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Metagenomic probing toward an atlas of the taxonomic and metabolic
foundations of the global ocean genome
Key points
• While providing outstanding opportunities for genomic discovery within
the ocean microbiome, the KAUST Metagenomic Analysis Platform
(KMAP) Global Ocean Gene Catalog 1.0 provides a baseline for the
changing microbial communities and activities of the ocean as they
react to global warming, ocean acidification, and pollution.

• Considering the diversity of life in the ocean, the KMAP Global Ocean
Gene Catalog 1.0 showcases underexploredmarine viruses and fungi with
novel roles in organic matter degradation, scavenging, and turnover.

• Ultimately, the KMAP platform used to assemble and analyze the Global
Ocean Gene Catalog 1.0 will prove its worth empirically through
researchers, with emerging agendas and new questions, who utilize
this resource. Intercalibration and comparability of its taxonomy and
functionality pipelines with other genome analysis platforms will be
crucial for its wider adoption.
Researchers with a certain amount of experience cannot help noticing the fast turnover of

software tools and databases in the bioinformatics landscape. In order to thrive, metagenomic

analysis and annotation tools have to remain up to date in terms of content, organization, and

taxonomy; they have to be maintained by a devoted team of curators; and they should offer

access and handles for a diverse and active user community that prevents them from falling

into disuse (1). Finally, long-term institutional support is essential for staying power and

longevity in this ever-changing field. The KAUST Metagenomic Analysis Platform (KMAP)

appears among the latest entries within the field of large-scale metagenomic analysis and

annotation. In their Frontiers in Science article, Laiolo and colleagues deliver an impressive

rollout for the KMAP by assembling and analyzing an extensive global marine metagenome

dataset, the Global Ocean Gene Catalog 1.0, which represents over 2,000 metagenomic
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samples predominantly from the open ocean and, to a smaller extent,

from coastal waters and benthos (2). Numerous marine metagenomic

samples from the European Nucleotide Archive (ENA;

www.ebi.ac.uk/ena) were extracted as of May 2018 for processing

in the KMAP, which includes quality control of readings and

assembly of metagenomes (3). The large volume of this marine

gene survey imposes some limits on the level of phylogenetic and

functional detail that can be accommodated in a paper of reasonable

length; therefore, this study emphasizes broad occurrence patterns of

microbial classes and phyla, and major metabolic pathways.

When trying to assess potential trajectories of the KMAP, which

range from a strictly in-house tool at KAUST to a more widely used

metagenomic analysis platform, it certainly helps to look at the

results of this global marine survey and to comment on outcomes

that will capture the attention of researchers today and tomorrow.

First and foremost, this survey provides a benchmark for the global

ocean microbiome in the early 21st century, as environmental

change—heat uptake and warming of the water column, increased

ocean stratification and development of water column anoxia,

increased acidification and dissolution of calcareous plankton,

and spread of pollution and pathogens—is engulfing the ocean

and its microbiome on all fronts (4). This survey captures anaerobic

microbial pathways (sulfate reduction, anammox, and nitrate

reduction) that are becoming more widespread in response to

increasing eutrophication, water column stratification, and

suboxic or anoxic conditions in the water column; thus, changing

microbial community and pathway profiles act as indicators of

global change. Metagenomic samples, which are time-stamped and

precisely localized, provide an archive of the ocean microbiome that

will extend into the future. While microbial taxonomy and

functional annotation in future databases and pipelines will

evolve, archived metagenome data provide a baseline against

which newly added metagenomes will be compared to record

microbial ecosystem change over time. Of course, keeping such

efforts on track is not just a challenge for the KMAP but for all

metagenomics platforms, and it requires intercomparability and

standardization of annotation pipelines.

