°C (86).

The mass balance of the Antarctic Ice Sheet is particularly

relevant to projections of future sea level. Precipitation over the

Antarctic Ice Sheet is also likely to increase throughout this century,

with projected increases of +27 to +70 mm year-1 (88). With this

falling predominantly as snow, the resulting gain in ice sheet mass

will partly offset sea level rise from other sources. As in the Arctic,

however, more of this increased precipitation will fall as rainfall,

which could reach 15.3% of the total precipitation for the entire

Antarctic and 56.9% for the Antarctic Peninsula, potentially

destabilizing floating ice shelves in affected regions (88).
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Polar contributions to sea level changes

The West Antarctic Ice Sheet (WAIS) is losing ice and is the

largest source of uncertainty in projections of future sea level (3).

This ice loss is caused by changes in ocean melting of floating ice

shelves in the region, but it is unclear why this melting has changed

and whether this is driven by anthropogenic forcing. The warm

(1°C) Circumpolar Deep Water melting the ice sheet has been

buried in the deep ocean for centuries and has not simply warmed

during the historical period (i.e., from pre-industrial times to

today). However, the supply of this warm water towards the ice

sheet is regulated by winds, and changes in winds across the shelf

seas surrounding Antarctica may have accelerated melting. Climate

model simulations contain historical westerly wind trends over the

shelf break in the Amundsen Sea (89). An ocean model driven by

these winds shows enhanced transport of warm water onto the

shelf, resulting in increased melting of theWAIS (90). However, this

is a region of extremely strong internal climate variability, linked to

the tropical Pacific. Internally generated wind trends over the

Amundsen Sea are of the same magnitude as those driven by

external forcing, and so could substantially enhance or offset the

anthropogenic trends (89). Paleoclimate reconstructions that better

constrain the trajectory of historical variability (91) are therefore

key to quantifying the role of anthropogenic forcing in sea level rise

from the WAIS.
Circulation change

Projected changes in midlatitude tropospheric westerly jets and

associated storm tracks are closely linked to polar amplification and

projected changes in sea ice. As sea ice retreats under future warming

scenarios, the lower-tropospheric meridional temperature gradients

are reduced, which acts to weaken the jets and shift them

equatorward (79). However, at upper levels (in the tropopause

region) GHG-induced global warming increases the equator-to-

pole meridional temperature gradients, which strengthens and

shifts the jets poleward (92, 93). The latter effect is stronger in the

Southern Hemisphere, with relatively weak low-level polar

amplification and clear positive anomalies in zonal mean zonal

wind at midlatitudes (Figure 5). In the Northern Hemisphere,

strong Arctic amplification opposes the strengthening influence of

upper-level change, leading to overall weaker wind changes than in

the Southern Hemisphere.

Climate models vary greatly in their projections of how much

the jets and storm tracks strengthen and shift poleward under future

warming scenarios (67, 92). Much of this inter-model diversity in

projected strengthening is related to variations in the amount of sea

ice retreat within different models: more retreat is associated with

stronger polar amplification and a greater offset of the upper-level-

induced jet strengthening (67, 93). Many climate models exhibit

unrealistically large or small climatological sea ice extent under

present-day climate forcing, which affects the realism of their

projections (e.g., a model with very little sea ice in the present

day is limited in the amount that can be lost under future warming).
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FIGURE 5

Projections of 21st century changes in zonal mean temperatures and zonal winds. Plots (A–D) show Coupled Model Intercomparison Projects
(CMIP)-5 ensemble means of time-slice differences between 2070–2099 (representative concentration pathway 8.5 [representative concentration
pathway 8.5 (RCP8.5) scenario]. The figure also shows CMIP5 historical mean sea ice edge equivalent latitudes and satellite-derived equivalent latitudes.
Adapted from (67) with permission from©American Meteorological Society, where details of the CMIP5 models and methods are provided.
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For the Southern Hemisphere, this has implications for the realism

of projections of the westerly jet from these models, offering the

potential for constraining projections (67).

