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Abstract

Global warming and climate change have increased the pollen burden and the

frequency and intensity of wildfires, sand and dust storms, thunderstorms, and

heatwaves—with concomitant increases in air pollution, heat stress, and flooding.

These environmental stressors alter the human exposome and trigger complex

immune responses. In parallel, pollutants, allergens, and other environmental

factors increase the risks of skin and mucosal barrier disruption and microbial

dysbiosis, while a loss of biodiversity and reduced exposure to microbial diversity

impairs tolerogenic immune development. The resulting immune dysregulation is

contributing to an increase in immune-mediated diseases such as asthma and other

allergic diseases, autoimmune diseases, and cancer. It is now abundantly clear that

multisectoral, multidisciplinary, and transborder efforts based on Planetary Health

and One Health approaches (which consider the dependence of human health on

the environment and natural ecosystems) are urgently needed to adapt to and

mitigate the effects of climate change. Key actions include reducing emissions and

improving air quality (through reduced fossil fuel use), providing safe housing (e.g.,

improving weatherization), improving diets (i.e., quality and diversity) and

agricultural practices, and increasing environmental biodiversity and green

spaces. There is also a pressing need for collaborative, multidisciplinary research

to better understand the pathophysiology of immune diseases in the context of

climate change. New data science techniques, biomarkers, and economic models

should be used to measure the impact of climate change on immune health and

disease, to inform mitigation and adaptation efforts, and to evaluate their

effectiveness. Justice, equity, diversity, and inclusion (JEDI) considerations should
efforts to address disparities in the impact of climate change.
be integral to these
KEYWORDS

air pollution, immune diseases, allergy, asthma, biodiversity, climate change,
mitigation, pollen
Key points
• Climate change is driving an increase in immune-
mediated diseases such as asthma, allergies,
autoimmune diseases, and cancers.

• Anthropogenically driven increases in pollen, wildfires,
sand and dust storms, thunderstorms, and heatwaves—
with concomitant increases in air pollution, heat stress,
and flooding—are altering the human exposome and
worsening human health.

• Multilevel, multisectoral adaptation and mitigation
actions are vital to reduce emissions and improve air
quality, provide safe housing, improve diets and
agricultural practices, and increase environmental
biodiversity and peoples’ exposure to
natural environments.

• New biomarkers, data science approaches, and economic
models are vital to better measure the impact of climate
change on health.
02
• Mitigation and adaptation efforts need to be global,
equitable, and recognize that the health of the planet is
integrally connected to human health.
Introduction

Increased anthropogenic activity, including deforestation,

urbanization, modern agricultural practices, manufacture of

synthetic chemicals, overuse of fertilizers and antibiotics, and the

use of fossil fuels and biomass for energy, have altered Earth’s

environment. Global temperatures and the frequency and severity

of climate change events such as heatwaves, wildfires, sand and dust

storms (SDSs), and thunderstorms have all increased over recent

decades (1). These events further increase global warming.
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For example, wildfires release large amounts of greenhouse gases

(GHGs) further contributing to air pollution and global warming,

and accelerating the vicious climate feedback loop. Climate change

events lead to increases in pollen burden, air pollution, flooding,

and heat stress, which physically, chemically, and biologically alter

the human exposome (i.e., the cumulative environmental exposures

encountered by an individual in a lifetime). Wider environmental
Frontiers in Science 03
determinants of health are also affected by climate change,

including biodiversity loss and access to nutritious food, clean

drinking water, and secure shelter (Figure 1).

Humans have evolved an immune system to protect against

environmental assaults and maintain health. The epithelial barriers

of the gut, lungs, and skin are the body’s first line of defense.

Immune cells within the epithelial layer determine the extent of the
FIGURE 1

Effects of climate change-related events on immune dysregulation and human health through immune-mediated conditions. Climate change
increases the frequency and severity of various types of events that affect the human exposome (the totality of a person’s lifetime exposures). The
resulting immune dysregulation can cause a variety of immune-mediated conditions such as allergies, asthma, autoimmune diseases, and cancers.
These risks are increased by susceptibility factors in individuals and within vulnerable populations.
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threat posed by foreign invaders and mount a response. However,

overreaction and hypersensitivity of the immune system leads to

immune dysregulation, which can result in allergic diseases,

autoimmune diseases, and cancer—conditions whose prevalence

rates have increased in recent decades (2–4). In recent decades,

increased urbanization, antibiotic use, and exposure to toxic

chemicals—coupled with decreased exposure to biodiverse

environments, less diverse diets, and a lack of physical activity—

have created conditions that increase the risks of skin and mucosal

barrier disruption, microbial dysbiosis, and immune dysregulation

in populations globally (5). The epithelial barrier hypothesis

proposes that increases in exposure to air pollutants and other

toxic substances in the air, water, and foodstuffs (such as detergents,

household cleaners, food emulsifiers, preservatives, pesticides, and

microplastics) damage the epithelial barrier. This damage increases

the penetration of allergens and microbes, leading to increases in

pro-inflammatory reactions (6). A defective epithelial barrier has

been demonstrated in asthma and allergic diseases (7). In addition,

gut barrier defects and microbial dysbiosis have been demonstrated

in many allergic and autoimmune diseases and cancers (8, 9). In

parallel, a loss of biodiversity and limited exposure to microbial

diversity increasingly impair tolerogenic immune development.

Major allergic diseases include allergic asthma, allergic rhinitis,

atopic dermatitis, and food allergy. The estimated prevalence of

allergies varies by age group, allergy type, geographical region, and

season, and has changed over time. Methodological differences

between studies can explain some of the observed variance in rates.

However, the consensus is that, overall, there has been an upward

trend in the prevalence of asthma and allergies (10–14). These

diseases have a serious impact on individuals’ quality of life and

incur substantial direct healthcare costs and indirect socioeconomic

costs (15). Based on Global Cancer Observatory (GLOBOCAN) and

World Health Organization (WHO) sources, cancer is a leading and

increasing cause of mortality and morbidity worldwide. Globally,

cancer caused approximately 10 million deaths in 2020, and it is the

first or second leading cause of death in many countries (16, 17). The

incidence of cancer in adults aged 50 years or younger has increased

worldwide since the 1900s (18) and cancer risk has been linked to

environmental factors such as air pollution (19, 20). Autoimmune

diseases include rheumatoid arthritis, systemic lupus erythematosus,

inflammatory bowel diseases (such as ulcerative colitis and Crohn’s

disease), and multiple sclerosis. The overall prevalence of

autoimmunity is estimated to be approximately 3–5% in the

general population. The incidence and prevalence of autoimmune

diseases vary with age, gender, and ethnicity, with women being more

at risk than men (21). These diverse conditions also incur a vast and

rising disease burden globally (22) and accumulating evidence links

their incidence to pollution (23).

Without mitigation of the environmental risk factors driven by

climate change, further increases in allergic diseases, autoimmune

diseases, and cancers are expected (24, 25). Global temperatures are

1.1°C higher than during prehistorical times and future global

warming is projected to span a range from 1.4°C to 4.4°C by

2100, depending on different GHG emissions scenarios (26). The

magnitude of the increase depends on the extent of human
Frontiers in Science 04
interventions aiming at (i) the reduction of fossil fuel use; (ii) the

implementation of eco-friendly sustainable practices; and (iii)

enforcing equitable socioeconomic factors. With the recognition

of the imminent threats to health and the need for global

cooperation, the 2015 Paris Agreement signed at the United

Nations Climate Conference (COP) 21 aims to limit global

warming to well below 2°C and as close to 1.5°C as possible by

promoting transitions toward low-emission and climate-resilient

development (27). Nevertheless, even an optimistic projected global

temperature increase of 1.5°C will have major consequences for

human health, including immune-mediated diseases. Many studies

have shown that the adverse effects of climate change on disease risk

are higher among those of a lower socioeconomic status, those of

younger or older age, and those with comorbid diseases such as

cardiovascular diseases, asthma, or other atopic diseases (28).

In this article, we review the links between climate change,

environmental exposures, and immune dysregulation and its

associated diseases. We then recommend adaptation and

mitigation solutions to reduce the impact of climate change on

human health via these conditions.
Inflammatory versus tolerogenic
responses in allergy

Climate change-associated exposures can trigger a complex array

of inflammatory or tolerogenic responses (Figure 2). In healthy

individuals, the immune system mediates a tolerogenic response

upon encountering common innocuous environmental factors.

During immune dysregulation, the immune system mounts an

inflammatory response, even to innocuous environmental factors or

healthy cells in the body. The mechanisms involved in allergic

reactions to pollen, food, or insect allergens are those best understood.