Metagenomic sequence analysis is perhaps the premier avenue

for the discovery of unexpected diversity and new types of microbial

life; without metagenomics, the rapid growth of the microbial tree

of life would have been unthinkable. While the approximate

outlines of the genomic bacterial and archaeal tree of life are

becoming visible, this cannot yet be said for the vast domain of

parasitic DNA and its viral carriers even after three decades of

sequencing environmental genes and genomes. While Bacteria and

Archaea get their due, the authors highlight viral diversity as one of

the key results of their survey, noting that viral genomes contain far

more genetic novelty than previously realized even considering that

this DNA-based assessment of the global ocean genome omits RNA

viruses. Given their sheer abundance in the ocean, viruses exert key

controls on marine biogeochemical cycling (5). “Localized” studies

of marine viruses that are associated with specific microbial lineages

seek to narrow the field to make it manageable but have instead

uncovered swarms of unexplored viral genes that surround their

microbial hosts in veritable gene clouds; this is exemplified by two

recent studies that limited the hunting grounds to very particular
Frontiers in Science 02
Archaea but found much more than they had bargained for (6, 7).

Looking beyond the constraints of a large-scale survey, more

detailed functional, structural, and phylogenetic annotation of

viral genes and gene products will remain an ongoing challenge.

Another major result that the authors have singled out (and

for good reason) is the unexpected prominence of fungi in

the mesopelagic water column. The mesopelagic zone is where

the sinking biomass of photosynthetic organisms originating in the

surface ocean undergoes degradation and remineralization, which is

marked by slowing migration and high oxygen demand at the

thermocline and pycnocline. Fungal infections of phytoplankton,

for example, chytrids colonizing living diatoms, may play a

previously underestimated role (8, 9). Diverse lineages of parasitic

or free-living marine fungi may emerge as major catalysts of organic

matter degradation and turnover. That said, taxonomy annotation

pipelines and sequence databases have trouble when it comes to the

classification of uncultured or barely cultured fungi. Likewise, this

analysis stops at the threshold of pointing out “There be fungi!”.

Regardless of these limitations, it is becoming obvious that the

contribution of marine fungi to carbon cycling can no longer be

ignored, and this study calls attention to this important issue.

The fungal problem touches on a perennial database issue: the

rapidly evolving taxonomy of microorganisms. To mention

examples from relatively well-cultivated microbial lineages, the

class Deltaproteobacteria has morphed into the phyla

Deltaproteobacterota, Myxococcota, and Bdellovibrionota (10),

and the class Epsilonproteobacteria has become the phylum

Campylobacterota (11). Taxonomic turmoil has been particularly

severe among uncultured Archaea and Bacteria, where revised

class- and phylum-level lineages are proposed based on genomes

and metagenomes (12). The resulting taxonomy developed by the

Genome Taxonomy Database (GTDB) continues to evolve as new

metagenomic branches of life are added (13). The KMAP Global

Ocean Gene Catalog 1.0 largely uses the more traditional National

Center for Biotechnology Information (NCBI) taxonomy that

accommodates historically grown database structure and content

(14). Future KMAP maintenance will require that a watchful eye be

kept on the rapid development of microbial taxonomy. Finally,

regular updates to KMAP will be needed for it to remain current

and intercomparable, as outlined by the FAIR (Findable, Accessible,

Interoperable, and Reusable) principles for scientific data

management and stewardship (15).

Given the challenges of rapidly evolving microbial taxonomy,

the limited number of benthic samples in this water column-

focused survey is probably a blessing in disguise since

sedimentary habitats are generally anaerobic and harbor a distinct

microbial biosphere of mostly uncultured bacterial and archaeal

lineages that do not occur in the water column (16). Except for

persistently anoxic basins and growing oxygen minimum zones, the

water column of the modern ocean is a biosphere dominated by

oxygen-respiring life, and it contains the lineages of life that have

adapted to the presence of this strong oxidant. Diving into

anaerobic waters and sediments, and their ancient microbial

inhabitants, could provide an interesting challenge for the KMAP

team, and it may serve as a welcome opportunity to keep the

spotlight on the KMAP. Finally, intercalibration and comparisons
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with other metagenomic pipelines, for example, by working on

shared datasets or emerging timelines of microbial ocean change at

selected locations, should provide further avenues to integrate the

KMAP into the global community of metagenomic researchers.
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