Uncertainties in sea ice projections add to knowledge gaps in

atmospheric circulation changes. Improved sea ice projections

would help to provide more certain and/or realistic projections of

storm tracks and winds at mid-high latitudes. A further challenge is

that many climate models appear to underestimate the weakening

and equatorward shift of the jet stream in response to Arctic (and

potentially Antarctic) sea ice loss, with the observationally

constrained estimate towards the upper end of the model

range (79).
Teleconnections between climate
system regions

Aspects of regional climate and climate change, including

tropical rains, storm tracks, and polar regions, do not evolve

independently. Strong connections, known as teleconnections,

often exist between regions owing to the dynamic nature of the

atmosphere and ocean. These causal connections or correlations

between climate phenomena can occur across great distances, e.g.,

from the tropics to the midlatitudes or across different ocean basins.

The many teleconnection pathways that exist in the atmosphere and

ocean include tropospheric Rossby Waves, stratosphere-

troposphere coupling, and large-scale ocean circulations such as

the Atlantic Meridional Overturning Circulation. Here we focus on

two such pathways.
Connections from the tropics
to midlatitudes

The El Niño Southern Oscillation (ENSO) is a major driver of

global teleconnection patterns. ENSO is expected to become more

extreme and more frequent in the future, as measured by the

frequency by which rainfall shifts into the tropical east Pacific.

According to projections, the signal of this change may emerge by

the 2040s under all SSP scenarios. This date is uncertain, however,

owing to substantial background variability in ENSO (94). Present-

day ENSO impacts temperature, rainfall, and atmospheric

circulation and increases the risk of phenomena such as wildfires

around the tropics and toward midlatitude and polar regions.

However, there is little agreement between models on the

magnitude and even sign of such changes in ENSO impacts (95).

Midlatitude storms and storm tracks are strongly influenced by

remote climate variations in the tropics. Tropical convective

diabatic heating influences climate, weather, and storm patterns

in the midlatitudes through the triggering of quasi-stationary

Rossby waves (96, 97). Numerous teleconnections from the

tropics appear to strengthen under future climate scenarios,

potentially increasing the impact of tropical changes on

midlatitude climate (e.g., via the ENSO (98), Madden Julian

Oscillation (99), or Quasi-Biennial Oscillation (100)) and
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producing a more variable winter storm track in future. Indeed,

recent decades have seen an increase in the year-to-year variability

of the winter atmospheric circulation between very westerly winters

conducive to extreme storms and easterly winters associated with

reduced storm activity (101).

Shifts in tropical rainfall variability might also trigger changes in

teleconnections. CMIP6 models consistently predict that the

positive temperature anomalies over Alaska and northern North

America associated with present-day El Niño events are much

weaker, or of the opposite sign, under a quadrupling of CO2

(Figure 6) (102, 103). According to a barotropic model, the

projected eastward shift of ENSO precipitation, rather than the

increase in its magnitude, is the main driver of the temperature

teleconnection change.

Thanks to a recent methodological advance, the response of the

Northern Hemisphere winter atmospheric circulation can be

modeled as a series of reactions to variations in tropical

precipitation (104). For example, anomalous tropical rainfall in

the eastern Indian Ocean and the Maritime Continent reveals a

robust teleconnection pattern across the whole of the Northern

Hemisphere mid-latitudes that appears after around 2 weeks of

precipitation forcing. This pattern is due to the excitation of Rossby

waves, which propagate along a waveguide determined by the large-

scale atmospheric circulation in midlatitudes. The pattern is largely

the same for both forcing regions considered but is sensitive to the

model representation of the waveguide.

Connections from the polar regions
to midlatitudes

What happens at the poles does not stay at the poles. While this

common trope is undoubtedly true, our knowledge of how polar

climate change affects lower latitude climate and extreme weather is

imprecise. Consensus on the lower-latitude effects of amplified

Arctic warming has been hampered in part by apparent

discrepancies between models (105) and between observations

and models (106), with models suggesting weaker effects than

implied from statistical analyses of observations. In recent years,

progress has been made in reconciling observations and models in

two ways. First, updated observational records show a weaker

relationship between Arctic change and midlatitude weather

(79, 107), highlighting that large internal variability hinders

quantification of the causal links over relatively short observed

records (108–110). Second, new coordinated model experiments

(111) have facilitated a better estimate of the large-scale circulation

response to Arctic sea ice loss and its robustness across models (79).