A defective epithelial barrier permits the entry of allergens, leading

to the release of pro-inflammatory epithelium-derived cytokines such

as interleukin (IL)-25, IL-33, and thymic stromal lymphopoietin

(TSLP). These cytokines further prompt dendritic cells to transform

naïve T helper (Th) cells into Th2 cells, which release pro-

inflammatory cytokines such as IL-4, IL-5, IL-9, and IL-13. Epithelial

cytokines also activate type 2 innate lymphoid cells (ILC2s) which also

release pro-inflammatory cytokines IL-5 and IL-13. These cytokines

favor B cell class switching to immunoglobulin (Ig)E. Allergic

sensitization occurs when IgE binds to the high-affinity IgE receptor

FcϵR1 on mast cells. In these individuals, subsequent exposure to

allergens favors IgE cross-links and the release of preformed and de

novo–synthesized pro-inflammatory mediators, such as histamine,

prostaglandins, leukotrienes, and other cytokines. In allergies, these

proinflammatory mediators enhance vascular permeability, smooth

muscle contraction, and eosinophilic infiltration, resulting in

symptoms of bronchoconstriction.

The immune system also mediates tolerogenic mechanisms.

Here, naïve Th cells are transformed into tolerogenic regulatory

T cells (Tregs) rather than inflammatory Th2 cells. Tregs favor

B cell isotype class switching to IgA and IgG4, both of which block
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FIGURE 2

Climate change-associated exposures, such as pollen, air pollutants, and heat stress, trigger complex pathways mediating both inflammatory and
tolerogenic responses. Penetration of allergens, pollutants, and other environmental stressors via a defective epithelial barrier leads to the release of
pro-inflammatory cytokines such as interleukin (IL)-25, IL-33, and thymic stromal lymphopoietin (TSLP) and the skewing of T helper (Th) naïve cells
to Th2 cells. Th2 cells mediate a pro-inflammatory cascade through cytokines IL-4, IL-5, IL-9, and IL-13, leading to a B cell isotype class switching
to immunoglobulin (Ig)E. IgE bound to mast cells and basophils cross-link on subsequent allergen exposure, leading to the release of pro-
inflammatory mediators such as histamine and prostaglandins. In allergies, these lead to enhanced vascular permeability, smooth muscle
contraction, and eosinophilic infiltration, resulting in symptoms of bronchoconstriction. Heat stress and air pollutants work synergistically to mediate
these pro-inflammatory effects. The immune system also actively mediates tolerogenic effects to commonplace environmental agents. Here, naïve
Th cells are transformed into regulatory T cells (Tregs) which favor B cell isotype class switching to anti-inflammatory IgA and IgG4.
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Th2 inflammatory responses (29). The environmental factors

hypothesized to increase the likelihood of inflammatory rather

than tolerogenic responses include microbial and epithelial barrier

dysregulation, increased hygiene, early life avoidance of allergens,

refined diet, and air pollution (30).
Climate change, pollen, and asthma

Changes in land use and climate, such as rising temperatures

and nitrogen oxides (NOx), ozone (O3), and carbon dioxide (CO2)

levels, have led to increased pollen quantity, quality, allergenicity,

and duration of the pollen season (Table 1, Figure 3) (38, 41). In

one study, the production of allergenic pollen by ragweed increased

by 61% when CO2 concentrations were doubled (42). Greenhouse

and field studies indicate that pollen concentrations are correlated

with temperature and some estimates suggest that pollen

concentrations may increase by 200% by the end of the century

(37). Most pollen types have shifted toward earlier times of the year

for pollen outputs (e.g., ragweed), possibly aggravating the burden

on pollen-allergic patients (37, 38). Nitrogen dioxide (NO2) and O3
Frontiers in Science 06
have also been shown to damage Platanus pollen cell membranes,

increase the concentration of the Platanus pollen allergen a 3

released into the atmosphere, and alter its protein structure via

nitrification and oxidation—enhancing its immunogenicity and

stability (43).

The intensification of pollen exposure has important implications

for public health. Increased allergenicity of pollen results in more

severe symptoms in allergic individuals (32). There is increasing

evidence correlating high pollen levels (especially grass pollen) with

higher rates of asthma exacerbations and associated emergency

department visits and hospitalization (44–46).

Furthermore, pollen is also affected by thunderstorms, leading to

a phenomenon called thunderstorm asthma (TA) characterized by

severe asthma attacks and asthma-related deaths in patients with

allergic rhinitis. First described nearly 40 years ago, TA has been

reported in North America, Europe, the Middle East, and Australia.

TA events result from a complex interaction of environmental and

individual susceptibility factors (47). Environmental factors include

high concentrations of an aeroallergen and rain and moisture that

rupture pollen grains and fungal spores, leading to the release of fine

allergen-bearing starch granules that are <2.5 µm in size (48).
TABLE 1 Overview of the environmental factors influencing the allergenicity, abundance, and seasonality of
aeroallergens (airborne pollen and fungal spores).

Aeroallergen
traits

Aeroallergen functional group
and most implicated taxa

Environmental factors Reference

Temperature CO2 O3

Higher allergenicity

Molds

Alternaria ↑ (31)

Cladosporium ↔ (31)

Pollen

Ambrosia ↔ ↑ (32, 33)

Higher abundance

Molds

Alternaria ↑ (34)

↑ (31)

Cladosporium ↑ (34)

↔ (31)

Pollen

Alnus, Ambrosia, Cupressaceae, Platanus,
Poaceae, Quercus

↑ (35–37)

Earlier season start

Pollen

Alnus, Betula, Cupressaceae, Fraxinus,
Platanus, Poaceae, Quercus
Epicoccum
Ambrosia

↑ (35, 37, 38)
Abbreviations: CO2, carbon dioxide; O3, ozone.
The aeroallergen traits are sorted by functional group, namely molds and pollen. The direction of the arrow indicates if the change is parallel or
opposite. Gaps indicate either no significant relationships or a lack of data.
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Individual susceptibility factors include (i) pre-sensitization to

seasonal aeroallergens; (ii) history of seasonal allergic rhinitis; and

(iii) low rates of inhaled corticosteroid use in patients with allergic

asthma (49). TA is also associated with fungal spores, such as

Alternaria, whose proliferation is increased by floods and storms (47).
Air pollution

The 2019 Global Burden of Disease (GBD) study found that air

pollution (outdoor and indoor) is estimated to contribute to about

10% of all noncommunicable disease deaths and is among the top

three risk factors for death, with the burden of deaths

predominantly in Asia and Africa (50, 51). The Lancet
Frontiers in Science 07
Commission on Pollution and Health linked air pollution to

multiple adverse health conditions in children, including low

birth weight; noncommunicable diseases such as asthma, cancer,

and chronic obstructive pulmonary disease (COPD); and

neurodevelopmental disorders (52, 53).

Global warming contributes to air pollution via increases in GHGs

and other pollutants released by wildfires and SDSs, with important

implications for immune and non-immune diseases (54–61).

Air pollution impacts both the innate and adaptive immune

function in various ways (62) (Figure 2). Adaptive T cells such as

CD8+ T and CD4+ T cells (Tregs, Th1, and Th2) are altered as are

innate immune cells such as innate lymphoid cells type 2 (ILC2),

dendritic cells, toll-like receptors (TLRs) and natural killer (NK)

cells (63). A study found that ozone-oxidized black carbon caused
FIGURE 3

Climate change effects on pollen. (A) Global warming is causing longer growing seasons, which in turn leads to longer allergy seasons that start
earlier in spring and last later into autumn. The figure shows data from 201 cities in the United States, plotting the number of days between the
annual last and first occurrence of a temperature of 0°C (32°F), i.e., the first and last freezes of the year, over time—indicating a lengthening of the
growing season. Adapted from (39) with permission from Climate Central. (B) Pollen concentrations increase with increases in atmospheric carbon
dioxide (CO2). Figure shows pollen production in common ragweed grown at pre-industrial CO2 concentrations (280 ppm), current concentrations
(370 ppm) and a projected 21st century concentration (600 ppm). Error bars indicate the standard error. The Student–Newman–Keuls test was used
to determine differences among the CO2 treatments at the 0.05 significance level. Adapted from (40) with permission from CSIRO Publishing.
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necroptosis in macrophages, increased levels of reactive oxygen

species (ROS), and the expression of inflammatory factors and

chemokines (64). Recently, age-related declines in immune function

were linked to the accumulation of inhaled atmospheric particulate

matter (PM) specifically contained within lung macrophages, which

exhibited decreased activation, phagocytic capacity, and altered

cytokine production. PM also disrupted the structures of B cell

follicles and lymphatic drainage in lung-associated lymph nodes

(65). Exposure to wildfire smoke and traffic-related air pollution

has been associated with the activation of arylhydrocarbon

receptors, toll-like receptors, and nuclear factor (NF)-kB
signaling, and the upregulation of pro-inflammatory cytokines

such as IL-22 (66). Firefighters have increased IL-6 and IL-12 and

decreased IL-10 in their serum 12 hours after exposure to a wildfire

(67). The activation of NLRP3 inflammasome and pyroptosis by

environmental pollutants has been correlated to numerous diseases

(68, 69). For example, perfluoroalkyl substance pollutants have

been shown to activate the innate immune system through the

absent in melanoma 2 (AIM2) inflammasome (70). In another

study, the inflammasome was shown to be activated by micro- and

nanoplastics, which are increasingly found in the air (71).

Chronic inflammation, including that triggered by air pollution,

also promotes cancer progression. Inflammatory cytokines such as

IL-6, TNF-a, and granulocyte macrophage colony-stimulating

factor are mediated by air pollution, resulting in low-grade,

chronic inflammation (72, 73). Low-grade inflammation fuels

tumor progression by enabling immune evasion, angiogenesis,

and metastatic dissemination. Air pollutants also mediate

oxidative stress, which is characterized by an increase in ROS

(74). Exposure to PM with an aerodynamic diameter of ≤2.5 mm

(PM2.5) was found to promote lung cancer by acting on cells that

harbor pre-existing oncogenic mutations in healthy lung tissue (75).

The discovery of immune checkpoint proteins, such as

programmed cell death protein 1 (PD-1)/programmed cell death

ligand 1 (PD-L1) and cytotoxic T-lymphocyte associated protein 4

(CTLA-4), represents a significant breakthrough in the field of

cancer immunotherapy (76).
Ambient outdoor air pollution

Globally, 7.8% of all deaths in 2019 were attributed to outdoor

air pollution, with this fraction exceeding 12% in some countries

(Figure 4) (77).

Evidence suggests that exposure to numerous ambient air

pollutants (e.g., PM, O3, NOx) is related to the incidence and

exacerbation of asthma in both children and adults (78–82). A

systematic review and meta-analysis of 67 studies found that short-

term daily exposure to O3, NO2, and sulfur dioxide (SO2) was

associated with increased emergency room visits and hospital

admissions for asthma exacerbations. The pooled relative risk (RR)

per 10 mg/m3 increase of ambient mean 24-hour concentrations was

1.008 [95% confidence interval (CI) 1.005–1.011)] for O3, 1.014

(95% CI 1.008–1.020) NO2, and 1.010 (95% CI 1.001–1.020) for SO2

(83). Another review evaluating 84 studies also concluded that short-

term exposure (lag0 and lag1 exposure patterns) to outdoor
Frontiers in Science 08
pollutants increased asthma exacerbation risk (84). Other meta-

analyses and systemic reviews have found an association between

prenatal exposure to pollutants and the risk of asthma and wheezing

in children (85, 86). A review conducted by the Health Effects

Institute in the United States found that each 10 mg/m3 increase in

NO2 was associated with a RR of asthma of 1.05 in children

(12 studies) and 1.10 in adults (seven studies). Among children,

each 5 mg/m3 increase in PM2.5 was associated with a relative risk of

1.33 (five studies). Similar effects were observed for associations with

asthma prevalence among children (21 studies) (87). Another

systematic literature review found compelling evidence that

exposure to PM2.5, PM with an aerodynamic diameter of ≤10 mm

(PM10), and NO2 contributes to the risk of asthma development in

childhood (88). Inhaled PM2.5 are especially damaging to developing

lungs as they are small enough to enter lung tissues (89). Exposure to

O3 has also been associated with new-onset asthma and is a well-

established trigger for asthma exacerbations. Ambient air pollution

is also associated with other respiratory diseases such as COPD.

Analysis of data from the large UK Biobank showed that ambient air

pollution exposure was associated with lower lung function and

increased COPD prevalence (90).

Air pollution is also associated with cancer and autoimmune

disease. In 2017, it was estimated that 14% of total lung cancers

could be attributed to air pollution (91). A recent systematic review

and meta-analysis found that exposure to PM2.5 was associated with

an increased risk of colorectal cancer: the odds ratios (OR) for

incidence and mortality were 1.18 (95% CI 1.09–1.28) and 1.21

(95% CI 1.09–1.35), respectively. The risks of incidence and

mortality were higher in the United States than in other countries

studied (20). The International Agency for Research on Cancer

(IARC) has classified outdoor air pollution as a Group 1

carcinogen (19).

A population-based cohort study found that every 10 µg/m3

increase in PM10 was associated with an incremental 7% risk of

developing an autoimmune disease. Exposure to PM10 at >30 µg/m
3

and PM2.5 at >20 µg/m
3 was associated with a 12% and 13% higher

risk of autoimmune disease, respectively (23). A study in Canada

showed a link between fine PM and systemic autoimmune

rheumatic diseases (SARDS) and found that the adjusted hazard

ratio for SARDS related to one interquartile range increase in PM2.5

(3.97 µg/m3) was 1.12 (95% CI 1.08–1.15) (92).
Wildfires

Wildfires affect millions of people worldwide, causing a high

incidence of attributable deaths from suffocation or injuries.

Wildfires are growing in size and frequency as a result of climate

change (93). Hundreds of thousands of hectares of forests and

buildings/homes are destroyed worldwide each year by fire or

human activities. These fires release large quantities of CO2,

carbon monoxide, and PM into the atmosphere. Indeed, wildfires

are estimated to contribute at least 25% of the PM in the

atmosphere (94, 95). The resulting increase in ambient pollution

risks a range of health issues, including respiratory diseases, as

detailed in the previous section. Specifically, exposure to wildfire
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FIGURE 4

Contribution of air pollution to mortality rates globally. (A) Percentage of the population in 2017 exposed to mean annual ambient outdoor
concentrations of particulate matter (PM2.5) that exceed 10 µg/m3/year, the guideline value recommended by the World Health Organization as the lower
end of the range of concentrations over which adverse health effects due to PM2.5 exposure have been observed adapted from (77). (B) Percentage of
deaths in 2019, from any cause, attributed to outdoor air pollution (from ambient particulate matter and ozone) as a risk factor adapted from (77).
(C) Age-standardized death rates from outdoor air pollution (number of deaths per 100,000 individuals) in 1990 and 2019 adapted from (77).
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smoke has been shown to increase key pro-inflammatory markers,

such as C-reactive protein (CRP) and IL-1b, which can worsen

asthma and allergic disorders (96). Other studies have linked

wildfires with increases in conjunctivitis (97).

In the United States, PM2.5 from wildfires have been detected at

levels 10- to 15-fold higher than the 24-hour standard (35 mg/m3)

even 1000 km away from the source (98). Decreases in respiratory

peak flow rate have been documented 1 year after wildfire events

(99). There was a significant increase in the use of dermatology

clinics in San Francisco (~290 km downwind) for the treatment of

atopic dermatitis and itch for a 2-week period during and after the

Camp Fire in northern California in 2018 (100).
Sand and dust storms

The “global dust belt” refers to regions stretching from the

Sahara Desert to the Gobi Desert in China and Mongolia. Globally,

approximately 50% and 40% of all dust particles (≤20 mm in

diameter) are from northern Africa and Asia, respectively. The

remainder are from North America and the southern

hemisphere (101).

SDSs can spread thousands of kilometers away from their

origin: Saharan dust frequently reaches Europe and even North

and South America. Asian dust is transported across the Pacific into

North America. The long-term effects of drought, scarce vegetation,

and human exploitation and land use, as well as variations in

precipitation, temperature, and wind speed, are critical parameters

in the context of climate change and its impact on dust emission

and spread (102).

SDSs have a significant impact on hospital admissions for

respiratory diseases such as asthma (103). Exposure to PM2.5 and

PM10 during SDS outbreaks has been associated with respiratory

and allergic diseases (104). Airborne dust can stay suspended in the
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air for days following SDS events. SDSs can also carry pollen, fungal

spores, bacteria, and viruses, leading to respiratory infections,

asthma, and allergies. Many microorganisms and pathogens can

survive long-range transport by SDSs. For example in the

southwestern United States, complex interactions between

drought, heat, and increases in dust conditions have led to

increased incidence of coccidiomycosis infections (105).
Indoor air pollution

Indoor sources of air pollution include cooking and heating

with biomass such as coal and firewood, use of candles and incense

sticks, cigarette smoke, volatile organic compounds (VOCs) from

cleaning and other consumer products, molds, dust mites, and

animal dander. Indoor air pollution contributed to 4.1% of global

deaths in 2019, with the highest death rates among low-income

countries (Figure 5).