Many models appear to underestimate the weakening and

southward shift of the jet stream in response to Arctic sea ice

loss, with the observationally constrained estimate towards the

upper end of the model range. Thus, a downward adjustment of

the observed estimate and an upward adjustment of the model

estimate align the two and suggest a robust but weak effect (79). The

large-scale circulation response to Arctic sea ice loss is likely weak

compared to interannual variability. Nevertheless, it may still

explain a non-negligible component of future atmospheric
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circulation trends (79, 112) given that sea ice is projected to

continue to sharply decline.
Extremes and hazardous
climate change

A hazardous event is one that has the potential to cause damage

to some part of society or the physical natural environment.

Weather and climate hazards include temperature extremes (e.g.,

heatwaves and cold surges), hydrological extremes (e.g., heavy

rainfall and droughts), and extra-tropical storms and tropical

cyclones, along with associated storm surges. Their potentially

disastrous impact on society is proportionate to the intensity of

the event and may exceed the adaptation capacity for some event
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types. We need to start considering these extreme hazards more

seriously to prevent serious socioeconomic damage, for instance to

our health systems (113).

Understanding the current likelihood of hazardous events is

vital. Extreme heat events already occur regularly—such as the

heatwaves in June 2021 that broke local temperature records by over

4°C in western North America (114) and the one in July 2022 that

delivered the first temperatures exceeding 40°C in the United

Kingdom. Extreme rainfall events are also increasing, such as

those which led to the devastating floods in Pakistan in 2022.

While many regions have experienced extreme events, others have

not, so they may be more susceptible to the impacts due to lack

of preparation.

Observational estimates of the likelihood and intensity of

extreme events are limited by the length of historical records.
FIGURE 6

Changes in El Niño Southern Oscillation (ENSO) teleconnections. (A) Multimodel mean (MMM) abrupt-4×CO2 minus piControl surface temperature
anomaly in El Niño years. (B) Change in surface temperature anomaly averaged over the northern North America (NNAM) region [boxed in (A)] for
each Coupled Model Intercomparison Projects (CMIP)-6 model and the MMM. In the abrupt-4×CO2 simulations, the positive El Niño temperature
anomalies are weaker in almost all models across much of northern North America. The models in (B) are arranged from positive to negative
temperature anomaly change, with red stars indicating models with a temperature anomaly change significant at the 5% level. Adapted from (102)
with permission from©American Meteorological Society.
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Moreover, in a non-stationary climate, the use of early observations

must account for the evolving global warming signal (115).

Observed past extremes can inform about conditions leading to

record-breaking extremes (116), yet observations alone are not

sufficient to sample possible temperature extremes. This problem

is exacerbated when we try to calculate the chances of extreme

events that lie, by definition, in the tails of event distributions and

therefore change in frequency more quickly than moderate events.

New techniques to calculate the current chances of extreme hazards

have therefore been developed in recent years using large ensembles

of climate simulations (117). For instance, thousands of seasonal

simulations of United Kingdom winters may be used to calculate

the chances of unprecedented extreme rainfall—e.g., through

estimation of extreme winter rainfall levels out to the 100-year

return period and beyond. This technique has been applied to the

intensity and frequency of other regional-specific extremes,

including Indian monsoon rainfall (118), local rainfall trends

(119), and summer heatwaves (120, 121). It has also been

extended to non-meteorological impacts, such as effects on crop

yields (122). This approach offers much promise in providing

scenarios to contingency planners in many areas to allow

planning for reasonable worst-case scenarios for impending

extreme events that are already being affected by climate change.
Heatwaves

Record-shattering extremes are projected to increase over the

next century in both frequency and magnitude (123). Changes in

temperature extremes emerge shortly after changes in the mean

climate state; such signals are already detectable in many regions,

including Asia, West Africa, and many parts of Europe (124, 125).

However, regional variations may exist—for instance, under the

high-emission SSP5–8.5 scenario, heatwaves are expected to

emerge across the western United States and Great Lakes

regions during the 2020–2030 decade, while similar events may

not emerge before 2050–2070 in the northern and southern Great

Plains (126). Notably, while heatwaves require the correct

configuration of atmospheric circulation (120), regional effects

(such as changes in land surface usage and cover) can influence

their evolution (127). The heatwave that occurred in the United

Kingdom in 2018 is now around 12-fold more likely than it was in

the mid-20th century, and its rate of occurrence is increasing

nonlinearly with time (120).