Many forms of indoor pollution can impair human health. For

example, NO2, which is generated by cooking and heating with gas,

has been associated with an increased risk of asthma in children

(107). A systematic review and meta-analysis estimated a 1.8-fold

increase in pneumonia risk in young children due to exposure to

unprocessed solid fuels (108). A systematic review of the effect of

indoor PM and VOCs found that high VOCs were associated with

upper airway and asthma symptoms in those with pre-existing lung

disease (109). With decreased use of solid fuels and increased use of

clean fuels for cooking, these rates have been decreasing since the

1990s and are expected to decrease further (102). Climate change

has also led to increased flooding and extreme rainfall, which

increases dampness in poorly weatherized homes, leading to

indoor mold proliferation. Mold spores are indoor pollutants of

concern as they increase asthma severity (110). A study observed a

significant association between household mold and increased
FIGURE 5

Percentage of deaths in 2019, from any cause, attributed to indoor air pollution (from burning solid fuels) as a risk factor (106).
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prevalence of asthma (OR = 2.399). Similarly, another study in

China found that mold odor was associated with asthma (OR =

1.90) (111, 112).
Heat stress

Climate change is also increasing global temperatures, with

increases in the severity and frequency of heatwaves and the

associated morbidity and mortality (113).

During heat stress, high levels of ROS are released (Figure 2).

ROS induce oxidative damage and degradation of biomolecules (e.g.,

proteins, lipids, carbohydrates, and DNA) leading to cellular death,

while also increasing the production of heat shock proteins (HSPs),

antioxidants, other metabolites, anti-inflammatory cytokines, and

stress granules that mitigate the effects of heat stress (114) (115).

There is increasing evidence that HSPs can influence the immune

system, mediating both pro-inflammatory and anti-inflammatory

pathways. For example, HSP70-B29, a bacterial HSP70-derived

peptide, has been shown to induce HSP-specific Tregs that

suppress arthritis by cross-recognition of their mammalian HSP70

homologs (116). However, HSPs have also been demonstrated to

induce the release of pro-inflammatory cytokines such as IL-6 and

IL-1 through the NF-kB pathway (117, 118). In primary human

keratinocytes and mice, HSP90 inhibition robustly suppressed 12-O-

tetradecanoylphorbol-13-acetate (TPA)-induced inflammation by

targeting key pro-inflammatory cytokines and signaling pathways,

suggesting it may be a potential topical treatment option for immune-

mediated skin disease beyond psoriasis (119).

Heat stress has various direct and indirect effects on health and

well-being. For example, a study in Australia found a significant

increase in childhood asthma emergency department admissions

during heatwaves (defined as three consecutive days of extreme

heat). Male children and those aged 0–4 years were the most

vulnerable (120). In China, exposure to ambient air pollution and

high temperatures were independently and jointly associated with

asthma risk in early childhood (121). Other direct effects of heat stress

include cramps, stroke, increases in cardiovascular disease, and

mental health conditions (122). Heat has been shown to cause

ventricular-dependent changes that may undermine cardiac health,

energy homeostasis, and function (123). Elderly individuals and those

with comorbid conditions are at particular risk from heat stress (124).

Heat stress also indirectly affects health outcomes through

disruption caused to infrastructures (e.g., power, water, and

transport) and via increases in workplace injuries and drownings.

Higher temperatures also increase the occurrence of harmful

marine algal blooms that release toxins, and food and waterborne

diseases (125).
Urban/rural environments and
migration patterns

Climate change exacerbates shortages of food and water,

which have led to human migration from rural to urban areas
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or from low- and middle-income countries to affluent countries.

The United Nations predicts that close to 70% of the world’s

population will live in urban areas by 2050 (126). These migration

patterns are associated with increases in asthma and allergy in

individuals displaced from a rural environment to a more crowded

urban area. Rural areas have higher microbial diversity and

exposure to animals, both of which are protective against allergy

and asthma. However, migration also exposes individuals to new

pollutants and allergens. A study in Brazil found that rural-to-

urban migration contributes to the high burden of asthma in

urban migrants (127).

The built environment, which encompasses all manufactured or

modified structures that provide people with living, working, and

recreational spaces, is a critical determinant of allergy and asthma

(128) owing to higher levels of indoor pollutants and allergens

(129). Climate change is exerting changes in built environments

that are expected to drive immune-mediated disease. For example,

increased temperatures lead to a lower quality of indoor air.

Flooding events result in increased urban indoor dampness,

humidity, and mold levels (110). An increase in temperate zones

is expected to lead to an increase in rodent populations (130), a

matter of concern because mouse allergen is also a critical driver of

childhood asthma disparities (131).
Food and water safety

Global warming and climate change have substantially

endangered food safety for humans and domestic animals.

Chemical pollutants contained in foods, such as emulsifiers,

coloring agents, and preservatives, can disrupt the epithelial barrier

that protects against asthma and allergies (132). Residual detergents

found after rinsing foods also damage lung tissue, as shown in human

bronchial cell cultures (133). Dioxins and toxic metals such as lead,

cadmium, and mercury found in contaminated water are also highly

toxic and can lead to decreases in immunity (134, 135).
Biodiversity loss

The human body is an ecosystem or “holobiont”—a concept

describing the host (animal or plant) as a community of species

linked to other ecosystems and subject to continuous evolutionary

pressure (136). Functioning ecosystems provide essential benefits to

humanity (137)—sometimes referred to as ecosystem services.

Biodiversity (the variety of life including genes, species, and

ecosystems) is a key factor in maintaining a healthy and

functioning ecosystem and for human health (138). Climate

change, habitat destruction, and intensive land use have led to a

startling loss of biodiversity, including microbial species (137, 139).

Millions of species worldwide could face extinction as a result of

climate change in the next few decades (140, 141).

Biodiversity loss associated with climate change can have a

huge impact on human health, both directly (through disruption

in the food supply or via emerging infectious diseases) and
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indirectly (by degrading ecosystem health and ecosystem

services) (142).

In particular, exposure to a greater diversity of microbes is

thought to be a key factor driving the early immune system away

from the development of asthma and allergies (143). Maternal

exposure to stables during pregnancy, for example, has been

found to be associated with increased TNF-alpha and IFN-

gamma levels in newborns (144).
Mental stress

Climate change is associated with increased mental health

burden and stress (145). In individuals with persistent emotional

stress and greater negative moods, allergy flares are more frequent

(146). The stress hormones, including glucocorticoids, epinephrine,

and norepinephrine, are thought to be involved in psychological

stress-induced asthma exacerbation (147). A study of 763 Japanese

mother-child pairs used 12 specific behavioral patterns as stress

indicators and found that maternal chronic irritation and anger

were associated with the risk of childhood asthma (148). In

adolescents, stressors such as poverty, neighborhood stress, and

school stress were individual predictors of emergency department

visits for asthma (149). In 2021, a survey of children and young

adults in 10 countries found that there was widespread climate

anxiety and dissatisfaction with government responses to climate

change (150).
Mitigation and adaptation to manage
the effects of climate change on
immune diseases

We have outlined the complex effects that climate change is

having on environmental exposures that in turn cause immune

dysregulation and its associated diseases, including asthma,

allergies, autoimmune diseases, and cancers (Figure 1). Research

into the pathophysiology of immune-mediated diseases has

provided a greater understanding of their mechanisms and has

led to the development of novel drugs (151). However, in addition

to this individualized treatment approach, multisectoral,

multidisciplinary, and multilevel efforts are urgently needed to

mitigate and adapt to the effects of climate change-related

exposures (Figure 6).

Mitigation refers to primary preventions intended to cut or

prevent the emission of greenhouse gases (e.g., using an electric car

or electrifying a housing unit) thus limiting the magnitude of future

warming. Adaptation is a form of secondary prevention intended to

reduce vulnerability to climate change impacts, such as going to

cooling centers during heat stress (e.g., see www.marinhhs.org/

cooling-centers) or using a filter in a home to decrease asthma and

allergies (152).
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Implementing Planetary Health and One
Health approaches

Planetary Health has been defined as “the health of human

civilization and the state of the natural systems on which it

depends” (153). Planetary Health directs attention to the

extensive degradation of our planet for the benefit of humans.

The concept focuses on better balancing human needs with the

health of Earth’s ecosystems to promote sustainability and protect

the health and well-being of future generations. Reversing the

degradation of the planet’s ecosystem will require collaborations

between multiple disciplines and sectors in order to alter practices

and policies at every level, from global to local, and drive sustainable

solutions. One Health, an interdisciplinary approach stressing the

interconnectedness of the health of humans, animals, and the

environment, is an important approach for better planetary and

human health (154, 155).

Environmental health professionals, specifically those

specializing in asthma and allergy, can play an essential role in

education, communication, and advocacy on climate change

mitigation and adaptation measures. For example, the

connection between climate change and asthma and allergy was

emphasized during the 2008–2018 Finnish Allergy Programme

(156). In the city of Lahti, the European Union Green Capital 2021,

Natural Step to Health, a 2022–2032 Regional Health and

Environment Programme focuses on asthma and allergy as one

of the areas of interest (157). The goals also include mitigation of

climate change and nature loss. In this program, a “Planetary

Health Physician” connects the healthcare and environment sector

to improve citizens’ diet (e.g., in day-care), physical exercise/

mobility, housing environment, and nature connectedness (158),

in the spirit of Planetary Health (153).
Reducing emissions and improving
air quality

Widespread and fast action to reduce short-lived climate

pollutants (SLCP; e.g., methane, hydrofluorocarbons, and black

carbon) emissions has the potential to reduce global warming by

as much as 0.6°C over the next few decades (159). At the

community level, this can be achieved through actions targeting

the reduction of air pollution emissions from agricultural activities,

fossil fuel, waste management, household energy, industrial

production, transport, cooling, and refrigeration. SLCP reduction

will be beneficial for health. For example, reducing methane

emissions by 40% by 2030 could prevent an estimated 540,000

emergency room visits globally from asthma (160). Investments to

increase the usage of public transportation by expanding networks

and lowering or eliminating fares, incentives for greater use of

electric vehicles, and increasing pollution taxes can also improve air

quality (161).

In the United States, Congress established much of the basic

structure of the Clean Air Act in 1970 and made major revisions in
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1977 and 1990 (162). Policies based on the Clean Air Act have led to

decreases in air pollutant concentrations in southern California.

Among children in southern California, decreases in ambient NO2

and PM2.5 between 1993 and 2014 were significantly associated with

lower asthma incidence (163). A reduction in NO2 of 4.3 parts per

billion reduced the risk of incident asthma by 20%.

The air quality, health, and economic benefits of emission

reductions from 2002–2011 in the eastern United States were

estimated for the month of July 2011. During this extremely hot

month, these actions were estimated to have prevented 10–15 O3

exceedance days in the Ohio River Valley and 5–10 exceedance days
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in the United States mid-Atlantic region, saving 160–800 lives in the

eastern United States and US$1.3–6.5 billion. Emission reductions

were also estimated to have avoided 950 hospital admissions for

respiratory symptoms, 370 hospital admissions for pneumonia, 570

emergency room visits for asthma symptoms, 922,020 minor

restricted activity days, and 430,240 symptoms of asthma

exacerbation (164). Therefore, surveillance of the impact of changes

in air pollution on asthma and allergies would be useful in informing

local and national government policies for managing environmental

health risks. It would also allow systematic monitoring of the health

impacts of policy decisions and plans implemented.
FIGURE 6

Mitigation and adaption actions to address increases in immune-mediated diseases associated with the exposome effects of climate change.
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Emission reduction policies implemented in Seoul in 2007 also

resulted in cleaner air, with significant decreases in PM10 (–17%)

and NO2 (–5%) in the period 2008–2011 compared with 2003–

2007. It was estimated that the policy prevented 500,000 (11.3%)

hospital visits for asthma in the total population and 320,000

(15.5%) in the younger population during this period (165).

Improving air quality can have even more rapid and substantial

health benefits. In 1996, in preparation for the Olympics, the city of

Atlanta implemented a 17-day alternative transportation strategy

involving 24-hour public transportation. Within a month, there was

a 42% reduction in children seeking medical care for asthma and a

19% decrease in hospitalizations for asthma (166). This suggests

that air quality policies can benefit asthma and allergy clinical

outcomes within a month of their implementation and that these

markers (across all age groups) could be used to monitor policy

effectiveness (Table 2).
Providing safe housing

Housing is one of the central determinants of exposure to

indoor asthma risk factors. Children living in historically

marginalized urban homes near areas of high air pollution have

higher rates of asthma and more severe and uncontrolled asthma

(177–179). Consistently, there is strong evidence that improved

weatherization (i.e., ventilation and mold remediation) decreases

the risk of respiratory disease outcomes (129). However, the current

provision of housing through for-profit markets creates barriers for

large segments of the population, particularly racial and ethnic

minorities, and working-class communities more generally, to

access safe living conditions (180). Climate change worsens air

quality and exacerbates indoor dampness and mold, thereby

potentially widening existing race and class disparities in housing

quality and concomitant asthma burden. Existing public housing

stocks require repair, upgrade, and expansion to address this urgent

threat. Randomized controlled trials provide strong evidence of the

respiratory health benefits of high-quality public housing (181).

Modeling studies estimate that repairing New York City’s public

housing units would reduce asthma rates by a quarter among their

350,000 residents (182). In the private market, increases in

regulatory health code requirements are needed, particularly with

respect to mold remediation. An emerging evidence base is showing

that proactive inspections are effective in this regard (183),

particularly if informed by leading indicators of unhealthy or

unsafe conditions (184).
Improving diets and agricultural practices

Asthma and allergies can be worsened by poor nutrition or

inadequate diet interventions. Indeed, diversity in dietary proteins

early in life has been shown to reduce the risk of asthma and

allergies (185). Exploratory data suggest that improvements in diet

quality could help reduce the inflammatory status among

individuals with poorly controlled asthma (186). Dietary factors

are also important in the development of food allergies, eosinophilic
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esophagitis, and other disorders resulting from chronic

inflammation, such as autoimmune diseases and cancer.

Therefore, focusing on food security, access to healthy foods, and

diversity of food choices is important for the prevention of immune-

mediated diseases.

The EAT-Lancet Commission on healthy diets from sustainable

food systems established that global food production should stay

within 5 Gt of CO2 equivalent per year from food systems by 2050

(187, 188). The commission recommended a healthy, plant-forward

diet, high in whole grains, legumes, vegetables, fruits, and healthy

fats with a very modest amount of animal protein—about 300

calories worth, or only 12% of the reference intake of 2,500 calories/

day. The inclusion of a wide variety of plant-based proteins

(including nuts) in the diet, especially in early life, can also help

prevent asthma and allergies by developing immune tolerance (30,

189). Understanding how these revised diets will enable better

control of an inflamed immune system, improve microbiota, and

enhance overall health will be important for the future.

Agricultural practices need to be overhauled to become more

sustainable. For example, regenerative agriculture is a holistic land-

management practice that aims to sequester carbon in the soil while

improving soil health, crop yields, water resilience, and nutrient

density. It advocates for, among other practices, the use of cover

crops, reducing tilling, rotating crops, spreading compost (as well as

super-compost “inoculants”), and moving away from synthetic

fertilizers, pesticides, herbicides, and factory farming (190).
Increasing biodiversity and exposure to
natural environments

Growing up in a biodiverse environment is one of the strongest

and most consistent protective factors against the development of

asthma and related atopic conditions (191). According to the

available evidence, it is highly probable that we could develop safe

and effective primary preventive regimens for asthma and allergy by

developing better practices for planetary health and promoting

biodiversity and exposure to natural environments.

Indeed, green spaces can reduce all-cause mortality (192). In

Toronto, a study found that green space structures can protect

individuals aged 0–19 years from a high risk of developing asthma,

and this direct protective effect can be enhanced by high tree

diversity (193). Among adults residing in the five largest urban

areas in Belgium, higher exposure to increased residential green

space was associated with lower rates of non-accidental and

respiratory mortality (194). In Metro Vancouver, a population-

based birth cohort study found that increased exposure to

residential greenspace might improve childhood development by

reducing the adverse developmental effects of traffic-related

exposures, especially NO2 air pollution (195).

Importantly, many greening practices are being established in

cities worldwide to mitigate climate change effects (196). Planting

trees and native plant species is an important part of creating better

means to sequester carbon and reduce temperatures and CO2.

Asthma and allergy experts should be included in policy and city

planning discussions to promote biodiversity and reduce
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TABLE 2 Effects of climate change mitigation on asthma and allergies.