Nevertheless, some studies show that the change in extremes

is occurring at the same rate as the climatological mean shift

(128). Globally, it is estimated that 1-in-20-year heatwave events

in the current climate will increase in frequency by 130% and

340% at the target warming levels of 1.5°C and 2.0°C, respectively

(129). These changes and their implications could even be

underestimated, as some climate models show unrealistic

variability owing to poorly represented land-atmosphere

processes. Selecting the most realistic models leads to higher

estimates of heatwave increases in many parts of tropical and

subtropical areas (130). Furthermore, many recent extreme heat
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events have been accompanied by fire, which may impact carbon

uptake by vegetation and presents a risk on its own.
Heat and humidity

Many countries, especially in tropical and sub-tropical areas,

face threats from combined hot and humid conditions in parallel

to increased dry-bulb temperatures. These threats include

disruption to food systems, water and sanitation, and animal

and human health. High temperature and humidity in the

atmosphere can result in heat stress in the human body that can

exacerbate medical conditions such as asthma and chronic

obstructive pulmonary disease (131, 132). Many weather

services use humid heat warning systems, although other

national heatwave plans do not (133). At present, the

correlation of heat-related mortality is highest with dry heat

events in Asia and Australia (134). Similar results had

previously been found for other regions (135, 136), but recent

research suggests that a temperature metric that incorporates

humidity and wind speed correlates better with mortality

outcomes in Europe (134). Humid heat stress poses particular

occupational health risks to outdoor workers (137). For wet-bulb

temperature (a measurement of heat that includes moisture),

SSP5–8.5 could lead to deadly conditions in India by the end of

the century, where mitigation capacity is limited and the

population greatly relies on outdoor agricultural labor (138).

Even under a more moderate scenario (SSP2–4.5), 55% of the

Indian population is projected to experience severe dangerous

conditions by 2100, versus 15% currently. Meanwhile, extreme

wet-bulb temperature events have already occurred in countries

like Pakistan (139). Statistical relationships between humid heat

and work ability are stronger (140) and may have previously

been understated, especially for outdoor work (141). This raises

the possibility that heat stress in crops could be compounded by

late harvesting due to human heat stress (137). Many countries

have not yet experienced statistically plausible extreme heat, and

those countries with increasing populations combined with

statistically low current records are most at risk (142). These

regions are less likely to have adequate levels of preparedness,

and thus are more susceptible to the impacts of extreme heat.

Hence, future change in heat is a key factor driving the impacts

of climate change.
Droughts

Droughts have significant impacts on agriculture, food,

availability of drinking water, and the health of humans and

animals. Droughts can arise from deficits in rainfall, enhanced

evaporation from soils, or man-made abstraction. Quantifying the

emergence of impacts related to the hydrological cycle has proved

problematic given inter-model differences in the spatial pattern of

projected trends and the range of precipitation trends obtained

using different methods (143). However, there is more agreement
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regarding future increases in wet extremes than in mean changes

(143). The issue of model bias in drought projections may be

partially solved by looking at the emergence of significant changes

in “aridity” (precipitation divided by potential evapotranspiration)

—a quantity related to soil dryness. In a set of bias-corrected model

projections, restricting global mean temperature changes to 1.5°C

above pre-industrial conditions rather than 2°C significantly

reduces the area and number of people exposed to significant

aridification: for instance, fewer people would experience a

climate shift from semi-arid to arid or very dry conditions, with

fewer impacts on water supply and agriculture (144). This adds to

the evidence that even small reductions in global temperature

change could have sizeable effects on many millions of people.
Tropical cyclones

At the extreme end of precipitation hazards are tropical

cyclones, which are also associated with many other hazards,

including extreme winds and storm surges. As global

temperatures rise, tropical cyclone risk is also projected to

increase in multiple regions and across multiple related hazards.