Intervention Location/
time period

Pollutants Health effects

Policies based on the Clean Air
Act (163)

California, USA
1993–2014
3 cohorts
(1993–2001,
1996–2004, and
2006–2014)

Median changes in community-level annual mean
concentration among 9 communities from 1993–
2006 were:
−8.9 ppb for O3

−4.3 ppb for NO2

−4.0 mg/m3 for PM10

−8.1 mg/m3 for PM2.5

PM2.5: IRR was 0.81 for a median reduction of 8.1 mg/m3

NO2: IRR for asthma was 0.80 for a median reduction of
4.3 ppb

2007 emission reduction
policies (165)

Seoul, South
Korea
2008–2011

Decreases in PM10 (–17%) and NO2 (5%) in the
period 2008–2011 versus 2003–2007

Policy estimated to have prevented 500,000 (11.3%) and
320,000 (15.5%) hospital visits cases for asthma in the total
and younger populations, respectively

2001 automobile NOx/PM
laws (167)

Japan
1997–2000
(control) and
2001–2009
(policy
intervention
period)

Annual rates of decrease in air pollution in areas
with PM law enforcement were 2.0- and 2.5-fold
higher for NO2 and suspended PM, respectively,
versus non-enforcement areas

Decreases in the prevalence of pediatric asthma:
NO2: 0.118% per 1 ppb
Suspended PM: 0.050% per 1 mg/m3

Closure and reopening of a steel
mill (168)

Utah, USA
April 1985–
February 1988

Decreases in PM10 during mill closure 24-hour PM10 >150mg/m3 was associated with a 3-fold
increase in hospital admissions (pneumonia, pleurisy,
bronchitis, and asthma) in children; in adults, the increase
in admissions was 44%

17-day “alternative
transportation strategy” for the
Olympic games (169)

Atlanta, USA
Summer 1996

23% decrease in peak morning traffic 19% decrease in hospitalizations for asthma observed 4
weeks after peak weekday morning traffic counts decreased

Regulations driven by the 1990
Clean Air Act Amendments (170)

Atlanta, USA
1999–2013

Electricity generating unit NOx and SO2 emissions
in the southeast decreased by 82% and 83%,
respectively, between 1999 and 2013
Mobile-source emissions controls led to estimated
decreases in Atlanta-area pollutant emissions of
61–93%, depending on the pollutant

Policies were estimated to prevent 16.5% of asthma
emergency department visits between 2012–2013

Factory emission and travel
restrictions (171, 172)

Beijing, China
2008 Olympics

40% and 7.3% decreases in PM2.5 and O3,
respectively, observed during the Olympic period
(August 8–September 20) versus baseline (June 1–
June 30)

40% decrease in asthma events observed during the
Olympic period versus baseline
Peak expiratory flow levels increased in 78% of participants
during the Olympics versus baseline
Peak expiratory flow levels decreased in 80% of
participants in the post-Olympic period versus
Olympic period

Installation of a non-polluting,
more effective home heater
before winter in homes of
children with asthma (173)

New Zealand.
End of winter
2005 (baseline)
and winter 2006
(follow-up)

Lower NO2 levels measured in the living rooms of
intervention households versus controls: 8.5 mg/m3

vs 15.7 mg/m3, respectively

Compared with children in the control group, children in
the intervention group had 0.40 fewer visits to a doctor for
asthma and 0.25 fewer visits to a pharmacist for asthma

Unflued gas heaters (control
group), flued heaters
(intervention group) in
schools (174)

Australia
2000

Mean concentrations of NO2 were 1.8-fold higher
and mean concentrations of formaldehyde were
9.4 ppb higher during exposure to unflued gas
versus flued gas heaters

Exposure to unflued gas heaters was associated with
increased cough reported in the evening (OR = 1.16) and
wheeze reported in the morning (OR = 1.38)
Association with wheeze greater in atopic subjects

Unflued gas heaters (control
group), flued gas/electric heaters
(intervention group) in
schools (175)

Australia
2000

NO2 levels of 15.5 ppb and 47.0 ppb in the
intervention and control schools, respectively

Difficulty breathing during the day (RR = 0.41) and night
(RR = 0.32), chest tightness during the day (RR = 0.45),
and daytime asthma attacks (RR = 0.39) were significantly
reduced in the intervention group

Indoor HEPA filtration (176) Cincinnati, USA
October 2015–
August 2017

Statistically significant reductions observed for
PM2.5 and black carbon pre- and post-HEPA

Participants with poorly controlled asthma and lower QoL
scores at baseline showed significant improvements in
asthma control (from 1.3 to 0.9; P = 0.003) and QoL (from
4.9 to 5.5; P = 0.02)
F
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Abbreviations: HEPA, high-efficiency particulate air; IRR, incidence rate ratio; OR, odds ratio; O3, ozone; NO2, nitrogen dioxide; NOx, nitrogen oxides; PM, particulate matter; ppb, parts per
billion; QoL, quality of life; RR, relative risk; SO2, sulfur dioxide.
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allergenicity. In fact, with proper planning and the inclusion of

native dioecious plant species, it is possible to reduce major allergen

spread (197).
Monitoring and research: data science,
biomarkers, and economics

There is a pressing need for collaborative, multidisciplinary

research to better understand the pathophysiology of immune

diseases in the context of climate change. Moreover, the

development and broad implementation of new data science

techniques, biomarkers, and economic models are critical for

measuring the impact of climate change on immune health and

disease, informing the design of mitigation and adaptation policies

and interventions, and evaluating their effectiveness.

Data science methods
Real-time analysis of integrated geospatial, environmental, and

health data and the application of machine-learning techniques to

better understand environmental-human interactions are currently

some of the most important challenges in understanding the impact

of global climate change on human health and disease. Big data

analyses and artificial intelligence can be utilized to decipher the

complex, multidimensional relationships between diverse

parameters in the cause of diseases, with special attention to

vulnerable populations, chronicity of cumulative effects over a

lifetime, and multiple simultaneous exposures. The results of

these studies are instrumental for the development of health

resilience measures such as forecasting, adaptation of disease

management, and prevention of noncommunicable diseases to

manage climate change scenarios. The Integrated Clinical and

Environmental Exposures Service (ICEES) provides regulation-

compliant open access to electronic health record data that have

been integrated with environmental exposure data, as well as

analytic tools to explore the integrated data. Results suggest that

the open-source ICEES can be used to replicate and extend

published findings on factors that influence asthma exacerbations

(198–200). The National Institutes of Health (NIH) is now looking

to establish the Center for Exposome Research Coordination to

accelerate precision environmental health. It aims to build upon the

effort supported by the European Union to further extend, expedite,

and coordinate exposome research efforts on a global scale (201).

Another important program by the NIH is the Environmental

Influences on Child Health Outcomes (ECHO) Program. ECHO

combines observational and intervention research to answer

important questions about how influences on early human

development—even before birth—affect us throughout our lives

and across generations. ECHO focuses on five pediatric health

outcome areas: pre-, peri- and postnatal; upper and lower

airways; obesity; neurodevelopment; and positive health, such as

happiness and a sense of well-being (201). Examples of other

exposome projects that have been established include the EU-

funded Human Early-Life Exposome (HELIX) and the Health

and Environment-wide Associations based on Large population
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Surveys (HEALS) (202). Big data monitoring methods are being

used to evaluate air quality trends and vehicle traffic dynamics and

monitor river water quality and wildfire pollutant composition

(203–205). Big datasets and analytics that integrate statistics,

computer science, biomedicine, and public health are being

developed that can assist with understanding the complex

dynamics between the environment and health.

Biomarkers
Biomarkers can provide evidence of exposure to pollutants,

associate them with disease etiologies, and provide necessary data

to inform policy decisions. For example, one study measured

urinary concentrations of nine hydroxylated metabolites of

polycyclic aromatic hydrocarbons (OH-PAHs) to assess

wildland fire smoke exposure in wildland firefighters. Post-shift

concentrations of OH-PAHs were 83–323% higher compared with

pre-shift concentrations. Additionally, the increase in 4-hydroxy-

phenanthrene urinary concentration was marginally associated

with work shift exposure to PM2.5 and significantly associated

with levoglucosan, a marker of wildland fire or vegetative biomass

smoke. These results suggest that OH-PAHs, especially

4-hydroxy-phenanthrene, may be useful biomarkers of wildland

fire smoke exposure (206) . Another urinary marker ,

1-hydroxypyrene, has been associated with occupational

exposure to polycyclic aromatic hydrocarbons (PAHs) from

urban pollution (207).

Recent studies have correlated CRP with air pollution,

suggesting that low-grade inflammation may be a causative factor

for the adverse health effects associated with exposure to air

pollution. In a study by Prunicki et al, individuals exposed to

wildfire smoke from the El Portal wildfire in California in 2014

had increased levels of the proinflammatory markers, CRP and

IL-1b, compared with non-smoke exposed controls (96). A large

population-based cohort study in the United Kingdom found that

CRP levels were positively associated with NO, NO2, and PM2.5

(208). Similarly, short-term exposure to air pollution was associated

with higher serum high-sensitivity CRP levels in adult residents of

two urban areas in northern France (209). A metabolomics study

identified lysophosphatidylcholine (LysoPC) P-20:0 and LysoPC

P-18:1(9z), two products of phospholipid catabolism, as potential

biomarkers of PM2.5 exposure (210).

Cancer biomarkers have also been associated with air pollution.

For example, research in western China suggests that the lung

cancer markers, cytokeratin 19 fragment (CYFRA211) and nerve-

specific enolase (NSE), could be used as biomarkers for exposure to

certain air pollutants (211).

While numerous studies have found associations between

environmental exposures and biomarkers, robust, specific, and

practical biomarkers are still lacking. In the future, omic

approaches may provide comprehensive molecular signatures that

can better assess the impact of climate change on disease

development and progression. For example, a study found

differences in metabolic profiles and alterations in the skin

microbiome of women from polluted and less polluted cities

(212). Omics has the potential to elucidate pathophysiological
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mechanisms and to facilitate patient stratification, disease

prognosis, and prediction of treatment efficacy (213).
Economic models of climate
change interventions

The adverse health consequences of climate change are

significantly mitigated by policies that reduce GHG emissions,

decreasing health burdens and healthcare costs.

In the United States, federal agencies have relied on a common

damage function, the “social cost of GHG emissions” to

economically quantify the societal benefits or harms of decreasing

or increasing GHG emissions (214). From 2008 to 2022, this

damage function did not fully consider the health effects of

climate change beyond diarrhea and malaria morbidity and

mortality (215). As a result, United States federal agencies have

historically underestimated the social benefits of climate mitigation

(216). In fact, the London School of Hygiene and Tropical Medicine

and others have recently estimated that by achieving net zero in 16

major cities worldwide, 20,000 cases of childhood asthma,

representing a quarter of the current asthma cases in these cities,

could be avoided annually (217). Such interventions also offer a

good economic return on investment: for every US$1 spent on

climate mitigation, at least US$3 is saved from health benefits,

largely through a reduction of diseases such as asthma and allergies

(88, 218). Peer-reviewed cost-benefit analyses of policies and

scenarios to reduce GHG emissions have generally concluded that

the immediate health benefits of cleaner air (such as reduced asthma

and allergy) outweigh the implementation costs of these

interventions (219–221).

Standardized, universal approaches to quantify the health

benefits of reducing GHG emissions in economic terms are

urgently needed to i) motivate and guide climate policies around

the world and ii) promote actions to decrease the public health

burden of allergies and improve respiratory health.
Conclusion

Climate change presents an existential threat to the health of

humans, animals, and the entire ecosystem. The changing

exposome has led to an increased risk of major diseases

associated with immune dysregulation, including asthma,

allergies, cancers, and autoimmune diseases. While progress has

been made in the development of therapeutic options to treat these

disorders, these approaches are inadequate to meet the challenges

posed by climate change.

We must fully recognize that planetary health is the basis of

human health. Individuals, organizations, and nations need to work

toward systematically mitigating the health effects of climate

change, adapting to these changes, and promoting planetary

health to improve immune health and decrease the immense

burden of immune-mediated disease. Fundamentally, there is an

urgent need to develop and implement sustainable practices and
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reduce the use of fossil fuels to benefit planetary health for

succeeding generations. We suggest more collaborative research

on the impact of climate change and policies for climate change

mitigation on asthma and allergy outcomes.

Socioeconomically disadvantaged groups, such as immigrants

with limited language proficiency, communities of color,

indigenous groups, and outdoor workers on daily wages, face

the brunt of the impact of climate change because of poor housing

infrastructure, proximity to highly polluted areas, or poor access

to medical care. Children, pregnant women, the elderly,

individuals with preexisting conditions, and people with

disabilities are also at greater risk from the adverse health effects

of climate change. Justice, equity, diversity, and inclusion (JEDI)

considerations should be integral within climate adaptation

planning to address existing disparities exacerbated by

climate change.
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73. Arias-Pérez RD, Taborda NA, Gómez DM, Narvaez JF, Porras J, Hernandez JC.
Inflammatory effects of particulate matter air pollution. Environ Sci Pollut Res Int
(2020) 27(34):42390–404. doi: 10.1007/s11356-020-10574-w

74. ArulJothi KN, Kumaran K, Senthil S, Nidhu AB, Munaff N, Janitri VB, et al.
Implications of reactive oxygen species in lung cancer and exploiting it for therapeutic
interventions. Med Oncol (2022) 40(1):43. doi: 10.1007/s12032-022-01900-y

75. Hill W, Lim EL, Weeden CE, Lee C, Augustine M, Chen K, et al. Lung
adenocarcinoma promotion by air pollutants. Nature (2023) 616(7955):159–67.
doi: 10.1038/s41586-023-05874-3

76. Shiravand Y, Khodadadi F, Kashani SMA, Hosseini-Fard SR, Hosseini S,
Sadeghirad H, et al. Immune checkpoint inhibitors in cancer therapy. Curr Oncol
(2022) 29(5):3044–60. doi: 10.3390/curroncol29050247

77. Ritchie H, Roser M. Outdoor air pollution (2022). Available at: https://
ourworldindata.org/outdoor-air-pollution

78. Adamkiewicz G, Liddie J, Gaffin JM. The respiratory risks of ambient/outdoor
air pollution. Clin Chest Med (2020) 41(4):809–24. doi: 10.1016/j.ccm.2020.08.013

79. Nanda A, Mustafa SS, Castillo M, Bernstein JA. Air pollution effects in allergies
and asthma. Immunol Allergy Clin North Am (2022) 42(4):801–15. doi: 10.1016/
j.iac.2022.06.004

80. Bi J, D’Souza RR, Moss S, Senthilkumar N, Russell AG, Scovronick NC, et al.
Acute effects of ambient air pollution on asthma emergency department visits in ten
U.S. States. Environ Health Perspect (2023) 131(4):47003. doi: 10.1289/EHP11661

81. Mukharesh L, Phipatanakul W, Gaffin JM. Air pollution and childhood asthma.
Curr Opin Allergy Clin Immunol (2023) 23(2):100–10. doi : 10.1097/
ACI.0000000000000881
Frontiers in Science 20
82. Shaikh HS, Muhammad AIP, Ali A. Air pollution and increasing asthma
hospitalizations: a looming healthcare crisis? J Pak Med Assoc (2023) 73(3):739.
doi: 10.47391/JPMA.7545

83. Zheng XY, Orellano P, Lin HL, Jiang M, Guan WJ. Short-term exposure to
ozone, nitrogen dioxide, and sulphur dioxide and emergency department visits and
hospital admissions due to asthma: a systematic review and meta-analysis. Environ Int
(2021) 150:106435. doi: 10.1016/j.envint.2021.106435

84. Huang J, Yang X, Fan F, Hu Y, Wang X, Zhu S, et al. Outdoor air pollution and
the risk of asthma exacerbations in single lag0 and lag1 exposure patterns: a systematic
review and meta-analysis. J Asthma (2022) 59(11):2322–39. doi: 10.1080/
02770903.2021.2008429

85. YanW,Wang X, Dong T, Sun M, Zhang M, Fang K, et al. The impact of prenatal
exposure to PM2.5 on childhood asthma and wheezing: a meta-analysis of observational
studies. Environ Sci Pollut Res Int (2020) 27(23):29280–90. doi: 10.1007/s11356-020-
09014-6

86. Hua L, Ju L, Xu H, Li C, Sun S, Zhang Q, et al. Outdoor air pollution exposure
and the risk of asthma and wheezing in the offspring. Environ Sci Pollut Res Int (2023)
30(6):14165–89. doi: 10.1007/s11356-022-23094-6

87. Boogaard H, Patton AP, Atkinson RW, Brook JR, Chang HH, Crouse DL, et al.
Long-term exposure to traffic-related air pollution and selected health outcomes: A
systematic review and meta-analysis. Environ Int (2022) 164:107262. doi: 10.1016/
j.envint.2022.107262

88. Perera F, Ashrafi A, Kinney P, Mills D. Towards a fuller assessment of benefits
to children’s health of reducing air pollution and mitigating climate change due to
fossi l fuel combustion. Environ Res (2019) 172:55–72. doi : 10.1016/
j.envres.2018.12.016

89. Haikerwal A, AkramM, SimMR, Meyer M, Abramson MJ, Dennekamp M. Fine
particulate matter (PM2.5) exposure during a prolonged wildfire period and emergency
department visits for asthma. Respirology (2016) 21(1):88–94. doi: 10.1111/resp.12613

90. Doiron D, de Hoogh K, Probst-Hensch N, Fortier I, Cai Y, DeMatteis S, et al. Air
pollution, lung function and COPD: results from the population-based UK Biobank
study. Eur Respir J (2019) 54(1):1802140. doi: 10.1183/13993003.02140-2018

91. Turner MC, Andersen ZJ, Baccarelli A, Diver WR, Gapstur SM, Pope CA 3rd,
et al. Outdoor air pollution and cancer: an overview of the current evidence and public
health recommendations. CA Cancer J Clin (2020) 70(6):460–79. doi: 10.3322/
caac.21632

92. Zhao N, Smargiassi A, Jean S, Gamache P, Laouan-Sidi EA, Chen H, et al. Long-
term exposure to fine particulate matter and ozone and the onset of systemic
autoimmune rheumatic diseases: an open cohort study in Quebec, Canada. Arthritis
Res Ther (2022) 24(1):151. doi: 10.1186/s13075-022-02843-5

93. United States Environmental Protection Agency. Climate change indicators:
wildfires (2022). Available at: https://www.epa.gov/climate-indicators/climate-change-
indicators-wildfires