A recent expert assessment of relevant tropical cyclone research

suggests that at a global 2°C warming, higher storm inundation

levels driven by sea level rise and increased precipitation rates

(~14% globally) are likely, increasing the risk of coastal and surface

flooding. The intensity of tropical cyclones is also projected to

increase (averaged globally), with modeling suggesting a 5% (1–

10%) increase in lifetime maximum surface wind speeds

accompanied by a 13% increase in the proportion of cyclones

developing into very intense (category 4–5) events (145). One

recent study evaluated future changes in population exposure to a

storm-surge event of the same scale as Super Cyclone Ampham,

which resulted in surges of 2–4 m along the Indian and Bangladeshi

coastlines in 2020. Under a high emissions scenario (SSP5–8.5),

it projected a >200% increase in exposure to extreme storm surge

flooding (>3 m) in India and an >80% increase for low-level

flooding (>0.1 m) in Bangladesh. Even under a low emissions

scenario (SSP1–2.6), India showed a >50% increase in flood

exposure (146).
From hazards to risks to
climate action

The recent research findings described above mainly address

changes in the probability of different climate hazards. To properly

translate hazard analysis into risk analysis also requires evaluation

of vulnerability and exposure, and many of the impacts of these

events are multi-faceted. For instance, the health impacts of heat

depend not only on atmospheric conditions, but also on human

behavior and physiology and on the built environment (147).

Similarly, damage and human impact from tropical cyclones are a

product of relevant socioeconomic and behavioral patterns,
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demographics, disaster planning, and governance, as well as the

physical climate event itself (148, 149).

Consider the global impacts of changes in heat extremes: the

ability of 1 billion people to work outdoors will be affected by hot-

humid conditions if global warming reaches 2.5°C (150), while 100

million people could be exposed each year to deadly conditions if

global warming reaches 3°C (151). As agricultural labor is seasonal,

considering only annual averages can lead to an under-estimation

of the impact of hot-humid conditions on agriculture (137). These

studies, among many others, show how increases in humid heat

associated with global climate change can severely affect

populations relying on outdoor labor, with a triple threat to

health, productivity, and food security.

A more comprehensive assessment of hazards, risks,

vulnerability, and resilience would allow governments, citizens,

and businesses to take the actions they need to adapt to future

climate change in conjunction with the implementation of strong

mitigation measures to limit GHG emissions.
Knowledge gaps and priorities for
future research

The climate projections discussed here are important for several

scientific and policy reasons.

Adaptation to existing climate variability and change, and to

further changes in the near future, is a recognized urgent priority of

the United Nations Framework Convention on Climate Change

(UNFCCC). Climate hazards are also a key risk to be managed

under the Sendai Framework for Disaster Risk Reduction (152).

Adaptation and risk management must be based on the most up-to-

date information about current and future climate changes, as

described here. However, we need to go further to understand

risks to human and natural systems and the resilience and

vulnerability of those systems, communities, and countries to

ultimately implement a plan of action to increase resilience and

reduce vulnerability. We address risk in several sections above but

need to go further if our work on climate hazards is to have an

impact. Uncertainties in predictions and projections must be

accounted for but cannot be a barrier to action.

Much of the scientific focus on mitigation has been on the

sensitivity of the global climate to increases in GHGs and other

forcing agents. However, global changes are the sum of regional

feedbacks. In the case of the equilibrium climate sensitivity (ECS),

these include cloud feedbacks, surface albedo changes (especially in

polar regions), and vertical temperature lapse rate and water vapor

feedbacks. Understanding and quantifying changes in the

phenomena discussed in this article is key for constraining the

ECS. Much work in this area has moved from global to regional

scale processes (153).

Another key piece of global feedback on the problem of

mitigation is the sensitivity of the carbon cycle to global

warming. Anthropogenic CO2 emissions add to the natural cycle

of CO2 sources and sinks, and regional climate changes can
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disrupt the cycling between those sources. A key risk is in tropical

rainfall regions, which may switch from a sink to a source (154).

As for the ECS, understanding regional climate change,

particularly in the tropics, is an important component of

constraining carbon budgets and in determining emissions to

limit warming (155).

Finally, understanding how our complex climate system works

and predicting its variations and how it might change under the

influence of factors, such as increasing GHGs or a change in orbital

conditions (palaeoclimates), is one of the great modern scientific

endeavors. We modestly suggest it is on the scale of understanding

the structure of the universe, or particle physics, or understanding the

human brain. It is a great achievement, for example, that we can write

down equations for the climate system, solve those equations on a

supercomputer, and produce a model resembling the real climate

system we observe. Building on this achievement, the research

described in this article is at the cutting edge of science for policy.
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