94. Burke M, Driscoll A, Heft-Neal S, Xue J, Burney J, Wara M. The changing risk
and burden of wildfire in the United States. Proc Natl Acad Sci USA (2021) 118(2):
e2011048118. doi: 10.1073/pnas.2011048118

95. Van der Werf GR, Morton DC, DeFries RS, Olivier JGJ, Kasibhatla PS, Jackson
RB, et al. CO2 emissions from forest loss. Nat Geosci (2009) 2(11):737–8. doi: 10.1038/
ngeo671

96. Prunicki MM, Dant CC, Cao S, Maecker H, Haddad F, Kim JB, et al.
Immunologic effects of forest fire exposure show increases in IL-1b and CRP. Allergy
(2020) 75(9):2356–8. doi: 10.1111/all.14251

97. Coronel G, Pastén M, Breuer N, Celeste A, Rejalaga L, Domecq FM, et al.
Wildfires in Paraguay: environmental and human impacts. In: Leal Filho W, Azeiteiro
UM, Setti AFF, editors. Sustainability in Natural Resources Management and Land
Planning. Cham: Springer International Publishing (2021) 429–44. doi: 10.1007/978-3-
030-76624-5_25

98. Xu R, Yu P, Abramson MJ, Johnston FH, Samet JM, Bell ML, et al. Wildfires,
global climate change, and human health. N Engl J Med (2020) 383(22):2173–81.
doi: 10.1056/NEJMsr2028985

99. Blando J, Allen M, Galadima H, Tolson T, Akpinar-Elci M, Szklo-Coxe M.
Observations of delayed changes in respiratory function among allergy clinic patients
exposed to wildfire smoke. Int J Environ Res Public Health (2022) 19(3):1241.
doi: 10.3390/ijerph19031241

100. Fadadu RP, Grimes B, Jewell NP, Vargo J, Young AT, Abuabara K, et al.
Association of wildfire air pollution and health care use for atopic dermatitis and itch.
JAMA Dermatol (2021) 157(6):658–66. doi: 10.1001/jamadermatol.2021.0179

101. Kok JF, Adebiyi AA, Albani S, Balkanski Y, Checa-Garcia R, Chin M, et al.
Contribution of the world’s main dust source regions to the global cycle of desert dust.
Atmos Chem Phys (2021) 21(10):8169–93. doi: 10.5194/acp-21-8169-2021

102. Goudie AS. Dust storms: recent developments. J Environ Manage (2009) 90
(1):89–94. doi: 10.1016/j.jenvman.2008.07.007

103. Thalib L, Al-Taiar A. Dust storms and the risk of asthma admissions to
hospitals in Kuwait. Sci Total Environ (2012) 433:347–51. doi: 10.1016/
j.scitotenv.2012.06.082

104. Hashizume M, Kim Y, Ng CFS, Chung Y, Madaniyazi L, Bell ML, et al. Health
effects of Asian dust: a systematic review and meta-analysis. Environ Health Perspect
(2020) 128(6):66001. doi: 10.1289/EHP5312
frontiersin.org

https://doi.org/10.1164/rccm.202006-2597LE
https://doi.org/10.1080/08958378.2022.2110334
https://doi.org/10.1016/j.envres.2021.112522
https://doi.org/10.1186/s12989-023-00541-x
https://doi.org/10.1016/j.jaci.2024.01.016
https://doi.org/10.1002/eji.202249981
https://doi.org/10.1016/j.envpol.2023.121655
https://doi.org/10.1016/j.envpol.2023.121655
https://doi.org/10.1038/s41591-022-02073-x
https://doi.org/10.3389/ftox.2021.787360
https://doi.org/10.1038/s41577-022-00776-3
https://doi.org/10.1165/rcmb.2014-0158OC
https://doi.org/10.1165/rcmb.2014-0158OC
https://doi.org/10.1016/j.scitotenv.2023.165851
https://doi.org/10.1016/j.scitotenv.2023.165851
https://doi.org/10.1038/s41467-021-23201-0
https://doi.org/10.3389/fimmu.2023.1178434
https://doi.org/10.1093/jnci/djv341
https://doi.org/10.1007/s11356-020-10574-w
https://doi.org/10.1007/s12032-022-01900-y
https://doi.org/10.1038/s41586-023-05874-3
https://doi.org/10.3390/curroncol29050247
https://ourworldindata.org/outdoor-air-pollution
https://ourworldindata.org/outdoor-air-pollution
https://doi.org/10.1016/j.ccm.2020.08.013
https://doi.org/10.1016/j.iac.2022.06.004
https://doi.org/10.1016/j.iac.2022.06.004
https://doi.org/10.1289/EHP11661
https://doi.org/10.1097/ACI.0000000000000881
https://doi.org/10.1097/ACI.0000000000000881
https://doi.org/10.47391/JPMA.7545
https://doi.org/10.1016/j.envint.2021.106435
https://doi.org/10.1080/02770903.2021.2008429
https://doi.org/10.1080/02770903.2021.2008429
https://doi.org/10.1007/s11356-020-09014-6
https://doi.org/10.1007/s11356-020-09014-6
https://doi.org/10.1007/s11356-022-23094-6
https://doi.org/10.1016/j.envint.2022.107262
https://doi.org/10.1016/j.envint.2022.107262
https://doi.org/10.1016/j.envres.2018.12.016
https://doi.org/10.1016/j.envres.2018.12.016
https://doi.org/10.1111/resp.12613
https://doi.org/10.1183/13993003.02140-2018
https://doi.org/10.3322/caac.21632
https://doi.org/10.3322/caac.21632
https://doi.org/10.1186/s13075-022-02843-5
https://www.epa.gov/climate-indicators/climate-change-indicators-wildfires
https://www.epa.gov/climate-indicators/climate-change-indicators-wildfires
https://doi.org/10.1073/pnas.2011048118
https://doi.org/10.1038/ngeo671
https://doi.org/10.1038/ngeo671
https://doi.org/10.1111/all.14251
https://doi.org/10.1007/978-3-030-76624-5_25
https://doi.org/10.1007/978-3-030-76624-5_25
https://doi.org/10.1056/NEJMsr2028985
https://doi.org/10.3390/ijerph19031241
https://doi.org/10.1001/jamadermatol.2021.0179
https://doi.org/10.5194/acp-21-8169-2021
https://doi.org/10.1016/j.jenvman.2008.07.007
https://doi.org/10.1016/j.scitotenv.2012.06.082
https://doi.org/10.1016/j.scitotenv.2012.06.082
https://doi.org/10.1289/EHP5312
https://doi.org/10.3389/fsci.2024.1279192
https://www.frontiersin.org/journals/science
https://www.frontiersin.org


Agache et al. 10.3389/fsci.2024.1279192
105. Pearson D, Ebisu K, Wu X, Basu R. A review of coccidioidomycosis in
California: exploring the intersection of land use, population movement, and climate
change. Epidemiol Rev (2019) 41(1):145–57. doi: 10.1093/epirev/mxz004

106. Ritchie H, Roser M. Indoor air pollution (2022). Available at: https://
ourworldindata.org/indoor-air-pollution

107. Krasner A, Jones TS, Jones TS, LaRocque R. Cooking with gas, household air
pollution, and asthma: little recognized risk for children. J Environ Health (2021) 83
(8):14–8.

108. Dherani M, Pope D, Mascarenhas M, Smith KR, Weber M, Bruce N. Indoor air
pollution from unprocessed solid fuel use and pneumonia risk in children aged under
five years: a systematic review and meta-analysis. Bull World Health Organ (2008) 86
(5):390–8C. doi: 10.2471/blt.07.044529

109. Maung TZ, Bishop JE, Holt E, Turner AM, Pfrang C. Indoor air pollution and
the health of vulnerable groups: A systematic review focused on particulate matter
(PM), volatile organic compounds (VOCs) and their effects on children and people
with pre-existing lung disease. Int J Environ Res Public Health (2022) 19(14):8752.
doi: 10.3390/ijerph19148752

110. D’Amato G, Chong-Neto HJ, Monge Ortega OP, Vitale C, Ansotegui I, Rosario
N, et al. The effects of climate change on respiratory allergy and asthma induced by
pollen and mold allergens. Allergy (2020) 75(9):2219–28. doi: 10.1111/all.14476

111. Wang J, Zhao Z, Zhang Y, Li B, Huang C, Zhang X, et al. Asthma, allergic
rhinitis and eczema among parents of preschool children in relation to climate, and
dampness and mold in dwellings in China. Environ Int (2019) 130:104910.
doi: 10.1016/j.envint.2019.104910

112. Li S, Cao S, Duan X, Zhang Y, Gong J, Xu X, et al. Household mold exposure
in association with childhood asthma and allergic rhinitis in a northwestern city and
a southern city of China. J Thorac Dis (2022) 14(5):1725–37. doi: 10.21037/jtd-21-
1380
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